2025
CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left‐Right Patterning in Xenopus tropicalis
Kostiuk V, Kabir R, Akbari R, Rushing A, González D, Kim A, Kim A, Zenisek D, Khokha M. CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left‐Right Patterning in Xenopus tropicalis. Genesis 2025, 63: e70009. PMID: 40008628, PMCID: PMC11867209, DOI: 10.1002/dvg.70009.Peer-Reviewed Original ResearchConceptsCongenital heart diseaseCACNA1GLow-voltage-activated calcium channelsExpression of Cacna1gCalcium channelsPatient cohortCardiac functionLR patterningHeterotaxyLR organizerChannel familyCACNA1SHeart diseaseLeft-rightG expressionXenopus tropicalisAbnormal expressionProcess of cilia formationCardiac loopingMultiple organsSignaling cascadesLR asymmetryPatientsT-typeEmbryonic development
2020
Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development
Farley-Barnes KI, Deniz E, Overton MM, Khokha MK, Baserga SJ. Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development. PLOS Genetics 2020, 16: e1008967. PMID: 32813698, PMCID: PMC7437866, DOI: 10.1371/journal.pgen.1008967.Peer-Reviewed Original ResearchConceptsRNA polymerase II transcription factorsCraniofacial developmentTranscription factorsRibosome biogenesis factorsHuman ribosome biogenesisNeural crest developmentBox 9Tissue-specific mannerRibosome biogenesisRibosome productionHuman ribosomopathiesExpression of proteinsPax9 functionBiogenesis factorsXenopus tropicalisCrest developmentSmall subunitEmbryonic developmentCellular machinesUnexpected layerLevels of proteinRibosomopathiesHuman cellsProtein synthesisRibosomes
2018
CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis
Deniz E, Mis EK, Lane M, Khokha MK. CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis. Methods In Molecular Biology 2018, 1865: 163-174. PMID: 30151766, DOI: 10.1007/978-1-4939-8784-9_12.Peer-Reviewed Original ResearchConceptsCardiac developmentCRISPR/Candidate genesHigh-density SNP arrayCRISPR/Cas9 systemGenome editing technologyCongenital heart disease genesNew genomic technologiesHeart disease genesCopy number variationsRapid functional assayXenopus tropicalisCas9 systemGenetic basisDevelopmental systemsEditing technologyGenomic technologiesSequence variationDisease genesDifferent genesGenetic analysisSNP arrayDevelopmental mechanismsMolecular mechanismsWhole-exome sequencing
2017
Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography
Deniz E, Jonas S, Hooper M, N. Griffin J, Choma MA, Khokha MK. Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography. Scientific Reports 2017, 7: 42506. PMID: 28195132, PMCID: PMC5307353, DOI: 10.1038/srep42506.Peer-Reviewed Original ResearchConceptsCandidate genesFrog Xenopus tropicalisHuman congenital heart diseaseMost candidate genesNumerous candidate genesHuman genomic studiesXenopus tropicalisGenomic studiesXenopus heartGenetic mechanismsSequence variationFunctional analysisHuman phenotypesMolecular mechanismsHuman diseasesGenesCraniofacial defectsDisease mechanismsCraniofacial malformationsCritical first stepBirth defectsXenopusEfficient animal modelMechanismPhenocopies
2012
Exon capture and bulk segregant analysis: rapid discovery of causative mutations using high-throughput sequencing
del Viso F, Bhattacharya D, Kong Y, Gilchrist MJ, Khokha MK. Exon capture and bulk segregant analysis: rapid discovery of causative mutations using high-throughput sequencing. BMC Genomics 2012, 13: 649. PMID: 23171430, PMCID: PMC3526394, DOI: 10.1186/1471-2164-13-649.Peer-Reviewed Original ResearchConceptsBulk segregant analysisForward genetic screenSegregant analysisGenetic screenGenome assemblyExon captureCausative mutationsVertebrate model systemHigh-throughput sequencingHuman genetic analysisThousands of SNPsAssembly of scaffoldsModel systemGenomic resourcesVertebrate modelXenopus tropicalisFine mappingGenetic analysisCapture sequencingSequence variantsSequencingMutationsRapid discoveryMutantsExome sequencing
2009
A distinct H2A.X isoform is enriched in Xenopus laevis eggs and early embryos and is phosphorylated in the absence of a checkpoint
Shechter D, Chitta RK, Xiao A, Shabanowitz J, Hunt DF, Allis CD. A distinct H2A.X isoform is enriched in Xenopus laevis eggs and early embryos and is phosphorylated in the absence of a checkpoint. Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 106: 749-754. PMID: 19131518, PMCID: PMC2630098, DOI: 10.1073/pnas.0812207106.Peer-Reviewed Original ResearchConceptsDNA damageEarly embryosSignificance of phosphorylationTerminal consensus sequenceExogenous DNA damageDNA damage responseCell-free egg extractsPhospho-specific antibodiesEarly cell cyclesFrog Xenopus laevisMulticellular organismsH2A variantsXenopus tropicalisDamage responseUnannotated isoformsMammalian cellsHistone H2A.XSomatic cellsCheckpoint conditionsXenopus laevis eggsAquatic speciesEgg extractsConsensus sequenceCell cycleH2A.X
2005
Identification of mutants in inbred Xenopus tropicalis
Grammer TC, Khokha MK, Lane MA, Lam K, Harland RM. Identification of mutants in inbred Xenopus tropicalis. Cells And Development 2005, 122: 263-272. PMID: 15763207, DOI: 10.1016/j.mod.2004.11.003.Peer-Reviewed Original ResearchConceptsXenopus tropicalisRecessive embryonic lethalsGenetic model organismEarly vertebrate developmentIdentification of mutantsFuture mutagenesisVertebrate developmentMutant analysisModel organismsX. tropicalisEmbryonic lethalGenetic analysisGenetic backgroundFrogsMutationsTropicalisAmphibiansMutantsMutagenesisLethalGeneticsOrganismsStrainsCrossHybrids
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply