2025
Molecular Components of Vesicle Cycling at the Rod Photoreceptor Ribbon Synapse
Hanke-Gogokhia C, Zapadka T, Finkelstein S, Arshavsky V, Demb J. Molecular Components of Vesicle Cycling at the Rod Photoreceptor Ribbon Synapse. Advances In Experimental Medicine And Biology 2025, 1468: 325-330. PMID: 39930217, DOI: 10.1007/978-3-031-76550-6_54.Peer-Reviewed Original ResearchConceptsSynaptic vesicle exocytosisSynaptic vesicle recyclingPhotoreceptor ribbon synapseVesicle exocytosisVesicle recyclingVesicle cycleVesicle releaseRibbon synapseProtein synthesisProperties of synaptic transmissionMolecular componentsMouse rodsSynaptic terminalsRod cellsProteinVesiclesRod photoreceptorsDim lightSynaptic transmissionInner segmentsCellsExocytosisEndocytosisOuter segmentsEnergy production
2024
The Structural and Functional Integrity of Rod Photoreceptor Ribbon Synapses Depends on Redundant Actions of Dynamins 1 and 3
Hanke-Gogokhia C, Zapadka T, Finkelstein S, Klingeborn M, Maugel T, Singer J, Arshavsky V, Demb J. The Structural and Functional Integrity of Rod Photoreceptor Ribbon Synapses Depends on Redundant Actions of Dynamins 1 and 3. Journal Of Neuroscience 2024, 44: e1379232024. PMID: 38641407, PMCID: PMC11209669, DOI: 10.1523/jneurosci.1379-23.2024.Peer-Reviewed Original ResearchRod ribbon synapsesDynamin-1Photoreceptor ribbon synapsesDynamin isoformsMembrane scissionRibbon synapsesConventional synapsesReduced synaptic vesicle densitySynaptic vesicle recycling processesEndocytosis of synaptic vesiclesRibbon-type active zonesVesicle densityConditional gene knockout approachGene knockout approachSynaptic vesicle densityVesicle endocytosisVesicle cycleDisrupt endocytosisDynaminSpecialized proteinsSynapse integrityEnlarged vesiclesSynaptic vesiclesKnockout approachRod photoreceptors
2023
The active zone protein CLA-1 (Clarinet) bridges two subsynaptic domains to regulate presynaptic sorting of ATG-9
Xuan Z, Colón-Ramos D. The active zone protein CLA-1 (Clarinet) bridges two subsynaptic domains to regulate presynaptic sorting of ATG-9. Autophagy 2023, 19: 2807-2808. PMID: 37389488, PMCID: PMC10472863, DOI: 10.1080/15548627.2023.2229227.Peer-Reviewed Original ResearchConceptsATG-9Forward genetic screenAdaptor protein complexesIntegral synaptic vesicle proteinsActive zone proteinsSynaptic vesicle cycleCLA-1Synaptic vesicle proteinsGenetic screenPeriactive zoneAutophagosome biogenesisProtein complexesVesicle cycleVesicle proteinsLong isoformNovel roleSubsynaptic domainsZone proteinNeuronal synapsesSynaptic vesiclesProteinDistinct mechanismsVesiclesMutantsPresynaptic localization
2022
Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9
Yang S, Park D, Manning L, Hill SE, Cao M, Xuan Z, Gonzalez I, Dong Y, Clark B, Shao L, Okeke I, Almoril-Porras A, Bai J, De Camilli P, Colón-Ramos DA. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 2022, 110: 824-840.e10. PMID: 35065714, PMCID: PMC9017068, DOI: 10.1016/j.neuron.2021.12.031.Peer-Reviewed Original ResearchConceptsSynaptic vesicle cycleVesicle cyclePresynaptic autophagyAutophagosome biogenesisATG-9Only transmembrane proteinTrans-Golgi networkCellular degradation pathwayPresynaptic sitesActivity-dependent mannerTransmembrane proteinSynaptojanin 1Synaptic fociBiogenesisAutophagyNeuronal healthDegradation pathwayTraffickingPathwayParkinson's diseaseSynaptic activityNeuronal activityElegansSitesEndocytosis
2017
Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses
Michalski N, Goutman JD, Auclair SM, de Monvel J, Tertrais M, Emptoz A, Parrin A, Nouaille S, Guillon M, Sachse M, Ciric D, Bahloul A, Hardelin JP, Sutton RB, Avan P, Krishnakumar SS, Rothman JE, Dulon D, Safieddine S, Petit C. Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. ELife 2017, 6: e31013. PMID: 29111973, PMCID: PMC5700815, DOI: 10.7554/elife.31013.Peer-Reviewed Original ResearchConceptsVesicle fusionVesicle pool replenishmentIHC active zonesInner hair cellsPresynaptic plasma membraneSynaptic vesicle cycleMembrane capacitance measurementsRole of otoferlinAuditory brainstem response wavesTransmembrane proteinVesicle cycleSynaptic exocytosisPlasma membraneVoltage-gated CaHair cell ribbonC-domainSynaptic vesiclesOtoferlinSynaptic CaSensory cellsSynapse structureIntracellular CaNeurotransmitter releaseMutant miceRibbon synapses
2011
Inhibition of exocytosis or endocytosis blocks activity‐dependent redistribution of synapsin
Orenbuch A, Shulman Y, Lipstein N, Bechar A, Lavy Y, Brumer E, Vasileva M, Kahn J, Barki‐Harrington L, Kuner T, Gitler D. Inhibition of exocytosis or endocytosis blocks activity‐dependent redistribution of synapsin. Journal Of Neurochemistry 2011, 120: 248-258. PMID: 22066784, DOI: 10.1111/j.1471-4159.2011.07579.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCells, CulturedChelating AgentsEgtazic AcidEndocytosisEnzyme InhibitorsExcitatory Amino Acid AntagonistsExocytosisFemaleGreen Fluorescent ProteinsHippocampusHydrazonesIntracellular Signaling Peptides and ProteinsMaleMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutNerve Tissue ProteinsNeuronsNeurotoxinsPatch-Clamp TechniquesPhosphorylationStatistics, NonparametricSynapsesSynapsinsSynaptic VesiclesTetanus ToxinTransfectionConceptsSynaptic vesicle cycleActivity-dependent redistributionVesicle cycleDynamin dominant-negative mutantDominant negative mutantPerturbation of endocytosisReserve pool vesiclesEfficient phosphorylationCultured mouse hippocampal neuronsPlasma membraneMouse hippocampal neuronsInhibition of exocytosisPool vesiclesEndocytosisSynaptic vesiclesPre-synaptic terminalsExocytosisSynapsinVesiclesReserve poolRelease of neurotransmittersPhosphorylationRelease sitesReserve vesiclesReleasable pool
2004
Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking
Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, Camilli P. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 2004, 431: 415-422. PMID: 15386003, DOI: 10.1038/nature02896.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsBiological TransportCells, CulturedClathrinElectric ConductivityEndocytosisExocytosisGene DeletionKineticsMiceMice, KnockoutNeuronsPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositol PhosphatesPhosphotransferases (Alcohol Group Acceptor)Presynaptic TerminalsSynaptic TransmissionSynaptic VesiclesConceptsClathrin coat dynamicsSynaptic vesicle cycleSynaptic vesicle exocytosisSynaptic vesicle traffickingSecond messenger moleculesEarly postnatal lethalityEndocytic intermediatesVesicle traffickingMembrane proteinsVesicle cycleVesicle exocytosisPostnatal lethalityCell regulationRecycling kineticsMessenger moleculesBiochemical studiesSynaptic defectsDirect interactionImportant functionsCritical roleMultiple stepsReleasable poolRegulationNerve terminalsDephosphorylation
1997
Recycling of Synaptic Vesicles
Bauerfeind R, David C, Grabs D, McPherson P, Nemoto Y, Slepnev V, Takei K, De Camilli P. Recycling of Synaptic Vesicles. Advances In Pharmacology 1997, 42: 253-257. PMID: 9327892, DOI: 10.1016/s1054-3589(08)60741-3.Peer-Reviewed Original ResearchConceptsSynaptic vesicle endocytosisSynaptic vesicle recyclingVesicle endocytosisVesicle recyclingSynaptic vesiclesPlasma membraneClathrin adaptor complex AP2Vesicular transport stepsClathrin-coated vesiclesClathrin-coated pitsMicrotubule-binding proteinSynaptic vesicle cycleRole of proteinsCell surface receptorsRole of lipidsClathrin coatRestrictive temperatureEarly endosomesGuanosine triphosphataseRecycling pathwayVesicle cycleDynaminTransport stepsEndocytosisSurface receptors
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply