2025
The bridge-like lipid transport protein VPS13C/PARK23 mediates ER–lysosome contacts following lysosome damage
Wang X, Xu P, Bentley-DeSousa A, Hancock-Cerutti W, Cai S, Johnson B, Tonelli F, Shao L, Talaia G, Alessi D, Ferguson S, De Camilli P. The bridge-like lipid transport protein VPS13C/PARK23 mediates ER–lysosome contacts following lysosome damage. Nature Cell Biology 2025, 27: 776-789. PMID: 40211074, PMCID: PMC12081312, DOI: 10.1038/s41556-025-01653-6.Peer-Reviewed Original ResearchConceptsDisease genesResponse to lysosomal damageSurface of lysosomesER–lysosome contactsParkinson's disease genesDelivery to lysosomesLipid transport proteinsLysosomal damageVPS13 proteinsLysosomal surfaceDisease proteinsGenetic studiesDamaged lysosomesVPS13CLysosomal stressLipid transportLysosomesInhibited stateMembrane perturbationRab7Lysosomal dysfunctionProteinVps13LipidGenesSculpting excitable membranes: voltage-gated ion channel delivery and distribution
Tyagi S, Higerd-Rusli G, Akin E, Waxman S, Dib-Hajj S. Sculpting excitable membranes: voltage-gated ion channel delivery and distribution. Nature Reviews Neuroscience 2025, 26: 313-332. PMID: 40175736, DOI: 10.1038/s41583-025-00917-2.Peer-Reviewed Original ResearchConceptsNeuronal compartmentsPeripheral nervous system neuronsIon channel localizationNervous system neuronsMembrane ion channelsIon channel traffickingChronic painNeuronal excitabilityPotential therapeutic targetChannel traffickingIon channel distributionSystem neuronsChannel localizationNeuronal activityTherapeutic targetIon channelsTarget membrane insertionPost-translational modificationsDistal neuronal compartmentsDisease statesNeuronal homeostasisVesicular sortingDiseaseSpatiotemporal regulationChannel deliveryVimentin filament transport and organization revealed by single-particle tracking and 3D FIB-SEM
Renganathan B, Moore A, Yeo W, Petruncio A, Ackerman D, Weigel A, Team T, Pasolli H, Xu C, Shtengel G, Hess H, Serpinskaya A, Zhang H, Lippincott-Schwartz J, Gelfand V. Vimentin filament transport and organization revealed by single-particle tracking and 3D FIB-SEM. Journal Of Cell Biology 2025, 224: e202406054. PMID: 40062969, PMCID: PMC11893169, DOI: 10.1083/jcb.202406054.Peer-Reviewed Original ResearchThe pathways of secretory cargo export at the endoplasmic reticulum
Malhotra V. The pathways of secretory cargo export at the endoplasmic reticulum. Nature Communications 2025, 16: 2138. PMID: 40032897, PMCID: PMC11876584, DOI: 10.1038/s41467-025-57408-2.Peer-Reviewed Original ResearchThe pathway of unconventional protein secretion involves CUPS and a modified trans-Golgi network
Curwin A, Kurokawa K, Bigliani G, Brouwers N, Nakano A, Malhotra V. The pathway of unconventional protein secretion involves CUPS and a modified trans-Golgi network. Journal Of Cell Biology 2025, 224: e202312120. PMID: 40015244, PMCID: PMC11867701, DOI: 10.1083/jcb.202312120.Peer-Reviewed Original ResearchConceptsTrans-Golgi networkUnconventional protein secretionUnconventional secretionSuper-resolution confocal live imaging microscopyProtein secretionPhosphatidylinositol 3-phosphatePhosphatidylinositol 4-phosphateExtracts of membranesGolgi membranesConventional secretionGolgi cisternaeMembrane fusionSecreted proteinsCup formationPI4PRCY1Drs2GolgiProteinPhosphatidylinositolSecretionMembraneCOPIIImaging microscopyBiogenesisDendritic cell phagosomes recruit GRASP55 for export of antigen-loaded MHC molecules
Cebrian I, Dinamarca S, Rodríguez M, Priego E, Brouwers N, Barends M, Brunnberg J, Tampé R, Blanchard N, Sancho D, Malhotra V. Dendritic cell phagosomes recruit GRASP55 for export of antigen-loaded MHC molecules. Cell Reports 2025, 44: 115333. PMID: 39955774, PMCID: PMC11861518, DOI: 10.1016/j.celrep.2025.115333.Peer-Reviewed Original ResearchConceptsExogenous antigen presentationDendritic cellsAntigen presentationMHC moleculesBone marrow-derived dendritic cellsBone marrow-derived DCCD4<sup>+</sup> T cellsMHC-IActivated CD8<sup>+</sup>MHC class IIDendritic cell phagosomesMHC II moleculesCD8<sup>+</sup>Peptide-loaded MHC moleculesT cellsExogenous antigensMHC-IIClass IIAntigenEndocytic systemGRASP55Cell surfaceIntracellular transportPlasma membranePresentationγ-secretase facilitates retromer-mediated retrograde transport
Takeo Y, Crite M, Mehmood K, DiMaio D. γ-secretase facilitates retromer-mediated retrograde transport. Journal Of Cell Science 2025, 138: jcs263538. PMID: 39865938, PMCID: PMC11883284, DOI: 10.1242/jcs.263538.Peer-Reviewed Original ResearchConceptsTrans-Golgi networkTransport of protein cargoRetrograde protein traffickingCation-independent mannose-6-phosphate receptorCellular transmembrane proteinsMannose-6-phosphate receptorAssociation with cargoHuman epithelial cellsBinds retromerRetromer subunitsRetromer cargoRab7-GTPShiga toxinRetrograde transportCultured human epithelial cellsProtein traffickingRetromerCatalytic subunitTransmembrane domainTransmembrane proteinsProtein cargoCellular cargoTarget proteinsFunctional consequencesCholera toxinAltering the intracellular trafficking of Necator americanus GST-1 antigen yields novel hookworm mRNA vaccine candidates
De Oliveira A, Versteeg L, Briggs N, Adhikari R, Villar M, Redd J, Hotez P, Bottazzi M, Pollet J. Altering the intracellular trafficking of Necator americanus GST-1 antigen yields novel hookworm mRNA vaccine candidates. PLOS Neglected Tropical Diseases 2025, 19: e0012809. PMID: 39792959, PMCID: PMC11756802, DOI: 10.1371/journal.pntd.0012809.Peer-Reviewed Original ResearchConceptsAntigen-specific antibodiesMRNA vaccine candidateMRNA vaccinesVaccine candidatesNa-GST-1Plasma membrane-anchoredRobust CD8+ T-cell responsesCD8+ T cell responsesMemory T cell populationsTiters of antigen-specific antibodiesLevels of antigen-specific antibodiesT cell responsesT cell populationsRecombinant Na-GST-1In vivo efficacySubunit vaccine candidateInduce humoral responsesImmunogenicity findingsNeutralizing antibodiesClinical studiesDevelopment of multivalent vaccinesHumoral responseRNA vaccinesImmune responsePeptide presentation
2024
UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling
Harrison A, Yang D, Cahoon J, Geng T, Cao Z, Karginov T, Hu Y, Li X, Chiari C, Qyang Y, Vella A, Fan Z, Vanaja S, Rathinam V, Witczak C, Bogan J, Wang P. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. Nature Immunology 2024, 25: 2234-2246. PMID: 39567760, PMCID: PMC12067455, DOI: 10.1038/s41590-024-02004-7.Peer-Reviewed Original ResearchConceptsRIG-I-like receptorsRIG-I-like receptor signalingCytosolic RIG-I-like receptorsAntiviral immunityPlasma membrane tetheringRNA virus infectionGlucose transportInnate antiviral immunityCytoplasmic RIG-I-like receptorsGolgi matrixGLUT4 translocationRLR signalingViral RNACell surfaceGLUT4GLUT4 expressionGlucose uptakeInterferon responseRNAGlycolytic reprogrammingVirus infectionHuman inflammatory myopathiesGolgiSignalUbiquitinThe T4bSS of Legionella features a two-step secretion pathway with an inner membrane intermediate for secretion of transmembrane effectors
Malmsheimer S, Grin I, Bohn E, Franz-Wachtel M, Macek B, Sahr T, Smollich F, Chetrit D, Meir A, Roy C, Buchrieser C, Wagner S. The T4bSS of Legionella features a two-step secretion pathway with an inner membrane intermediate for secretion of transmembrane effectors. PLOS Pathogens 2024, 20: e1012118. PMID: 39546547, PMCID: PMC11602083, DOI: 10.1371/journal.ppat.1012118.Peer-Reviewed Original ResearchMeSH KeywordsBacterial ProteinsCell MembraneLegionella pneumophilaMembrane ProteinsProtein TransportSecretory PathwayType IV Secretion SystemsConceptsEukaryotic host cellsEffector proteinsMembrane intermediatesC-terminal secretion signalHost cellsSoluble effector proteinsCytoplasmic sideBacterial inner membraneMechanism of secretionSecretion systemSecretion signalPeriplasmic loopTransmembrane effectorSecretion pathwayT4BSSInner membraneSubcellular locationIntracellular survivalMembrane targetingProtein complexesEfficient translocationBacterial cellsProteomic analysisL. pneumophilaSecretion processVPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1
Ugur B, Schueder F, Shin J, Hanna M, Wu Y, Leonzino M, Su M, McAdow A, Wilson C, Postlethwait J, Solnica-Krezel L, Bewersdorf J, De Camilli P. VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1. Journal Of Cell Biology 2024, 223: e202311189. PMID: 39331042, PMCID: PMC11451052, DOI: 10.1083/jcb.202311189.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrefeldin AGolgi ApparatusHeLa CellsHumansProtein BindingProtein TransportVesicular Transport ProteinsZebrafishZebrafish ProteinsConceptsLipid transportGolgi complex proteinGolgi subcompartmentsGolgi membranesGolgi cisternaeProtein familyFunctional partnersGolgi complexKO cellsComplex proteinsFAM177A1GolgiVPS13BAdjacent membranesMutationsProteinCohen syndromeLipidOrthologsInteractorsBrefeldinMembraneOrganellesSubcompartmentsDevelopmental disordersTailored assemblies of COPII proteins in secretion
Malhotra V. Tailored assemblies of COPII proteins in secretion. Journal Of Cell Biology 2024, 223: e202404013. PMID: 38958655, PMCID: PMC11222725, DOI: 10.1083/jcb.202404013.Peer-Reviewed Original ResearchSorting of secretory proteins at the trans-Golgi network by human TGN46
Lujan P, Garcia-Cabau C, Wakana Y, Lillo J, Rodilla-Ramírez C, Sugiura H, Malhotra V, Salvatella X, Garcia-Parajo M, Campelo F. Sorting of secretory proteins at the trans-Golgi network by human TGN46. ELife 2024, 12: rp91708. PMID: 38466628, PMCID: PMC10928510, DOI: 10.7554/elife.91708.Peer-Reviewed Original ResearchConceptsSecretory proteinsSorting of secretory proteinsCargo-sorting functionsTrans-Golgi networkNascent carriersCargo sortingLumenal domainMutagenesis approachTGN46Quantitative fluorescence microscopyCellular functionsMolecular playersTGNTransport carriersProteinFluorescence microscopyMembrane carrierSorting functionFundamental processesSortingCargoMutagenesisExportPAUFReceptorsCalcium flow at ER-TGN contact sites facilitates secretory cargo export
Ramazanov B, Parchure A, Di Martino R, Kumar A, Chung M, Kim Y, Griesbeck O, Schwartz M, Luini A, von Blume J. Calcium flow at ER-TGN contact sites facilitates secretory cargo export. Molecular Biology Of The Cell 2024, 35: ar50. PMID: 38294859, PMCID: PMC11064664, DOI: 10.1091/mbc.e23-03-0099.Peer-Reviewed Original ResearchMeSH KeywordsBiological TransportCalciumCarrier ProteinsEndoplasmic ReticulumProtein TransportProteinstrans-Golgi Network
2023
A model for collagen secretion by intercompartmental continuities
Bunel L, Pincet L, Malhotra V, Raote I, Pincet F. A model for collagen secretion by intercompartmental continuities. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 121: e2310404120. PMID: 38147551, PMCID: PMC10769856, DOI: 10.1073/pnas.2310404120.Peer-Reviewed Original ResearchSorting secretory proteins
Parchure A, von Blume J. Sorting secretory proteins. ELife 2023, 12: e93490. PMID: 37997893, PMCID: PMC10672786, DOI: 10.7554/elife.93490.Peer-Reviewed Original ResearchRediscovering the intricacies of secretory granule biogenesis
Campelo F, Tian M, von Blume J. Rediscovering the intricacies of secretory granule biogenesis. Current Opinion In Cell Biology 2023, 85: 102231. PMID: 37657367, DOI: 10.1016/j.ceb.2023.102231.Peer-Reviewed Original ResearchConceptsTrans-Golgi networkSG biogenesisRegulated secretionImmature SGsEssential cellular processesSecretory granulesSecretory granule biogenesisImmature secretory granulesCargo selectionCargo receptorsCellular processesGranule biogenesisGranule cargoCargo moleculesBiogenesisBiophysical mechanismsDisease mechanismsCellular communicationCargoCentral roleDiverse rangeNew lightTraffickingMechanismProteinα-Synuclein colocalizes with AP180 and affects the size of clathrin lattices
Vargas K, Colosi P, Girardi E, Park J, Harmon L, Chandra S. α-Synuclein colocalizes with AP180 and affects the size of clathrin lattices. Journal Of Biological Chemistry 2023, 299: 105091. PMID: 37516240, PMCID: PMC10470054, DOI: 10.1016/j.jbc.2023.105091.Peer-Reviewed Original ResearchConceptsClathrin punctaClathrin assemblyEndocytic accessory proteinsΑ-synucleinPresynaptic membraneSynaptic vesicle cyclingImmuno-electron microscopyClathrin structuresAccessory proteinsClathrin latticesMembrane curvatureVesicle cyclingCell membranePresynaptic proteinsLipid monolayer systemProteinΓ-synucleinMembranePunctaAssemblyRelocalizesClathrinColocalizesVesicle sizeDeletionLipid Sorting and Organelle Identity.
Kim Y, Burd C. Lipid Sorting and Organelle Identity. Cold Spring Harbor Perspectives In Biology 2023, 15: a041397. PMID: 37487627, PMCID: PMC10547387, DOI: 10.1101/cshperspect.a041397.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsTrafficking of lipidsSynthesis of sphingolipidsLipid transfer proteinOrganelle identityMembrane traffickingOrganelle homeostasisSoluble lipid transfer proteinsBulk membrane propertiesOrganelle functionGolgi networkLipid sortingNet membrane chargeOrganelle membranesPlasma membraneEndoplasmic reticulumParticular lipidsOrganellesTransfer proteinLeaflet asymmetryEssential roleBulk membraneCholesterol fluxTraffickingMembraneSecretoryThe sorting platform in the type III secretion pathway: From assembly to function
Soto J, Lara‐Tejero M. The sorting platform in the type III secretion pathway: From assembly to function. BioEssays 2023, 45: e2300078. PMID: 37329195, DOI: 10.1002/bies.202300078.Peer-Reviewed Original ResearchConceptsSecretion pathwayType III secretion pathwayType III secretion systemSyringe-like apparatusHost-pathogen interfaceEukaryotic organismsComplex nanomachinesSecretion systemCytosolic complexAssembly pathwaySpecialized nanomachinesMolecular mechanismsSoluble proteinCytosolic componentsChamber-like structuresPrecise coordinationT3SSPathwayRecent findingsProteinNanomachinesSpecific setSortingNovel strategyOrganisms
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply