2025
Mapping pesticide-induced metabolic alterations in human gut bacteria
Chen L, Yan H, Di S, Guo C, Zhang H, Zhang S, Gold A, Wang Y, Hu M, Wu D, Johnson C, Wang X, Zhu J. Mapping pesticide-induced metabolic alterations in human gut bacteria. Nature Communications 2025, 16: 4355. PMID: 40348778, PMCID: PMC12065874, DOI: 10.1038/s41467-025-59747-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacteriaFemaleGastrointestinal MicrobiomeHumansLipid MetabolismMaleMiceMice, Inbred C57BLPesticidesConceptsModulating gut microbiota compositionGut bacteria speciesGut microbial speciesHuman gut bacteriaGut microbiota compositionGut bacterial metabolismPesticide exposureHost healthGut bacteriaMicrobiota compositionMicrobial speciesBacterial metabolismBacteria speciesMolecular mechanismsComprehensive atlasLipid metabolismGutIn vivo mouse modelPesticidesHostMetabolismSpeciesInteractive atlasMouse modelMetabolic changesEndoplasmic reticulum Nogo drives AgRP neuronal activation and feeding behavior
Jin S, Yoon N, Wei M, Worgall T, Rubinelli L, Horvath T, Min W, Diano N, di Lorenzo A, Diano S. Endoplasmic reticulum Nogo drives AgRP neuronal activation and feeding behavior. Cell Metabolism 2025, 37: 1400-1412.e8. PMID: 40334659, PMCID: PMC12136989, DOI: 10.1016/j.cmet.2025.04.005.Peer-Reviewed Original ResearchConceptsAgRP neuron activityNogo-AAgRP neuronsNeuronal activityCeramide levelsNogo-A expressionCellular lipid metabolismIntracellular lipid transportSphingolipid de novo biosynthesisDownregulation of enzymesIncreased ceramide levelsLipid metabolismHigh-fat diet-induced obesityFeeding behaviorAgouti-related proteinControl of feedingControlling lipid metabolismAssociated with brain developmentWhole-body metabolismFatty acid oxidationReticulon 4Food intakeMitochondrial functionSynaptic plasticityLipid transportLiver lipid droplet cholesterol content is a key determinant of metabolic dysfunction–associated steatohepatitis
Sakuma I, Gaspar R, Nasiri A, Dufour S, Kahn M, Zheng J, LaMoia T, Guerra M, Taki Y, Kawashima Y, Yimlamai D, Perelis M, Vatner D, Petersen K, Huttasch M, Knebel B, Kahl S, Roden M, Samuel V, Tanaka T, Shulman G. Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction–associated steatohepatitis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2502978122. PMID: 40310463, PMCID: PMC12067271, DOI: 10.1073/pnas.2502978122.Peer-Reviewed Original ResearchConceptsCholine-deficient l-amino acid-defined high-fat dietBempedoic acidLiver fibrosisLiver diseaseL-amino acid-defined high-fat dietAdvanced liver diseaseCholesterol contentHSD17B13 variantsHigh-fat dietTotal liver cholesterol contentTreated miceActivate signaling pathwaysVariant rs738409Liver cholesterol contentLiver lipidsFibrotic responsePromote inflammationTherapeutic approachesSteatotic liver diseaseDietary cholesterol supplementationFibrosisHuman liver samplesI148MAntisense oligonucleotidesProgressive formMitochondrial fatty acid synthesis and MECR regulate CD4+ T cell function and oxidative metabolism
Steiner K, Young A, Patterson A, Sugiura A, Watson M, Preston S, Zhelonkin A, Jennings E, Chi C, Heintzman D, Pahnke A, Toudji Y, Hatem Z, Madden M, Arner E, Sewell A, Blount A, Okparaugo R, Fallman E, Krystofiak E, Sheldon R, Gibson-Corley K, Voss K, Nowinski S, Jones R, Mogilenko D, Rathmell J. Mitochondrial fatty acid synthesis and MECR regulate CD4+ T cell function and oxidative metabolism. The Journal Of Immunology 2025, 214: 958-976. PMID: 40204636, PMCID: PMC12123211, DOI: 10.1093/jimmun/vkaf034.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD4-Positive T-LymphocytesFatty AcidsLipid MetabolismMiceMice, Inbred C57BLMice, KnockoutMitochondriaOxidation-ReductionConceptsT cell subsetsCD4+ T cell subsetsMitochondrial fatty acid synthesisT cell functionT cellsFatty acid synthesisDecreased mitochondrial respirationTricarboxylic acid intermediatesLipid metabolism genesT cell fateSensitivity to ferroptosisIncreased cell deathCD4+ T cell functionCD8+ T cell numbersCD4+ T cell proliferationMitochondrial stressMetabolic genesCD4+ T cellsCRISPR/Cas9 screenMitochondrial respirationModel of inflammatory bowel diseaseAcid synthesisFitness disadvantageMemory T cellsT cell numbersLipid Dynamics at Membrane Contact Sites
Reinisch K, De Camilli P, Melia T. Lipid Dynamics at Membrane Contact Sites. Annual Review Of Biochemistry 2025, 94: 479-502. PMID: 40067957, DOI: 10.1146/annurev-biochem-083024-122821.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiological TransportCarrier ProteinsCell MembraneEndoplasmic ReticulumHumansLipid MetabolismMembrane LipidsMembrane ProteinsConceptsContact sitesOrganelle contact sitesMembrane contact sitesIntegral membrane proteinsLipid transfer proteinsVesicular traffickingEndoplasmic reticulumLipid transferMembrane proteinsLipid movementOrganellesLipid transportTransfer proteinCellular membranesProteinBilayer asymmetryLipid dynamicsShedding new lightLipidMembranePhysiological mechanismsEukaryotesSitesReticulumTraffickingHypercholesterolemia-induced LXR signaling in smooth muscle cells contributes to vascular lesion remodeling and visceral function
Zhang H, de Urturi D, Fernández-Tussy P, Huang Y, Jovin D, Zhang X, Huang S, Lek M, da Silva Catarino J, Sternak M, Citrin K, Swirski F, Gustafsson J, Greif D, Esplugues E, Biwer L, Suárez Y, Fernández-Hernando C. Hypercholesterolemia-induced LXR signaling in smooth muscle cells contributes to vascular lesion remodeling and visceral function. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2417512122. PMID: 40035761, PMCID: PMC11912459, DOI: 10.1073/pnas.2417512122.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsLiver X receptorLesion remodelingMuscle cellsVascular functionArterial media layerContribution of lipid metabolismPhenotypic switchingRegulate vascular toneMonocyte-derived macrophagesLipid metabolismPhenotypic switching of vascular smooth muscle cellsSwitching of vascular smooth muscle cellsNecrotic core areaRegulate vascular functionFoam cell populationVisceral myopathyBladder remodelingAortic atheromaFibrous cap thicknessRemodeling in vivoLipid malabsorptionVascular toneAbundant cell typeTANGO2 is an acyl-CoA binding protein
Lujan A, Foresti O, Wojnacki J, Bigliani G, Brouwers N, Pena M, Androulaki S, Hashidate-Yoshida T, Kalyukina M, Novoselov S, Shindou H, Malhotra V. TANGO2 is an acyl-CoA binding protein. Journal Of Cell Biology 2025, 224: e202410001. PMID: 40015245, PMCID: PMC11867700, DOI: 10.1083/jcb.202410001.Peer-Reviewed Original ResearchConceptsAcyl-CoA binding proteinPeriphery of lipid dropletsAcyl-coenzyme A binding proteinA-binding proteinsAcyl-coenzyme AMitochondrial lumenHeme transportBinding proteinTANGO2Cellular localizationLipid dropletsStructural regionsLipid metabolismHeightened energy demandsMutationsProteinResiduesNrdEMetabolic crisisBindingMetabolismHemeSevere cardiomyopathyLipid
2024
DNA-Assisted Assays for Studying Lipid Transfer Between Membranes
Wang Y, Shi Q, Yang Q, Yang Y, Bian X. DNA-Assisted Assays for Studying Lipid Transfer Between Membranes. Methods In Molecular Biology 2024, 2888: 221-236. PMID: 39699734, DOI: 10.1007/978-1-0716-4318-1_15.Peer-Reviewed Original ResearchConceptsSynaptotagmin-like mitochondrial lipid-binding proteinLipid transfer assaysFluorescence resonance energy transferEndoplasmic reticulumLipid transferPlasma membraneLipid-binding proteinsLipid transfer proteinsTransfer assayE-SytsExtended-synaptotagminsResonance energy transferLipid homeostasisReleased lipidsTransfer proteinProteinAssayMembraneLipidTransfer signalsReticulumHomeostasisEnergy transferLysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism
Takahashi H, Perez-Canamas A, Lee C, Ye H, Han X, Strittmatter S. Lysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism. Communications Biology 2024, 7: 1088. PMID: 39237682, PMCID: PMC11377756, DOI: 10.1038/s42003-024-06810-5.Peer-Reviewed Original ResearchConceptsMyelin lipid metabolismCo-immunoprecipitation assaysSulfated derivative sulfatideLipid metabolismAssociated with multiple neurological disordersCo-immunoprecipitationTMEM106BTransmembrane proteinsAmyloid fibrilsTMEM106B deficiencyHypomyelinating leukodystrophyAlzheimer's diseasePhysiological functionsFrontotemporal dementiaMolecular levelNeurodegenerative brainGalactosylceramidaseLipidomic analysisMultiple neurological disordersMetabolismMyelin lipidsDecreased levelsEndolysosomesAmyloidGalactosylceramidase activityA complex of the lipid transport ER proteins TMEM24 and C2CD2 with band 4.1 at cell–cell contacts
Johnson B, Iuliano M, Lam T, Biederer T, De Camilli P. A complex of the lipid transport ER proteins TMEM24 and C2CD2 with band 4.1 at cell–cell contacts. Journal Of Cell Biology 2024, 223: e202311137. PMID: 39158698, PMCID: PMC11334333, DOI: 10.1083/jcb.202311137.Peer-Reviewed Original ResearchConceptsPlasma membraneNon-vesicular lipid transferSites of cell contactC-terminus motifsCell contact-dependent signalsContact-dependent signalingCell-cell contactER/PM junctionsTMEM24ER proteinsPM proteinsSynCAM 1Cell adhesion moleculesCellular functionsLipid transferC2CD2Phospholipid transportLipid transportCell contactProteinAdhesion moleculesCalcium homeostasisCellsFamily membersParalogsGlutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression
Asantewaa G, Tuttle E, Ward N, Kang Y, Kim Y, Kavanagh M, Girnius N, Chen Y, Rodriguez K, Hecht F, Zocchi M, Smorodintsev-Schiller L, Scales T, Taylor K, Alimohammadi F, Duncan R, Sechrist Z, Agostini-Vulaj D, Schafer X, Chang H, Smith Z, O’Connor T, Whelan S, Selfors L, Crowdis J, Gray G, Bronson R, Brenner D, Rufini A, Dirksen R, Hezel A, Huber A, Munger J, Cravatt B, Vasiliou V, Cole C, DeNicola G, Harris I. Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression. Nature Communications 2024, 15: 6152. PMID: 39034312, PMCID: PMC11271484, DOI: 10.1038/s41467-024-50454-2.Peer-Reviewed Original ResearchConceptsGlutamate-cysteine ligase catalytic subunitLipid abundanceLipogenic enzyme expressionAbundance in vivoLipid productionCatalytic subunitRepress Nrf2Transcription factorsNrf2 repressionAdult tissuesSynthesis of GSHEnzyme expressionNon-redundantRedox bufferMouse liverLoss of GSHTriglyceride productionIn vivo modelsAbundanceGlutathione synthesisLiver balanceFat storesOxidative stressLipidDeletionLow-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development
Zhang L, Zhao J, Lam S, Chen L, Gao Y, Wang W, Xu Y, Tan T, Yu H, Zhang M, Liao X, Wu M, Zhang T, Huang J, Li B, Zhou Q, Shen N, Lee H, Ye C, Li D, Shui G, Zhang J. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development. Nature Cell Biology 2024, 26: 278-293. PMID: 38302721, DOI: 10.1038/s41556-023-01341-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlastocystEmbryo, MammalianEmbryonic DevelopmentFemaleHumansLipid MetabolismLipidomicsMammalsMicePhospholipidsPregnancyConceptsMammalian preimplantation embryo developmentEmbryo developmentIn vitro blastocyst developmentPreimplantation embryo developmentEight-cell embryosMammalian early embryonic developmentMammalian embryo developmentDegree of phospholipid unsaturationEarly embryo developmentApical-basal polarityBlastocyst developmentBlastocyst stageLipid metabolism remodelingHuman early embryo developmentBlastocyst implantationRegulation of embryogenesisEarly embryonic developmentBlastocystLipid landscapeApical proteinsLipid desaturasesMetabolic remodelingCell signalingPlasma membraneLipid signatures
2023
Time-restricted feeding combined with resistance exercise prevents obesity and improves lipid metabolism in the liver of mice fed a high-fat diet
Damasceno de Lima R, Fudoli Lins Vieira R, Rosetto Muñoz V, Chaix A, Azevedo Macedo A, Calheiros Antunes G, Felonato M, Rosseto Braga R, Castelo Branco Ramos Nakandakari S, Calais Gaspar R, Ramos da Silva A, Esper Cintra D, Pereira de Moura L, Mekary R, Rochete Ropelle E, Pauli J. Time-restricted feeding combined with resistance exercise prevents obesity and improves lipid metabolism in the liver of mice fed a high-fat diet. AJP Endocrinology And Metabolism 2023, 325: e513-e528. PMID: 37755454, DOI: 10.1152/ajpendo.00129.2023.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseResistance exercise trainingTime-restricted feedingFatty liver diseaseHigh-fat dietLiver diseaseExercise trainingWeight gainGlycemic homeostasisMetabolic disordersEffects of TRFCommon liver diseaseDiet-induced obesityMajor risk factorEnergy expenditureFatty acid oxidation genesLiver of miceAccumulation of fatBody weight gainRespiratory exchange rateAccumulation of lipidsLower mRNA expressionRT groupPrevents obesityRisk factorsA membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope
Lee S, Rodrı́guez J, Merta H, Bahmanyar S. A membrane-sensing mechanism links lipid metabolism to protein degradation at the nuclear envelope. Journal Of Cell Biology 2023, 222: e202304026. PMID: 37382667, PMCID: PMC10309186, DOI: 10.1083/jcb.202304026.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsLipid MetabolismMembrane ProteinsMembranesNuclear EnvelopePhosphoprotein PhosphatasesProteolysisConceptsAmphipathic helixDirect lipid-protein interactionsNuclear envelopeLipid-protein interactionsLipid compositionPhosphatidic acid phosphatase lipin-1INM proteomeNucleoplasmic domainOrganelle identityProteasomal regulationMembrane domainsAnimal cellsProteasomal degradationMaster regulatorProtein degradationLipid environmentLipin-1Packing defectsDAG speciesCTDNEP1Metabolism impactsSUN2Disease mechanismsMetabolismBroad implicationsDysregulation of Lipid and Glucose Metabolism in Nonalcoholic Fatty Liver Disease
Bhat N, Mani A. Dysregulation of Lipid and Glucose Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients 2023, 15: 2323. PMID: 37242206, PMCID: PMC10222271, DOI: 10.3390/nu15102323.Peer-Reviewed Original ResearchMeSH KeywordsCarcinoma, HepatocellularFibrosisGlucoseHumansInsulinLipid MetabolismLipidsLiverLiver NeoplasmsNon-alcoholic Fatty Liver DiseaseConceptsFatty liver diseaseLiver diseaseHepatocellular carcinomaAlcoholic fatty liver diseaseNonalcoholic fatty liver diseaseInsulin-resistant liverDiet-induced steatosisCurrent therapeutic effortsDysregulation of lipidAccumulation of lipidsHepatic fatPrevalent conditionSevere stagesGenetic predispositionGlucose metabolismHealthcare costsEconomic burdenTherapeutic effortsDiseaseNAFLDCanonical insulinSteatosisLiverCirrhosisSteatohepatitisPUFAs dictate the balance of power in ferroptosis
Xin S, Schick J. PUFAs dictate the balance of power in ferroptosis. Cell Calcium 2023, 110: 102703. PMID: 36773492, DOI: 10.1016/j.ceca.2023.102703.Peer-Reviewed Original ResearchConceptsLethal lipid peroxidationIron-dependent formFerroptosis susceptibilityLipid remodelingFerroptosis sensitivityFatty acidsFerroptosis resistanceLipid transportersTumor suppressionMembrane lipidsPhospholipid transporterCell deathFerroptosis inductionBiochemical processesFerroptosisLipid metabolismReceptor alphaLipid componentsTransportersPeroxisome proliferatorLipid peroxidationCholesterol estersRegulatorAcidPPARA
2022
Mitoguardin-2–mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation
Hong Z, Adlakha J, Wan N, Guinn E, Giska F, Gupta K, Melia TJ, Reinisch KM. Mitoguardin-2–mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation. Journal Of Cell Biology 2022, 221: e202207022. PMID: 36282247, PMCID: PMC9597353, DOI: 10.1083/jcb.202207022.Peer-Reviewed Original ResearchMeSH KeywordsCarrier ProteinsFatty AcidsGlycerophospholipidsLipid DropletsLipid MetabolismMitochondriaMitochondrial ProteinsConceptsEndoplasmic reticulumLipid dropletsProtein-mediated transferLipid transport proteinsLipid droplet formationLD biologyMitochondrial proteinsSecretory pathwayMass spectrometry analysisTerminal domainMitochondrial morphologyTransport proteinsLipid transportersCellular membranesLD metabolismMembrane contactX-ray structureSpectrometry analysisOrganellesGlycerophospholipidsProteinHydrophobic cavityFatty acidsLipidsMembraneDownregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex
Xie L, Yuan Y, Xu S, Lu S, Gu J, Wang Y, Wang Y, Zhang X, Chen S, Li J, Lu J, Sun H, Hu R, Piao H, Wang W, Wang C, Wang J, Li N, White M, Han L, Jia W, Miao J, Liu J. Downregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex. Cell Reports 2022, 41: 111498. PMID: 36261001, PMCID: PMC10153649, DOI: 10.1016/j.celrep.2022.111498.Peer-Reviewed Original ResearchConceptsNon-alcoholic fatty liver diseaseFatty liver diseaseLipid metabolism diseasesLipid catabolismHepatic lipid catabolismFatty acid oxidationDetectable hepatotoxicityCopper deficiencyNAFLD developmentLiver diseaseMetabolic diseasesMetabolism diseasesNormal levelsDiseaseMitochondrial biogenesisAcid oxidationAMPK activityAMPKAblationDeficiencyCatabolismLKB1HepatotoxicityEndoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration.
Guillén-Samander A, De Camilli P. Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration. Cold Spring Harbor Perspectives In Biology 2022, 15: a041257. PMID: 36123033, PMCID: PMC10071438, DOI: 10.1101/cshperspect.a041257.Peer-Reviewed Original ResearchConceptsMembrane contact sitesEndoplasmic reticulumEndoplasmic reticulum membrane contact sitesContact sitesLipid transportER membrane contact sitesCross talkLipid transfer proteinMutations of genesFamilial neurodegenerative diseasesIntracellular membranous organellesEndomembrane systemLipid trafficVesicular transportCell physiologyPlasma membraneMembranous organellesMembrane lipidsLipid exchangeTransfer proteinCell compartmentProteinNeurodegenerative diseasesMultiplicity of rolesDendritic tipsIntroducing the Lipidomics Minimal Reporting Checklist
McDonald JG, Ejsing CS, Kopczynski D, Holčapek M, Aoki J, Arita M, Arita M, Baker ES, Bertrand-Michel J, Bowden JA, Brügger B, Ellis SR, Fedorova M, Griffiths WJ, Han X, Hartler J, Hoffmann N, Koelmel JP, Köfeler HC, Mitchell TW, O’Donnell V, Saigusa D, Schwudke D, Shevchenko A, Ulmer CZ, Wenk MR, Witting M, Wolrab D, Xia Y, Ahrends R, Liebisch G, Ekroos K. Introducing the Lipidomics Minimal Reporting Checklist. Nature Metabolism 2022, 4: 1086-1088. PMID: 35934691, DOI: 10.1038/s42255-022-00628-3.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply