2025
Molecular Components of Vesicle Cycling at the Rod Photoreceptor Ribbon Synapse
Hanke-Gogokhia C, Zapadka T, Finkelstein S, Arshavsky V, Demb J. Molecular Components of Vesicle Cycling at the Rod Photoreceptor Ribbon Synapse. Advances In Experimental Medicine And Biology 2025, 1468: 325-330. PMID: 39930217, DOI: 10.1007/978-3-031-76550-6_54.Peer-Reviewed Original ResearchConceptsSynaptic vesicle exocytosisSynaptic vesicle recyclingPhotoreceptor ribbon synapseVesicle exocytosisVesicle recyclingVesicle cycleVesicle releaseRibbon synapseProtein synthesisProperties of synaptic transmissionMolecular componentsMouse rodsSynaptic terminalsRod cellsProteinVesiclesRod photoreceptorsDim lightSynaptic transmissionInner segmentsCellsExocytosisEndocytosisOuter segmentsEnergy production
2024
Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release
Bose D, Bera M, Norman C, Timofeeva Y, Volynski K, Krishnakumar S. Minimal presynaptic protein machinery governing diverse kinetics of calcium-evoked neurotransmitter release. Nature Communications 2024, 15: 10741. PMID: 39738049, PMCID: PMC11685451, DOI: 10.1038/s41467-024-54960-1.Peer-Reviewed Original ResearchConceptsSynaptotagmin-7Synaptotagmin-1Protein machinerySNARE complex assemblyFusion clampExocytosis processVesicle fusionVesicular fusionComplex assemblySynaptic vesiclesFusion assayMolecular basisPhysiologically relevant conditionsPresynaptic calcium influxNeurotransmitter releaseVesiclesSNAREProteinMachineryCompetitive bindingFusion dynamicsComplexinExocytosisFusionCalcium influx
2023
Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle
Bera M, Radhakrishnan A, Coleman J, Sundaram R, Ramakrishnan S, Pincet F, Rothman J. Synaptophysin chaperones the assembly of 12 SNAREpins under each ready-release vesicle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2311484120. PMID: 37903271, PMCID: PMC10636311, DOI: 10.1073/pnas.2311484120.Peer-Reviewed Original ResearchConceptsSpecific molecular functionsSynaptic vesicle protein synaptophysinTarget membrane bilayerSensor synaptotagminSNARE proteinsMolecular functionsMembrane proteinsSNAREpinsReceptor vesiclesSingle-molecule measurementsGene knockoutMembrane bilayerLipid bilayersProtein synaptophysinVesiclesDetergent extractsHexamer structureSYPMechanism of actionProteinAssemblyChaperonesSynaptotagminExocytosisBilayersRoles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery
Sundaram R, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst A, Gupta K, Rothman J, Krishnakumar S. Roles for diacylglycerol in synaptic vesicle priming and release revealed by complete reconstitution of core protein machinery. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2309516120. PMID: 37590407, PMCID: PMC10450444, DOI: 10.1073/pnas.2309516120.Peer-Reviewed Original ResearchMeSH KeywordsBlisterDiglyceridesExocytosisHumansSynaptic TransmissionSynaptic VesiclesSynaptotagminsConceptsCore protein machineryRelease-ready vesiclesSynaptic vesicle primingVesicle primingProtein machinerySingle-molecule imagingSNAREpin assemblyFunctional intermediatesFunctional reconstitutionMunc13DiacylglycerolCoordinated actionMunc18VesiclesMachineryComplete reconstitutionNew roleSelective effectDetailed characterizationChaperonesRate of caReconstitutionVAMP2ComplexinMutationsLoss of ZNF148 enhances insulin secretion in human pancreatic β cells
de Klerk E, Xiao Y, Emfinger C, Keller M, Berrios D, Loconte V, Ekman A, White K, Cardone R, Kibbey R, Attie A, Hebrok M. Loss of ZNF148 enhances insulin secretion in human pancreatic β cells. JCI Insight 2023, 8: e157572. PMID: 37288664, PMCID: PMC10393241, DOI: 10.1172/jci.insight.157572.Peer-Reviewed Original ResearchConceptsPancreatic β-cellsΒ-cellsSC-β cellsHuman pancreatic β-cellsInsulin secretionHuman β-cellsVesicle traffickingGenetic regulatorsStem cell-derived β cellsDirect repressionS100 genesCells identifiesZNF148Annexin A2Tetrameric complexCell membraneNovel therapeutic targetNovel therapeutic strategiesHuman isletsRegulatorTherapeutic targetCellsS100A16 expressionGlucose homeostasisTherapeutic strategiesRapid Quantification of First and Second Phase Insulin Secretion Dynamics using an In vitro Platform for Improving Insulin Therapy
Thoduvayil S, Weerakkody J, Sundaram R, Topper M, Bera M, Coleman J, Li X, Mariappan M, Ramakrishnan S. Rapid Quantification of First and Second Phase Insulin Secretion Dynamics using an In vitro Platform for Improving Insulin Therapy. Cell Calcium 2023, 113: 102766. PMID: 37295201, PMCID: PMC10450995, DOI: 10.1016/j.ceca.2023.102766.Peer-Reviewed Original ResearchConceptsCellular pathwaysSecretion dynamicsSmall molecule screeningLuciferase reporter systemInsulin secretion dynamicsHigh-throughput compoundInsulin secretionHigh-throughput quantificationReporter systemGenetic studiesLive cellsDistinct rolesInsulin therapyGlucose-stimulated insulin secretionSmall moleculesEffective insulin therapyPathwaySecretionCochlear transcript diversity and its role in auditory functions implied by an otoferlin short isoform
Liu H, Liu H, Wang L, Song L, Jiang G, Lu Q, Yang T, Peng H, Cai R, Zhao X, Zhao T, Wu H. Cochlear transcript diversity and its role in auditory functions implied by an otoferlin short isoform. Nature Communications 2023, 14: 3085. PMID: 37248244, PMCID: PMC10227054, DOI: 10.1038/s41467-023-38621-3.Peer-Reviewed Original ResearchConceptsShort isoformEndocytic membrane retrievalRNA sequencing techniquesDiverse biological functionsInner hair cellsTranscript diversityUnannotated transcriptsRNA-seqAlternative isoformsMembrane retrievalBiological functionsGENCODE databasesKey proteinsIsoform resolutionSequencing techniquesSustained exocytosisIsoformsMechanistic understandingAuditory functionSanger sequencingHair cellsTranscriptsRT-PCRSynaptic transmissionAuditory phenotypeUse of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood D. Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis. Methods In Molecular Biology 2023, 2608: 17-38. PMID: 36653699, PMCID: PMC9999384, DOI: 10.1007/978-1-0716-2887-4_2.ChaptersConceptsΒ1 integrinTotal internal reflection fluorescence microscopyNormal cell adhesionIntegrin adhesion receptorsReflection fluorescence microscopyAdhesion receptorsCell adhesionEndocytosisFluorescence microscopyExocytosisIntegrinsCellsHaloTagPHluorinIntracellular labelingEctoPhotobleachingTagsReceptorsChaseFluorescentAdhesionLabelingMigration
2022
Regulation of EGF-stimulated activation of the PI-3K/AKT pathway by exocyst-mediated exocytosis
An S, Anneken A, Xi Z, Choi C, Schlessinger J, Toomre D. Regulation of EGF-stimulated activation of the PI-3K/AKT pathway by exocyst-mediated exocytosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2208947119. PMID: 36417441, PMCID: PMC9860279, DOI: 10.1073/pnas.2208947119.Peer-Reviewed Original ResearchConceptsPI-3K/Akt pathwayAkt pathwayAkt activationDocking protein Gab1EGF-stimulated activationEpithelial cellsLive-cell imagingPhosphoinositide-3 kinaseCell survival pathwaysExocyst complexExocyst functionSmall molecule inhibitorsVesicle tethersExocytic fusionProtein Gab1EGF stimulationExocystSurvival pathwaysExocytosisInhibitors resultsPathwayImportant pathwayEGFR inhibitionMinute time scaleVesiclesFibroblasts secrete fibronectin under lamellipodia in a microtubule- and myosin II–dependent fashion
Huet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood D. Fibroblasts secrete fibronectin under lamellipodia in a microtubule- and myosin II–dependent fashion. Journal Of Cell Biology 2022, 222: e202204100. PMID: 36416725, PMCID: PMC9699186, DOI: 10.1083/jcb.202204100.Peer-Reviewed Original ResearchConceptsFN secretionFocal adhesion dynamicsExtracellular matrixFocal adhesion formationSites of exocytosisLive-cell microscopyIntegrin-independent mannerCytoskeletal dynamicsFocal adhesionsAdhesion dynamicsRegulatory componentsMyosin IIIntact microtubulesCell polarizationCell adhesionIntegrin receptorsFN depositionLamellipodiaMicrotubulesFibronectinAdhesion formationNew adhesion formationFibroblastsII-dependent fashionCellsExtracellular Vesicles Mediate the Intercellular Exchange of Nanoparticles
Wu X, Tang T, Wei Y, Cummins K, Wood D, Pang H. Extracellular Vesicles Mediate the Intercellular Exchange of Nanoparticles. Advanced Science 2022, 9: 2102441. PMID: 35243822, PMCID: PMC8895114, DOI: 10.1002/advs.202102441.Peer-Reviewed Original ResearchConceptsIntercellular exchangeExtracellular vesiclesComplex tissuesImportance of EVsCell-cell contactTranscellular transport routeDirect cell-cell contactSubcellular transportNP endocytosisExocytosisAccumulative evidenceVesiclesSame receptorCrucial rolePotential mechanismsCellsTransport routesEndocytosisTissueSignificant fractionTransportVitroAssaysVivoReceptors
2021
Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis
Zhang B, Lapenta K, Wang Q, Nam JH, Chung D, Robert ME, Nathanson MH, Yang X. Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. Journal Of Biological Chemistry 2021, 297: 100887. PMID: 34146542, PMCID: PMC8267550, DOI: 10.1016/j.jbc.2021.100887.Peer-Reviewed Original ResearchConceptsHepatic stellate cellsTrefoil factor 2Liver injuryStellate cellsActivation of HSCsPrimary hepatic stellate cellsPlatelet-derived growth factor receptor betaChronic liver diseaseGrowth factor receptor betaProcess of fibrogenesisLiver-specific deletionFactor 2Spontaneous fibrosisLiver diseaseLiver fibrosisFibrogenic processReceptor betaFibrogenesisWT hepatocytesProtein expressionFibrosisHepatocytesInjuryNovel factorActivationGranular detail of β cell structures for insulin secretion
Bogan JS. Granular detail of β cell structures for insulin secretion. Journal Of Cell Biology 2021, 220: e202012082. PMID: 33427875, PMCID: PMC7802365, DOI: 10.1083/jcb.202012082.Commentaries, Editorials and Letters
2020
Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis
Ramakrishnan S, Bera M, Coleman J, Rothman JE, Krishnakumar SS. Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis. ELife 2020, 9: e54506. PMID: 32401194, PMCID: PMC7220375, DOI: 10.7554/elife.54506.Peer-Reviewed Original ResearchConceptsSynaptotagmin-1Vesicular fusion machinerySingle-vesicle fusionFusion of vesiclesSNARE complexFusion machineryNeuronal exocytosisOligomer bindsRegulatory proteinsVesicle fusionSNAREpinsSynchronous fusionSynaptic vesiclesNovel mechanismVesiclesComplexinKinetic delayPrimary interfaceSynergistic roleFusionExocytosisMachineryProteinBindsMechanismSynaptotagmin 1 oligomers clamp and regulate different modes of neurotransmitter release
Tagliatti E, Bello OD, Mendonça PRF, Kotzadimitriou D, Nicholson E, Coleman J, Timofeeva Y, Rothman JE, Krishnakumar SS, Volynski KE. Synaptotagmin 1 oligomers clamp and regulate different modes of neurotransmitter release. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 3819-3827. PMID: 32015138, PMCID: PMC7035618, DOI: 10.1073/pnas.1920403117.Peer-Reviewed Original Research
2019
Syndecan-1 Mediates Sorting of Soluble Lipoprotein Lipase with Sphingomyelin-Rich Membrane in the Golgi Apparatus
Sundberg EL, Deng Y, Burd CG. Syndecan-1 Mediates Sorting of Soluble Lipoprotein Lipase with Sphingomyelin-Rich Membrane in the Golgi Apparatus. Developmental Cell 2019, 51: 387-398.e4. PMID: 31543446, PMCID: PMC6832887, DOI: 10.1016/j.devcel.2019.08.014.Peer-Reviewed Original ResearchConceptsTrans-Golgi networkSphingomyelin-rich membranesTransmembrane domainSecretory pathwayVesicular transport carriersIntegral membrane proteinsProtein transmembrane domainBiosynthetic secretory pathwaySyndecan-1Heparan sulfate chainsLipoprotein lipaseSorting receptorSecretion pathwayMembrane proteinsGolgi membranesProteoglycan syndecan-1Protein cargoSecretory vesiclesPlasma membraneGolgi apparatusSpecific sequencesTransport carriersSulfate chainsLipid compositionEnzyme lipoprotein lipaseSynaptic vesicle fusion: today and beyond
Brose N, Brunger A, Cafiso D, Chapman ER, Diao J, Hughson FM, Jackson MB, Jahn R, Lindau M, Ma C, Rizo J, Shin YK, Söllner TH, Tamm L, Yoon TY, Zhang Y. Synaptic vesicle fusion: today and beyond. Nature Structural & Molecular Biology 2019, 26: 663-668. PMID: 31384060, DOI: 10.1038/s41594-019-0277-z.Peer-Reviewed Original ResearchAnimalsCalciumCryoelectron MicroscopyEndocytosisExocytosisHumansMacromolecular SubstancesMembrane FusionMembrane LipidsMembrane ProteinsNerve Tissue ProteinsNeurophysiologyNeurotransmitter AgentsOptical TweezersProtein Interaction MappingSingle Molecule ImagingSNARE ProteinsSynaptic TransmissionSynaptic VesiclesFunctional alteration of ribbon synapses in inner hair cells by noise exposure causing hidden hearing loss
Liu H, Lu J, Wang Z, Song L, Wang X, Li G, Wu H. Functional alteration of ribbon synapses in inner hair cells by noise exposure causing hidden hearing loss. Neuroscience Letters 2019, 707: 134268. PMID: 31103727, DOI: 10.1016/j.neulet.2019.05.022.Peer-Reviewed Original ResearchConceptsInner hair cellsModerate noise exposureHearing lossRibbon synapsesNoise exposureHair cellsPersistent reductionWhole-cell patch-clamp recordingsNoise-induced hearing lossSynapse functionAuditory afferent fibersHidden hearing lossABR wave ISynaptic vesiclesAuditory brainstem response (ABR) amplitudesPatch-clamp recordingsSevere noise exposureWhole mount immunofluorescence stainingPatch-clamp electrophysiologySensory hair cellsAfferent fibersABR thresholdPersistent alterationsExposure altersFunctional alterationsMutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment
Salpietro V, Malintan NT, Llano-Rivas I, Spaeth CG, Efthymiou S, Striano P, Vandrovcova J, Cutrupi MC, Chimenz R, David E, Di Rosa G, Marce-Grau A, Raspall-Chaure M, Martin-Hernandez E, Zara F, Minetti C, Study D, Group S, Salpietro V, Efthymiou S, Kriouile Y, Khorassani M, Aguennouz M, Karashova B, Avdjieva D, Kathom H, Tincheva R, Van Maldergem L, Nachbauer W, Boesch S, Arning L, Timmann D, Cormand B, Pérez-Dueñas B, Di Rosa G, Pironti E, Goraya J, Sultan T, Kirmani S, Ibrahim S, Jan F, Mine J, Banu S, Veggiotti P, Ferrari M, Verrotti A, Marseglia G, Savasta S, Garavaglia B, Scuderi C, Borgione E, Dipasquale V, Cutrupi M, Portaro S, Sanchez B, Pineda-Marfa’ M, Munell F, Macaya A, Boles R, Heimer G, Papacostas S, Manole A, Malintan N, Zanetti M, Hanna M, Rothman J, Kullmann D, Houlden H, Bello O, De Zorzi R, Fortuna S, Dauber A, Alkhawaja M, Sultan T, Mankad K, Vitobello A, Thomas Q, Mau-Them F, Faivre L, Martinez-Azorin F, Prada C, Macaya A, Kullmann D, Rothman J, Krishnakumar S, Houlden H. Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment. American Journal Of Human Genetics 2019, 104: 721-730. PMID: 30929742, PMCID: PMC6451933, DOI: 10.1016/j.ajhg.2019.02.016.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAutistic DisorderBrainChildChild, PreschoolEpilepsyExocytosisFemaleHeterozygoteHumansIntellectual DisabilityLipidsMagnetic Resonance ImagingMaleMembrane FusionMovement DisordersMuscle HypotoniaMutationNeurodevelopmental DisordersNeuronsNeurotransmitter AgentsPhenotypeProtein DomainsR-SNARE ProteinsSynapsesVesicle-Associated Membrane Protein 2ConceptsNon-synonymous variantsDe novo mutationsSNARE protein VAMP2Synaptic membrane fusionC-terminal regionNovo mutationsSNARE motifSynaptosomal-associated protein 25C-terminusMembrane fusionVAMP2Vesicle fusionHuman brain developmentAcid deletionSynaptic vesiclesVesicular exocytosisHeterozygous de novo mutationsProtein 25Hyperkinetic movement disordersAdditional neurological featuresHuman neurodevelopmentCentral visual impairmentDisease mechanismsUnrelated individualsMutationsSymmetrical organization of proteins under docked synaptic vesicles
Li X, Radhakrishnan A, Grushin K, Kasula R, Chaudhuri A, Gomathinayagam S, Krishnakumar SS, Liu J, Rothman JE. Symmetrical organization of proteins under docked synaptic vesicles. FEBS Letters 2019, 593: 144-153. PMID: 30561792, PMCID: PMC6353562, DOI: 10.1002/1873-3468.13316.Peer-Reviewed Original ResearchConceptsCryo-electron tomography analysisSymmetrical organizationCalcium-regulated exocytosisMunc18 proteinsProtein machineryFusion machinerySingle SNAREpinCircular oligomersMutational analysisRadial positioningSynaptic vesiclesRelease machineryMachinerySynaptotagminProteinRing hypothesisVesiclesObserved arrangementUnderlying mechanismSNAREpinsComplexinNerve growthExocytosisGrowth
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply