2025
Dietary oleic acid drives obesogenic adipogenesis via modulation of LXRα signaling
Wing A, Jeffery E, Church C, Goodell J, Saavedra-Peña R, Saha M, Holtrup B, Voisin M, Alavi N, Floody M, Wang Z, Zapadka T, Garabedian M, Varshney R, Rudolph M, Rodeheffer M. Dietary oleic acid drives obesogenic adipogenesis via modulation of LXRα signaling. Cell Reports 2025, 44: 115527. PMID: 40208790, PMCID: PMC12073628, DOI: 10.1016/j.celrep.2025.115527.Peer-Reviewed Original ResearchAdipocyte precursor cellsDietary fatPlasma monounsaturated fatty acidsAssociated with human obesityHuman adipocyte precursor cellsMonounsaturated fatty acidsDietary fat compositionDietary screeningFatty acidsDietary fatty acidsHuman obesityAdipose expansionMetabolic healthObesity epidemicAkt2 signalingLXR activationPrecursor cellsAdipose biologyOleic acidHyperplasiaObesityAdipocyte hyperplasiaDietary oleic acidPhysiological regulationAdipogenesisOuter radial glia promotes white matter regeneration after neonatal brain injury
Jinnou H, Rosko L, Yamashita S, Henmi S, Prasad J, Lam V, Agaronyan A, Tu T, Imamura Y, Kuboyama K, Sawamoto K, Hashimoto-Torii K, Ishibashi N, Gallo V. Outer radial glia promotes white matter regeneration after neonatal brain injury. Cell Reports Medicine 2025, 6: 101986. PMID: 40023165, PMCID: PMC11970391, DOI: 10.1016/j.xcrm.2025.101986.Peer-Reviewed Original ResearchConceptsOuter radial gliaActivating transcription factor 5Oligodendrocyte precursor cellsTreating white matter injuryNeonatal brain injuryWhite matter injuryPeriventricular white matterWhite matter regenerationImprove functional recoveryPopulation of neural stem cellsNeural stem cellsBrain injuryOuter subventricular zoneSubventricular zoneProliferative capacityPostnatal developmentVentricular zoneFunctional recoveryPrecursor cellsStem cellsWhite matterRadial gliaTherapeutic targetNeonatal pigletsInjuryTransient Upregulation of Procaspase-3 during Oligodendrocyte Fate Decisions
Kamen Y, Chapman T, Piedra E, Ciolkowski M, Hill R. Transient Upregulation of Procaspase-3 during Oligodendrocyte Fate Decisions. Journal Of Neuroscience 2025, 45: e2066242025. PMID: 39837665, PMCID: PMC11924999, DOI: 10.1523/jneurosci.2066-24.2025.Peer-Reviewed Original ResearchProcaspase-3Fate decisionsOligodendrocyte precursor cellsCell death mechanismsNeurodegenerative conditionsOligodendrocyte differentiationSurvival decisionsCellular checkpointsDeath mechanismsMolecular markersPrecursor cellsOligodendrocyte markersPromote oligodendrocyte differentiationPharmacological inhibitionDifferentiation stageTransient upregulationDifferentiationZymogenCellsOligodendrocyte densityMorphological stateMale miceOligodendrocyte deathMyelin dysfunctionMarkers
2024
Mechanistic Insights of Gamma Sensory Stimulation: CSF Proteomic Analyses Reveal Changes in Myelin and Synaptic Proteins
Shpokayte M, Pandey K, Singer A, Doung D, Lah J, Levey A, Seyfried N, Malchano Z, Kern R, Hajos M. Mechanistic Insights of Gamma Sensory Stimulation: CSF Proteomic Analyses Reveal Changes in Myelin and Synaptic Proteins. Alzheimer's & Dementia 2024, 20: e087390. PMCID: PMC11715388, DOI: 10.1002/alz.087390.Peer-Reviewed Original ResearchCell surface receptorsAlzheimer's diseaseSurface receptorsCo-expression modulesDifferential expression analysisAD-related pathologyContext of ADProteome databasePost-synaptic densityProteomic analysisExpression analysisSynaptic proteinsCerebrospinal fluid proteomeCerebrospinal fluidProteinSignificance thresholdMyelin-related proteinsSynaptic regulationMechanism of actionSensory stimulationCellsPrecursor cellsRegulationCerebrospinal fluid samplesCerebrospinal fluid proteinMitochondrial network reorganization and transient expansion during oligodendrocyte generation
Bame X, Hill R. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. Nature Communications 2024, 15: 6979. PMID: 39143079, PMCID: PMC11324877, DOI: 10.1038/s41467-024-51016-2.Peer-Reviewed Original ResearchConceptsDecreased mitochondrial sizeLoss of mitochondriaMitochondrial motilityMitochondrial dynamicsCellular checkpointsMitochondrial distributionMitochondrial sizeMitochondrial contentOligodendrocyte precursor cellsSubcellular partitioningDistal processesMotilityOligodendrocyte generationOligodendrocyte processesLocal microenvironmentPrecursor cellsExtensive expansionMitochondriaOligodendrocyte lineageTransient expansionLineagesOligodendrocytesAging brainMyelinating oligodendrocytesMorphometrics
2023
Features, Fates, and Functions of Oligodendrocyte Precursor Cells.
Hill R, Nishiyama A, Hughes E. Features, Fates, and Functions of Oligodendrocyte Precursor Cells. Cold Spring Harbor Perspectives In Biology 2023, 16: a041425. PMID: 38052500, PMCID: PMC10910408, DOI: 10.1101/cshperspect.a041425.Peer-Reviewed Original ResearchGlucocorticoid signaling and the impact of high-fat diet on adipogenesis in vivo
Babel N, Feldman B. Glucocorticoid signaling and the impact of high-fat diet on adipogenesis in vivo. Steroids 2023, 201: 109336. PMID: 37944652, PMCID: PMC11005958, DOI: 10.1016/j.steroids.2023.109336.Peer-Reviewed Original ResearchRegulation, maintenance, and remodeling of high endothelial venules in homeostasis, inflammation, and cancer
Ruddle N. Regulation, maintenance, and remodeling of high endothelial venules in homeostasis, inflammation, and cancer. Current Opinion In Physiology 2023, 36: 100705. PMID: 38523879, PMCID: PMC10956444, DOI: 10.1016/j.cophys.2023.100705.Peer-Reviewed Original ResearchHigh endothelial venulesTertiary lymphoid structuresLymphoid organsEndothelial venulesImmune checkpoint blockadeFavorable clinical outcomeAdhesion molecule-1Peripheral node addressinAutoimmune lesionsCheckpoint blockadeClinical outcomesEffector cellsChronic inflammationLymphoid structuresAcute inflammationLymphoid cellsMolecule-1InflammationCentral memoryAdhesion moleculesBlood vesselsPrecursor cellsImmunotherapyVenulesOrgansEarly Neuronal Differentiation/patterning of the Human Pallium, Modeling by in Vitro Systems, and Disruption in Developmental Disorders
Scuderi S, Jourdon A, Vaccarino F. Early Neuronal Differentiation/patterning of the Human Pallium, Modeling by in Vitro Systems, and Disruption in Developmental Disorders. 2023, 423-442. DOI: 10.1002/9781119860914.ch20.Peer-Reviewed Original ResearchCentral nervous systemDorsal-anterior partHuman cortexCortical developmentInhibitory neuronsSingle-cell omicsAnimal modelsNervous systemCortical layersMammalian brainBrain regionsCortical formationPopulations of excitatoryTangential migrationAltered developmentCortical structuresAnterior partCortical patterningPrecursor cellsEarly neuronal differentiationIncoming afferentsCortexNeuronal differentiationNeuronsHuman specificityEstradiol cycling drives female obesogenic adipocyte hyperplasia
del M. Saavedra-Peña R, Taylor N, Flannery C, Rodeheffer M. Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Reports 2023, 42: 112390. PMID: 37053070, PMCID: PMC10567995, DOI: 10.1016/j.celrep.2023.112390.Peer-Reviewed Original ResearchConceptsAdipocyte precursor cellsHigh-fat dietAdipocyte hyperplasiaHFD feedingVisceral WATDifferential fat distributionAdipose tissue distributionEstrogen receptor αWAT distributionFat distributionOvariectomized femalesHyperplasiaMice showEstrous cycleReceptor αTissue distributionPrecursor cellsObesityAPC proliferationTissue microenvironmentProliferationFemalesSexOnsetFeedingEndothelin-1–Endothelin receptor B complex contributes to oligodendrocyte differentiation and myelin deficits during preterm white matter injury
Du M, Wang N, Xin X, Yan C, Gu Y, Wang L, Shen Y. Endothelin-1–Endothelin receptor B complex contributes to oligodendrocyte differentiation and myelin deficits during preterm white matter injury. Frontiers In Cell And Developmental Biology 2023, 11: 1163400. PMID: 37009471, PMCID: PMC10063893, DOI: 10.3389/fcell.2023.1163400.Peer-Reviewed Original ResearchPreterm white matter injuryWhite matter injuryEndothelin receptor BCerebral white matter injuryPrenatal brain injuryEndothelin (ET)-1Maturation of oligodendrocytesReceptor BDefective differentiationSingle-cell RNA sequencingTransplantation therapyMyelin deficitPrecursor cellsPremyelinating oligodendrocytesOligodendrocyte differentiationOligodendrocytesPretermClinical applicationDifferentiation of OPCsEndothelinTransplantationTherapyInjuryBrain injuryRNA sequencing
2022
Potassium channel Kir4.1 regulates oligodendrocyte differentiation via intracellular pH regulation
Wang N, Zhou L, Shao C, Wang X, Zhang N, Ma J, Hu H, Wang Y, Qiu M, Shen Y. Potassium channel Kir4.1 regulates oligodendrocyte differentiation via intracellular pH regulation. Glia 2022, 70: 2093-2107. PMID: 35775976, DOI: 10.1002/glia.24240.Peer-Reviewed Original ResearchConceptsOL precursor cellsIntracellular pHImpaired OL maturationProgressive neurological declineLoss-of-function mutationsIntracellular pH regulationSeSAME/EAST syndromeNeurological declineDemyelinating diseaseLineage cellsOPC developmentPrecursor cellsOL maturationOligodendrocyte differentiationOligodendrocytesOL developmentDown-regulationDifferentiationPH regulationCellsExpressionKCNJ10Integrating human brain proteomes with genome-wide association data implicates novel proteins in post-traumatic stress disorder
Wingo TS, Gerasimov ES, Liu Y, Duong DM, Vattathil SM, Lori A, Gockley J, Breen MS, Maihofer AX, Nievergelt CM, Koenen KC, Levey DF, Gelernter J, Stein MB, Ressler KJ, Bennett DA, Levey AI, Seyfried NT, Wingo AP. Integrating human brain proteomes with genome-wide association data implicates novel proteins in post-traumatic stress disorder. Molecular Psychiatry 2022, 27: 3075-3084. PMID: 35449297, PMCID: PMC9233006, DOI: 10.1038/s41380-022-01544-4.Peer-Reviewed Original ResearchConceptsProteome-wide association studyTranscriptome-wide association studyGenome-wide association studiesBrain protein abundanceHuman brain proteomeBrain proteomeAssociation studiesProtein abundanceGenome-wide association dataHuman brain transcriptomePost-traumatic stress disorderGWAS resultsNovel proteinBrain transcriptomeRisk lociProteomeGenesAssociation dataPrecursor cellsPTSD pathogenesisBrain mRNA levelsMRNA levelsOligodendrocyte precursor cellsPromising targetNew insights
2021
Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence
Wu Z, Zhou J, Zhang X, Zhang Z, Xie Y, Liu JB, Ho ZV, Panda A, Qiu X, Cejas P, Cañadas I, Akarca FG, McFarland JM, Nagaraja AK, Goss LB, Kesten N, Si L, Lim K, Liu Y, Zhang Y, Baek JY, Liu Y, Patil DT, Katz JP, Hai J, Bao C, Stachler M, Qi J, Ishizuka JJ, Nakagawa H, Rustgi AK, Wong KK, Meyerson M, Barbie DA, Brown M, Long H, Bass AJ. Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nature Genetics 2021, 53: 881-894. PMID: 33972779, PMCID: PMC9124436, DOI: 10.1038/s41588-021-00859-2.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAdenosine DeaminaseAnimalsBase SequenceCarcinogenesisCell Line, TumorCell Transformation, NeoplasticCyclin-Dependent Kinase Inhibitor p16Endogenous RetrovirusesEnhancer Elements, GeneticEpigenomeEsophageal NeoplasmsEsophageal Squamous Cell CarcinomaGene Expression Regulation, NeoplasticGenome, HumanHumansInterferonsIntronsKruppel-Like Transcription FactorsMiceOrganoidsProtein BindingRNA-Binding ProteinsRNA, Double-StrandedSOXB1 Transcription FactorsTumor Suppressor Protein p53ConceptsRNA editing enzyme ADAR1Activity of oncogenesTranscription factor Sox2Chromatin remodelingSox2 bindingSOX2 activityTranscriptional landscapeEnzyme ADAR1Sox2 functionFactor Sox2Esophageal squamous cell carcinomaEsophageal organoidsTargetable vulnerabilitiesEndogenous retrovirusesSOX2Chromosome 3q amplificationSOX2 overexpressionPrecursor cellsP16 inactivationOncogeneEpigenomeCistromeNormal tissuesSquamous esophagusADAR1Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies
Mishra H, Ying N, Luis A, Wei H, Nguyen M, Nakhla T, Vandenburgh S, Alda M, Berrettini W, Brennand K, Calabrese J, Coryell W, Frye M, Gage F, Gershon E, McInnis M, Nievergelt C, Nurnberger J, Shilling P, Oedegaard K, Zandi P, Kelsoe J, Welsh D, McCarthy M. Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies. Molecular Psychiatry 2021, 26: 3383-3394. PMID: 33674753, PMCID: PMC8418615, DOI: 10.1038/s41380-021-01048-7.Peer-Reviewed Original ResearchConceptsNeuronal precursor cellsBipolar disorderCircadian rhythm abnormalitiesRhythm abnormalitiesBD groupCircadian rhythmPatient-derived neuronsMania/hypomaniaExpression of Per2Induced pluripotent stem cellsPER2 protein levelsGlutamatergic neuronsRecurrent episodesBD patientsControl neuronsLithium respondersEffective drugsNeuropsychiatric illnessLithium responsivenessPatient neuronsNeuronsLithium responseProtein levelsRhythm deficitsPrecursor cells
2020
Regulated in Development and DNA Damage Responses 1 Prevents Dermal Adipocyte Differentiation and Is Required for Hair Cycle–Dependent Dermal Adipose Expansion
Rivera-Gonzalez GC, Klopot A, Sabin K, Baida G, Horsley V, Budunova I. Regulated in Development and DNA Damage Responses 1 Prevents Dermal Adipocyte Differentiation and Is Required for Hair Cycle–Dependent Dermal Adipose Expansion. Journal Of Investigative Dermatology 2020, 140: 1698-1705.e1. PMID: 32032578, PMCID: PMC7398827, DOI: 10.1016/j.jid.2019.12.033.Peer-Reviewed Original ResearchConceptsWhite adipose tissueAdipocyte precursor cellsAdipose tissueProtein kinase B signalingDNA damage response 1Loss of REDD1Precursor cellsProtein kinase BAdipogenic marker expressionKinase B signalingHigher lipid accumulationInguinal subcutaneous white adipose tissueGonadal white adipose tissueInterscapular brown adipose tissueSubcutaneous white adipose tissueWhite adipose tissue expansionNegative regulatorPostnatal day 18Wild-type miceAdipose tissue expansionKinase BRegulated developmentBrown adipose tissueHair growth cycleResponse 1Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs
Burke EE, Chenoweth JG, Shin JH, Collado-Torres L, Kim SK, Micali N, Wang Y, Colantuoni C, Straub RE, Hoeppner DJ, Chen HY, Sellers A, Shibbani K, Hamersky GR, Diaz Bustamante M, Phan BN, Ulrich WS, Valencia C, Jaishankar A, Price AJ, Rajpurohit A, Semick SA, Bürli RW, Barrow JC, Hiler DJ, Page SC, Martinowich K, Hyde TM, Kleinman JE, Berman KF, Apud JA, Cross AJ, Brandon NJ, Weinberger DR, Maher BJ, McKay RDG, Jaffe AE. Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs. Nature Communications 2020, 11: 462. PMID: 31974374, PMCID: PMC6978526, DOI: 10.1038/s41467-019-14266-z.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsNeural precursor cellsExpression dataSingle-cell expression dataNeuronal differentiationSequencing read alignmentsInduced pluripotent stem cellsEarly neuronal differentiationPluripotent stem cellsTranscriptomic resourcesIPSC donorNeuronal culturesSubclonal linesNeural differentiationTranscriptomic signaturesHuman neural precursor cellsNeuronal cellsStem cellsPrecursor cellsCell sortingGlobal patternsPowerful modelSubset of neuronsRead alignmentDifferentiationEmerging technologies to study glial cells
Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, Kreisel T, Linck N, Muffat J, Regio S, Rion S, Escartin C. Emerging technologies to study glial cells. Glia 2020, 68: 1692-1728. PMID: 31958188, DOI: 10.1002/glia.23780.Peer-Reviewed Original ResearchConceptsCell typesChallenging biological questionsGlial cellsSpecific cell typesDifferent glial cell typesGlial cell typesBiological questionsPhysiological functionsPrecursor cellsTight interactionOligodendrocyte precursor cellsCellsExperimental approachRelative contributionBrain functionFull understandingSpecific brain functionsRoleFunctionInteractionDevelopmentTranslationGab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination
Zhou L, Shao C, Xie Y, Wang N, Xu S, Luo B, Wu Z, Ke Y, Qiu M, Shen Y. Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. ELife 2020, 9: e52056. PMID: 31944179, PMCID: PMC6984811, DOI: 10.7554/elife.52056.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCateninsCell DifferentiationCell LineageCentral Nervous SystemGene Expression RegulationMiceMice, KnockoutOligodendrocyte Precursor CellsOligodendrogliaPlatelet-Derived Growth FactorProtein-Tyrosine KinasesReceptors, Growth FactorRNA, Small InterferingSignal TransductionTranscription FactorsTranscriptomeConceptsPlatelet-derived growth factorCentral nervous system myelinDownstream targetsPlatelet-derived growth factor stimulationPDGF signalingPlatelet-derived growth factor signalingReceptor tyrosine kinasesAdaptor proteinCentral nervous system hypomyelinationGab1Nuclear accumulationOligodendrocyte precursor cellsTyrosine kinaseCentral nervous systemOligodendrocyte precursor cell differentiationConditional deletionOL lineage cellsOligodendrocyte differentiationDifferentiationSteady-state numberB-cateninPrecursor cellsLineage cellsTrophic supportGrowth factor
2019
Dissection of Merkel cell formation in hairy and glabrous skin reveals a common requirement for FGFR2‐mediated signalling
Nguyen MB, Valdes VJ, Cohen I, Pothula V, Zhao D, Zheng D, Ezhkova E. Dissection of Merkel cell formation in hairy and glabrous skin reveals a common requirement for FGFR2‐mediated signalling. Experimental Dermatology 2019, 28: 374-382. PMID: 30758073, PMCID: PMC6488392, DOI: 10.1111/exd.13901.Peer-Reviewed Original ResearchConceptsCell formationCommon genetic programPaw skinMerkel cellsLineage-tracing experimentsBack skinTranscriptome studiesMerkel cell developmentGenetic programMAPK signalingPrimary hair folliclesCell developmentSpecialized structuresMechanosensory cellsSimilar regulatorsUpstream factorsCritical functionsPrecursor cellsFGFR2SignalingCellsTouch domesGlabrous skinMurineHair follicles
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply