2025
Cerebrospinal fluid and brain positron emission tomography measures of synaptic vesicle glycoprotein 2A: Biomarkers of synaptic density in Alzheimer's disease
Mecca A, Ashton N, Chen M, O'Dell R, Toyonaga T, Zhao W, Young J, Salardini E, Bates K, Ra J, Goodcase S, Silva‐Rudberg J, Nabulsi N, Brinkmalm A, Kvartsberg H, Schöll M, Nilsson J, Arnsten A, Huang Y, Hansson O, Zetterberg H, Carson R, Blennow K, van Dyck C. Cerebrospinal fluid and brain positron emission tomography measures of synaptic vesicle glycoprotein 2A: Biomarkers of synaptic density in Alzheimer's disease. Alzheimer's & Dementia 2025, 21: e70344. PMID: 40491249, PMCID: PMC12149441, DOI: 10.1002/alz.70344.Peer-Reviewed Original ResearchConceptsSynaptic vesicle glycoprotein 2APositron emission tomographyAlzheimer's diseaseSynaptic densityEnzyme-linked immunosorbent assayC]UCB-J positron emission tomographyPositron emission tomography measurementsEmission tomographyAxonal proteinsCN participantsImmunosorbent assaySymptomatic Alzheimer's diseaseAD groupProteinAssayParticipantsSV2AAlzheimerCerebrospinal fluidBrainInvestigate associationsCerebrospinal fluid assaysSV2A positron emission tomographyPrediction of longitudinal synaptic loss in Alzheimer's disease using tau PET and plasma biomarkers
Wang J, Huang Q, Chen X, You Z, He K, Mao X, Huang Y, Franzmeier N, Schöll M, Guo T, Zhao J, Guan Y, Ni R, Li B, Xie F. Prediction of longitudinal synaptic loss in Alzheimer's disease using tau PET and plasma biomarkers. Alzheimer's & Dementia 2025, 21: e70333. PMID: 40432308, PMCID: PMC12117192, DOI: 10.1002/alz.70333.Peer-Reviewed Original ResearchConceptsAssociated with longitudinal cognitive declineLongitudinal cognitive declineSynaptic lossCognitive declineSynapse lossPositron emission tomographyTau depositionTau positron emission tomographyTau burdenHealthy controlsAlzheimer's diseaseSynaptic densityMedial temporal lobePlasma glial fibrillary acidic proteinIncreased tau burdenPhosphorylated tau181Longitudinal changesCognitively impaired individualsAcidic proteinTau pathologyTemporal lobeAmyloid positron emission tomographyGlial fibrillary acidic proteinPlasma phosphorylated tau181CI groupAssessment of the relationship between synaptic density and metabotropic glutamate receptors in early Alzheimer’s disease: a multi-tracer PET study
Salardini E, O’Dell R, Tchorz E, Nabulsi N, Huang Y, Carson R, van Dyck C, Mecca A. Assessment of the relationship between synaptic density and metabotropic glutamate receptors in early Alzheimer’s disease: a multi-tracer PET study. Alzheimer's Research & Therapy 2025, 17: 98. PMID: 40329311, PMCID: PMC12054321, DOI: 10.1186/s13195-025-01739-1.Peer-Reviewed Original ResearchConceptsDistribution volume ratioMedial temporal lobePositron emission tomographyTemporal lobeSynaptic densityMetabotropic glutamate receptor subtype 5Multi-tracer PET studiesAlzheimer's diseaseCerebellum reference regionAmyloid-positive participantsSynaptic lossSynaptic vesicle glycoprotein 2AMetabotropic glutamate receptorsPositron emission tomography scanNeocortical regionsSubtype 5MGluR5Entorhinal cortexAD groupReference regionGlutamate receptorsExploratory analysisWidespread reductionsLongitudinal studyReceptor bindingPhenotypic complexities of rare heterozygous neurexin-1 deletions
Fernando M, Fan Y, Zhang Y, Tokolyi A, Murphy A, Kammourh S, Deans P, Ghorbani S, Onatzevitch R, Pero A, Padilla C, Williams S, Flaherty E, Prytkova I, Cao L, Knowles D, Fang G, Slesinger P, Brennand K. Phenotypic complexities of rare heterozygous neurexin-1 deletions. Nature 2025, 642: 710-720. PMID: 40205044, DOI: 10.1038/s41586-025-08864-9.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAnimalsCalcium-Binding ProteinsCell Adhesion Molecules, NeuronalDNA Copy Number VariationsFemaleGABAergic NeuronsGene DeletionHeterozygoteHumansInduced Pluripotent Stem CellsLoss of Function MutationMaleMiceNeural Cell Adhesion MoleculesPhenotypeSequence DeletionSynapsesConceptsLoss-of-functionGain-of-functionGain-of-function mechanismCopy number variantsSynaptic activityCell type-specific effectsCell adhesion proteinsPrecision medicineIncreased wild-typeSplicing resultsAlternative splicingIsoform repertoireNRXN1 deletionsAberrant splicingHuman induced pluripotent stem cellsPatient-specific mutationsIncreased synaptic activityDecreased synaptic activityMutant isoformsNRXN1Associated with riskPluripotent stem cellsHeterozygous deletionWild-typeDeletionConnectome-driven neural inventory of a complete visual system
Nern A, Loesche F, Takemura S, Burnett L, Dreher M, Gruntman E, Hoeller J, Huang G, Januszewski M, Klapoetke N, Koskela S, Longden K, Lu Z, Preibisch S, Qiu W, Rogers E, Seenivasan P, Zhao A, Bogovic J, Canino B, Clements J, Cook M, Finley-May S, Flynn M, Hameed I, Fragniere A, Hayworth K, Hopkins G, Hubbard P, Katz W, Kovalyak J, Lauchie S, Leonard M, Lohff A, Maldonado C, Mooney C, Okeoma N, Olbris D, Ordish C, Paterson T, Phillips E, Pietzsch T, Salinas J, Rivlin P, Schlegel P, Scott A, Scuderi L, Takemura S, Talebi I, Thomson A, Trautman E, Umayam L, Walsh C, Walsh J, Xu C, Yakal E, Yang T, Zhao T, Funke J, George R, Hess H, Jefferis G, Knecht C, Korff W, Plaza S, Romani S, Saalfeld S, Scheffer L, Berg S, Rubin G, Reiser M. Connectome-driven neural inventory of a complete visual system. Nature 2025, 641: 1225-1237. PMID: 40140576, PMCID: PMC12119369, DOI: 10.1038/s41586-025-08746-0.Peer-Reviewed Original ResearchConceptsVisual systemNetwork of neuronsVisual neuronsNeural architectureConnectivity informationFocused ion beam millingSplit-GAL4 linesIon beam millingSpatial featuresVisual sceneVisualization capabilitiesComputational frameworkDiverse featuresExpert curationVisual regionsDiverse networksBeam millingStructure-function relationshipsCapability of flyingRight optic lobesNeurotransmitter identityVisionOptic lobeCell typesComprehensive setTiming Matters: Lessons From Perinatal Neurogenesis in the Olfactory Bulb
Liberia T, Han K, Spence N, Meller S, Martin‐Lopez E, Greer C. Timing Matters: Lessons From Perinatal Neurogenesis in the Olfactory Bulb. The Journal Of Comparative Neurology 2025, 533: e70045. PMID: 40128105, PMCID: PMC11949412, DOI: 10.1002/cne.70045.Peer-Reviewed Original ResearchConceptsOlfactory bulbGranule cellsTiming of neurogenesisProjection neuronsCoding of odor informationSynaptic circuitsInhibitory granule cellsDendrites of projection neuronsLocal synaptic circuitsMitral cellsOdor processingSynaptic integrationPlexiform layerOdor informationAnatomical configurationLaminar distributionEmbryogenesis to adulthoodNeurogenesisSecondary dendritesMaturation patternGlomeruliNeuronsDevelopmental continuumCellsBulbMeningeal lymphatics-microglia axis regulates synaptic physiology
Kim K, Abramishvili D, Du S, Papadopoulos Z, Cao J, Herz J, Smirnov I, Thomas J, Colonna M, Kipnis J. Meningeal lymphatics-microglia axis regulates synaptic physiology. Cell 2025, 188: 2705-2719.e23. PMID: 40120575, PMCID: PMC12086007, DOI: 10.1016/j.cell.2025.02.022.Peer-Reviewed Original ResearchConceptsBehavioral alterationsAging-associated cognitive declineMemory taskNeural mechanismsIL-6Cognitive declineIL-6-dependent mechanismInhibitory synaptic inputsCortical circuitryBehavioral changesMeningeal lymphaticsInterleukin-6 geneIL-6 signalingAge-associatedSynaptic inputsLymphatic dysfunctionLymphatic functionCerebrospinal fluidProlonged impairmentIncreased expressionNeurodegenerative conditionsLymphaticsPotential targetDysfunctionDeficitsAstrocyte Kir4.1 expression level territorially controls excitatory transmission in the brain
Tyurikova O, Kopach O, Zheng K, Rathore D, Codadu N, Wu S, Shen Y, Campbell R, Wykes R, Volynski K, Savtchenko L, Rusakov D. Astrocyte Kir4.1 expression level territorially controls excitatory transmission in the brain. Cell Reports 2025, 44: 115299. PMID: 39951378, DOI: 10.1016/j.celrep.2025.115299.Peer-Reviewed Original ResearchConceptsKir4.1 channelsExtracellular potassiumInducing long-term synaptic potentiationHigh-frequency afferent stimulationLong-term synaptic potentiationPresynaptic Ca<sup>2+</sup> entryCortical spreading depolarizationKir4.1 levelsExcitatory transmissionSynaptic potentialsAfferent stimulationExcitatory synapsesGlutamate uptakePotassium homeostasisSpreading depolarizationPotassium levelsRelease probabilityAstrocytic mechanismsAstrocytesHigh potassiumKir4.1Brain circuitsSynapsesBrainMolecular Components of Vesicle Cycling at the Rod Photoreceptor Ribbon Synapse
Hanke-Gogokhia C, Zapadka T, Finkelstein S, Arshavsky V, Demb J. Molecular Components of Vesicle Cycling at the Rod Photoreceptor Ribbon Synapse. Advances In Experimental Medicine And Biology 2025, 1468: 325-330. PMID: 39930217, DOI: 10.1007/978-3-031-76550-6_54.Peer-Reviewed Original ResearchConceptsSynaptic vesicle exocytosisSynaptic vesicle recyclingPhotoreceptor ribbon synapseVesicle exocytosisVesicle recyclingVesicle cycleVesicle releaseRibbon synapseProtein synthesisProperties of synaptic transmissionMolecular componentsMouse rodsSynaptic terminalsRod cellsProteinVesiclesRod photoreceptorsDim lightSynaptic transmissionInner segmentsCellsExocytosisEndocytosisOuter segmentsEnergy productionTranslaminar synchronous neuronal activity is required for columnar synaptic strengthening in the mouse neocortex
Vargas-Ortiz J, Lin L, Martinez V, Liu R, Babij R, Duan Z, Wacks S, Sun L, Wang A, Khan S, Soto-Vargas J, De Marco García N, Che A. Translaminar synchronous neuronal activity is required for columnar synaptic strengthening in the mouse neocortex. Nature Communications 2025, 16: 1296. PMID: 39900899, PMCID: PMC11791040, DOI: 10.1038/s41467-024-55783-w.Peer-Reviewed Original ResearchThis study shows how connections across layers in the cortex synchronize early brain activity, guiding sensory development and informing strategies to address neurodevelopmental disorders.BK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus
Ancatén-González C, Meza R, Gonzalez-Sanabria N, Segura I, Alcaino A, Peña-Pichicoi A, Latorre R, Chiu C, Chávez A. BK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2411506122. PMID: 39773031, PMCID: PMC11745352, DOI: 10.1073/pnas.2411506122.Peer-Reviewed Original ResearchConceptsBK channelsLong-term depressionMGluR-LTDNeonatal hippocampusPostsynaptic metabotropic glutamate receptorsActivation of BK channelsChannel open probabilityCA3-CA1 synapsesMetabotropic glutamate receptorsArachidonic acid metabolitesRegulating synaptic strengthActivity-dependent changesOpen probabilityHippocampal slicesCircuit maturationCA3-CA1Glutamate receptorsElectrophysiological propertiesPresynaptic formP7-P10Synaptic strengthAcid metabolitesCentral synapsesNeuronal functionSynaptic function
2024
CB1R activates the epilepsy-associated protein Go to regulate neurotransmitter release and synaptic plasticity in the cerebellum
Choi J, Acharya R, Lim H, Lee K, Seo J, Yang E, Kim H, Yoon J, Chang D, Kim S, Kim S, Birnbaumer L, Suh-Kim H. CB1R activates the epilepsy-associated protein Go to regulate neurotransmitter release and synaptic plasticity in the cerebellum. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2409773121. PMID: 39602265, PMCID: PMC11626142, DOI: 10.1073/pnas.2409773121.Peer-Reviewed Original ResearchConceptsDepolarization-induced suppression of excitationCannabinoid receptor type 1Synaptic plasticityDepolarization-induced suppressionSuppression of excitationHeterotrimeric Go proteinAbundant G proteinGi/o-coupled receptorsNeurotransmitter releasePresynaptic terminalsReceptor type 1Regulate neurotransmitter releaseBeam balance testBrain synaptosomal fractionsRegulating neurotransmittersMutated animalsMultiple proteinsKO miceProteomic analysisMotor deficitsCB1RCerebellumEpileptic encephalopathyGo proteinsSignaling pathwayPlasma Glial Fibrillary Acid Protein and Phosphorated Tau 181 Association with Presynaptic Density-Dependent Tau Pathology at 18F-SynVesT-1 Brain PET Imaging.
Wu J, Li B, Wang J, Huang Q, Chen X, You Z, He K, Guo Q, Li S, Huang Y, Guo T, Dai W, Xiang W, Chen W, Yang D, Zhao J, Guan Y, Xie F. Plasma Glial Fibrillary Acid Protein and Phosphorated Tau 181 Association with Presynaptic Density-Dependent Tau Pathology at 18F-SynVesT-1 Brain PET Imaging. Radiology 2024, 313: e233019. PMID: 39560478, PMCID: PMC11605102, DOI: 10.1148/radiol.233019.Peer-Reviewed Original ResearchConceptsP-tau-181Alzheimer's diseaseAD-related pathologyAmyloid-bPhosphor-tauTau pathologySynaptic densityTau accumulationSynaptic lossTauTau-PETDecreased synaptic densityGlial fibrillary acidic proteinPlasma glial fibrillary acidic proteinCortical thicknessAcidic proteinFibrillary acidic proteinRuijin HospitalProspective studyRelationship of plasmaBlood assayBlood markersPET/MRIBrain PET imagingPET imagingStructure, interaction and nervous connectivity of beta cell primary cilia
Müller A, Klena N, Pang S, Garcia L, Topcheva O, Aurrecoechea Duran S, Sulaymankhil D, Seliskar M, Mziaut H, Schöniger E, Friedland D, Kipke N, Kretschmar S, Münster C, Weitz J, Distler M, Kurth T, Schmidt D, Hess H, Xu C, Pigino G, Solimena M. Structure, interaction and nervous connectivity of beta cell primary cilia. Nature Communications 2024, 15: 9168. PMID: 39448638, PMCID: PMC11502866, DOI: 10.1038/s41467-024-53348-5.Peer-Reviewed Original ResearchConceptsPrimary ciliaCell's primary ciliumNon-islet cellsPancreatic beta cellsCiliary pocketSensory organellesAxonemal organizationMotility componentsExtrinsic signalsStructural basisBeta cellsCiliaCell typesExpansion microscopyParacrine signalingIslet innervationCellsIsletsBetaAxonemeOrganellesSignalThree-dimensional reconstructionInteractionConnectomic reconstruction predicts visual features used for navigation
Garner D, Kind E, Lai J, Nern A, Zhao A, Houghton L, Sancer G, Wolff T, Rubin G, Wernet M, Kim S. Connectomic reconstruction predicts visual features used for navigation. Nature 2024, 634: 181-190. PMID: 39358517, PMCID: PMC11446847, DOI: 10.1038/s41586-024-07967-z.Peer-Reviewed Original ResearchConceptsVisual featuresAnterior visual pathwayClasses of neuronsOptic lobeAnterior optic tubercleLocation of synapsesER neuronsDrosophila melanogasterOptic tubercleAVPPresynaptic connectionsVisual informationCentral brainNeuronsConnectome reconstructionVisual pathwayNavigation systemCentral complexPostsynaptic connectionsMedullaNeural classInformation channelsDendritic fieldsNavigationVisual inputPolygenic hazard score predicts synaptic and axonal degeneration and cognitive decline in Alzheimer's disease continuum
Farhadieh M, Mozafar M, Sanaaee S, Sodeifi P, Kousha K, Zare Y, Zare S, Rad N, Jamshidi-Goharrizi F, Allahverdloo M, Rahimi A, Sadeghi M, Shafie M, Mayeli M, Initiative F. Polygenic hazard score predicts synaptic and axonal degeneration and cognitive decline in Alzheimer's disease continuum. Archives Of Gerontology And Geriatrics 2024, 127: 105576. PMID: 39096557, DOI: 10.1016/j.archger.2024.105576.Peer-Reviewed Original ResearchConceptsPolygenic hazard scoreMild cognitive impairmentCognitive declineCognitive impairmentLevel of cognitive impairmentFollow-up cognitive assessmentHazard scoreMCI patientsFollow-up cognitive testingCognitive measuresAssociated with cognitive declineFollow-up pointsAlzheimer's diseaseAlzheimer's disease continuumCognitive AssessmentAssociated with specific biomarkersCognitively normal controlsCognitive testsCompared to low-risk patientsLongitudinal analysisHigh riskLow riskLow-risk patientsDisease continuumCognitive outcomesAbundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula–interpeduncular nucleus pathway in mice
Tsuzuki A, Yamasaki M, Konno K, Miyazaki T, Takei N, Tomita S, Yuzaki M, Watanabe M. Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula–interpeduncular nucleus pathway in mice. Scientific Reports 2024, 14: 14193. PMID: 38902419, PMCID: PMC11189931, DOI: 10.1038/s41598-024-65076-3.Peer-Reviewed Original ResearchConceptsMHb-IPN pathwayMHb neuronsNicotine dependenceNicotinic acetylcholine receptorsAcetylcholine receptorsNicotine-related behaviorsCell surfaceImmunoelectron microscopySubunitAxonal compartmentFunctional roleNeurotransmitter releasePresynaptic terminalsSubcellular expressionPathwaySimultaneous detectionDistribution patternsSynaptic junctionsNAChRsAnatomical basisExpressionNegative controlReceptorsNeuronsAntibodiesDecoding transcriptomic signatures of cysteine string protein alpha–mediated synapse maintenance
Wang N, Zhu B, Allnutt M, Grijalva R, Zhao H, Chandra S. Decoding transcriptomic signatures of cysteine string protein alpha–mediated synapse maintenance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2320064121. PMID: 38833477, PMCID: PMC11181078, DOI: 10.1073/pnas.2320064121.Peer-Reviewed Original ResearchConceptsSynapse maintenanceTranscriptional changesSynaptogenic adhesion moleculesGene ontology analysisKO miceKO brainMaintenance in vivoCell-cell interactionsGlial cellsSingle-nucleus transcriptomesOntology analysisCspADifferential expressionNeuron-glia interactionsAutophagy-related genesProtein AGenesCell typesNeurodegenerative diseasesInhibitory synapsesLittermate controlsSynaptic pathwaysAdhesion moleculesGlial responseSynapseSingle-cell multi-cohort dissection of the schizophrenia transcriptome
Ruzicka W, Mohammadi S, Fullard J, Davila-Velderrain J, Subburaju S, Tso D, Hourihan M, Jiang S, Lee H, Bendl J, Voloudakis G, Haroutunian V, Hoffman G, Roussos P, Kellis M, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Berretta S, Bharadwaj R, Bhattacharya A, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clarke D, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Galani K, Galeev T, Gandal M, Gaynor S, Gerstein M, Geschwind D, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Huang Y, Huuki-Myers L, Hwang A, Hyde T, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu C, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Margolis M, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollard K, Pollen A, Pratt H, Przytycki P, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Rozowsky J, Ruth M, Sanders S, Schneider J, Scuderi S, Sebra R, Sestan N, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Weinberger D, Wen C, Weng Z, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. Single-cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024, 384: eadg5136. PMID: 38781388, DOI: 10.1126/science.adg5136.Peer-Reviewed Original ResearchConceptsGenetic risk factorsRisk factorsTranscriptional changesHeterogeneity of schizophreniaNeuronal cell statesSchizophrenia pathophysiologySingle-cell dissectionExcitatory neuronsEffective therapySchizophrenia transcriptomicsCortical cytoarchitectureSingle-cell atlasGenomic variantsCell groupsHuman prefrontal cortexMolecular pathwaysSchizophreniaTranscriptional alterationsTranscriptomic changesPrefrontal cortexCell statesAlterationsTherapyPathophysiologyDissectionLoss of Katnal2 leads to ependymal ciliary hyperfunction and autism-related phenotypes in mice
Kang R, Kim K, Jung Y, Choi S, Lee C, Im G, Shin M, Ryu K, Choi S, Yang E, Shin W, Lee S, Lee S, Papadopoulos Z, Ahn J, Koh G, Kipnis J, Kang H, Kim H, Cho W, Park S, Kim S, Kim E. Loss of Katnal2 leads to ependymal ciliary hyperfunction and autism-related phenotypes in mice. PLOS Biology 2024, 22: e3002596. PMID: 38718086, PMCID: PMC11104772, DOI: 10.1371/journal.pbio.3002596.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderBehavioral phenotypesASD-relatedSocial communication deficitsAutism-related phenotypesEnlarged lateral ventriclesProgressive ventricular enlargementCommunication deficitsSpectrum disorderSynaptic deficitsEnlargement of brain ventriclesTranscriptomic changesMicrotubule-regulatory proteinsGenes down-regulatedBrain ventriclesVentricular enlargementLateral ventricleDeficitsHippocampal neuronsMotile ciliaKATNAL2Potential treatmentDown-regulationCiliary functionEpendymal cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply