2025
Optic nerve injury impairs intrinsic mechanisms underlying electrical activity in a resilient retinal ganglion cell
Zapadka T, Tran N, Demb J. Optic nerve injury impairs intrinsic mechanisms underlying electrical activity in a resilient retinal ganglion cell. The Journal Of Physiology 2025 PMID: 39985791, DOI: 10.1113/jp286414.Peer-Reviewed Original ResearchOptic nerve crushRetinal ganglion cellsOptic nerveGanglion cellsSynaptic inputsVoltage-gated sodium channel currentsRetinal ganglion cell typesVoltage-gatedRetinal ganglion cell survivalChelation of intracellular calciumResting membrane potentialOptic nerve injuryVoltage-gated currentsAxonal injurySodium channel currentsRetinal ganglion cell axonsRGC typesAlpha retinal ganglion cellsAxon initial segmentIntracellular calciumRate of survivalNerve injuryElectrophysiological propertiesNerve crushIntrinsic excitability
2024
Compartmentalized ocular lymphatic system mediates eye–brain immunity
Yin X, Zhang S, Lee J, Dong H, Mourgkos G, Terwilliger G, Kraus A, Geraldo L, Poulet M, Fischer S, Zhou T, Mohammed F, Zhou J, Wang Y, Malloy S, Rohner N, Sharma L, Salinas I, Eichmann A, Thomas J, Saltzman W, Huttner A, Zeiss C, Ring A, Iwasaki A, Song E. Compartmentalized ocular lymphatic system mediates eye–brain immunity. Nature 2024, 628: 204-211. PMID: 38418880, PMCID: PMC10990932, DOI: 10.1038/s41586-024-07130-8.Peer-Reviewed Original ResearchResponse to herpes simplex virusCentral nervous systemImmune response to herpes simplex virusPosterior eyeImmune responseTherapeutic immune responsesOptic nerve sheathCervical lymph nodesAdeno-associated virusCNS diseaseDeep cervical lymph nodesHerpes simplex virusImmune protected miceCentral nervous system tissueLymphatic drainage systemImmunological featuresAnatomical extensionNerve sheathOptic nerveGene therapyLymph nodesMultiple dosesSimplex virusLymphatic circuitLymphatic signal
2023
Uveitis
Heng J, Kombo N. Uveitis. Contemporary Surgical Clerkships 2023, 105-112. DOI: 10.1007/978-3-031-27327-8_7.Chapters
2022
Memantine administration in patients with optic neuritis: a double blind randomized clinical trial
Motamedi D, Mayeli M, Shafie M, Sattarpour R, Jazani M, Tafakhori A, Sarraf P. Memantine administration in patients with optic neuritis: a double blind randomized clinical trial. Graefe's Archive For Clinical And Experimental Ophthalmology 2022, 260: 3969-3975. PMID: 35781594, DOI: 10.1007/s00417-022-05720-8.Peer-Reviewed Original ResearchConceptsRetinal nerve fiber layerRetinal nerve fiber layer thicknessOptic neuritisVisual acuityFollow-upRandomized clinical trialsRetinal nerve fiber layer thickness differenceRetinal nerve fiber layer thinningClinical trialsNerve fiber layerResultsThirty-eight patientsPatients of MGPotential therapeutic effectsAffected eyeTemporal quadrantInferior quadrantPlacebo groupMemantine groupOptic nerveFiber layerRetinal cellsMemantine administrationInflammatory phenomenaTherapeutic effectInclusion criteriaSepto-optic dysplasia in an infant
Aliu E, Musa J, Parisapogu A, Kola E, Hyseni F, Kola I, Blandón A, Roy P, Prathima K, Banavath C, Kumbha P, Tappa S, Saini J, Pichuthirumalai S, Ahmetgjekaj I. Septo-optic dysplasia in an infant. Radiology Case Reports 2022, 17: 3147-3150. PMID: 35801123, PMCID: PMC9253040, DOI: 10.1016/j.radcr.2022.06.002.Peer-Reviewed Original ResearchSepto-optic dysplasiaSOD patientsAcute respiratory distress syndromeRare congenital anomalyEpisode of acute respiratory distress syndromeRespiratory distress syndromeHypothalamic-pituitary axisMidline brain structuresFollow-up approachClinical presentationCongenital anomaliesDistress syndromeOptic nerveEndocrine abnormalitiesLive birthsManagement modalitiesCongenital disorderPatientsHypoplasiaMultidisciplinary approachDysplasiaBrain structuresDiseasePresentationAgenesis
2021
Comprehensive Genomic Characterization of A Case of Granular Cell Tumor of the Posterior Pituitary Gland: A Case Report
Hong CS, Elsamadicy AA, Fisayo A, Inzucchi SE, Gopal PP, Vining EM, Erson-Omay EZ, Omay S. Comprehensive Genomic Characterization of A Case of Granular Cell Tumor of the Posterior Pituitary Gland: A Case Report. Frontiers In Endocrinology 2021, 12: 762095. PMID: 34925233, PMCID: PMC8671743, DOI: 10.3389/fendo.2021.762095.Peer-Reviewed Original ResearchConceptsGranular cell tumorPosterior pituitary glandCell tumorsPituitary glandComprehensive genomic characterizationWhole-exome sequencingImmune checkpoint inhibitorsPoor clinical outcomePituitary gland tumorsHistone deacetylase inhibitorsInstitutional review boardRadiographic compressionUnderwent resectionCheckpoint inhibitorsMedical therapyPituitary massClinical outcomesOptic nerveSignificant morbidityResidual diseaseCase reportCentral hypothyroidismPharmacologic agentsGland tumorsTherapeutic targetingCandidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications
Cueto A, Álvarez L, García M, Álvarez-Barrios A, Artime E, Cueto L, Coca-Prados M, González-Iglesias H. Candidate Glaucoma Biomarkers: From Proteins to Metabolites, and the Pitfalls to Clinical Applications. Biology 2021, 10: 763. PMID: 34439995, PMCID: PMC8389649, DOI: 10.3390/biology10080763.Peer-Reviewed Original ResearchGlaucoma biomarkersRetinal ganglion cell deathGanglion cell deathProgression of glaucomaExpression of moleculesFuture diagnostic testsHuman eye tissuesOptic nerveSystemic biomarkersHuman glaucomaIntraocular pressureDisease onsetRisk factorsIrreversible blindnessEye diseaseEarly diagnosisGlaucomaPathogenic processesEye tissuesProgressive lossDiagnostic testsNeurodegenerative diseasesBiomarker candidatesMolecular biomarkersBiomarkers
2020
Genetic characterization of an aggressive optic nerve pilocytic glioma
Hong CS, Fliney G, Fisayo A, An Y, Gopal PP, Omuro A, Pointdujour-Lim R, Erson-Omay EZ, Omay SB. Genetic characterization of an aggressive optic nerve pilocytic glioma. Brain Tumor Pathology 2020, 38: 59-63. PMID: 33098465, PMCID: PMC7585354, DOI: 10.1007/s10014-020-00383-x.Peer-Reviewed Original ResearchConceptsOptic nerve gliomaLeft optic nerve sheathLeft-sided visual lossSporadic adult casesOptic nerve sheathNeurofibromatosis type 1 syndromeType 1 syndromeWhole-exome sequencingEmpiric managementVisual lossFocal radiotherapyOptic nervePediatric populationNerve sheathOpen biopsyAdult casesBiopsy specimenBenign histopathologyClinical prognosticationPilocytic astrocytomaComplex tumorsActionable targetsVisual pathwayAdult populationTumor progressionRemote Screening for Optic Nerve Cupping Using Smartphone-based Nonmydriatic Fundus Photography
LaMonica LC, Bhardwaj MK, Hawley NL, Naseri T, Reupena MS, Cooper ML, Cotran PR, Roh S, Ramsey DJ. Remote Screening for Optic Nerve Cupping Using Smartphone-based Nonmydriatic Fundus Photography. Journal Of Glaucoma 2020, 30: 58-60. PMID: 32969917, PMCID: PMC7755732, DOI: 10.1097/ijg.0000000000001680.Peer-Reviewed Original ResearchConceptsFundus photographsDisc ratioRemote screeningNonmydriatic fundus photographsOptic disc cuppingOptic disc statusOptic nerve cupOptic nerve cuppingGlaucoma risk factorsNonmydriatic fundus photographyClinical risk criteriaNonmydriatic fundus cameraColor fundus photographsSmartphone-based screeningIntraclass correlation coefficientDisc cuppingOphthalmologic assessmentOptic nerveIntraocular pressureFundus photographyRisk factorsInter-rater agreementSmartphone-based cameraGlaucoma subspecialistsDisc statusOverhead Mounted Optical Coherence Tomography in Childhood Glaucoma Evaluation
Go MS, Barman NR, Kelly MP, House RJ, Rotruck JC, El-Dairi MA, Freedman SF. Overhead Mounted Optical Coherence Tomography in Childhood Glaucoma Evaluation. Journal Of Glaucoma 2020, 29: 742-749. PMID: 32496465, DOI: 10.1097/ijg.0000000000001567.Peer-Reviewed Original ResearchConceptsTotal retinal thicknessPeripapillary retinal nerve fiber layerChildhood glaucoma patientsOptical coherence tomographyChildhood glaucomaRetinal thicknessGCC thicknessGlaucoma patientsCoherence tomographyGanglion cell complex thicknessProspective cross-sectional studyRetinal nerve fiber layerSpectral-domain optical coherence tomographyNerve fiber layerCross-sectional studyAge-matched controlsSpectral-domain OCTYears of ageImproved clinical managementMean image qualityAffected eyeStandard careOptic nerveGlaucoma evaluationComplex thickness
2019
Optical Coherence Tomography Normative Peripapillary Retinal Nerve Fiber Layer and Macular Data in Children 0–5 Years of Age
Rotruck JC, House RJ, Freedman SF, Kelly MP, Enyedi LB, Prakalapakorn SG, Lim ME, El-Dairi MA. Optical Coherence Tomography Normative Peripapillary Retinal Nerve Fiber Layer and Macular Data in Children 0–5 Years of Age. American Journal Of Ophthalmology 2019, 208: 323-330. PMID: 31271744, DOI: 10.1016/j.ajo.2019.06.025.Peer-Reviewed Original ResearchConceptsPeripapillary retinal nerve fiber layerRetinal nerve fiber layerYears of ageTotal macular volumeNerve fiber layerMacular volumeChildren 0Optic nerveGeneral anesthesiaRetinal layersInner nuclear layer volumeMean total macular volumeFiber layerProspective cross-sectional studySpherical equivalent refractive errorSegmented retinal layersSystemic neurologic diseaseGanglion cell complexGanglion cell layerPediatric ophthalmology practiceCross-sectional studyOcular disease processesMacular dataRefractive errorNeurologic diseaseLimiting Neuronal Nogo Receptor 1 Signaling during Experimental Autoimmune Encephalomyelitis Preserves Axonal Transport and Abrogates Inflammatory Demyelination
Lee JY, Kim MJ, Thomas S, Oorschot V, Ramm G, Aui PM, Sekine Y, Deliyanti D, Wilkinson-Berka J, Niego B, Harvey AR, Theotokis P, McLean C, Strittmatter SM, Petratos S. Limiting Neuronal Nogo Receptor 1 Signaling during Experimental Autoimmune Encephalomyelitis Preserves Axonal Transport and Abrogates Inflammatory Demyelination. Journal Of Neuroscience 2019, 39: 5562-5580. PMID: 31061088, PMCID: PMC6616297, DOI: 10.1523/jneurosci.1760-18.2019.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAnimalsAxonal TransportAxonsCells, CulturedEncephalomyelitis, Autoimmune, ExperimentalFemaleHumansIntercellular Signaling Peptides and ProteinsKinesinsMaleMiceMice, Inbred C57BLMiddle AgedMyelin SheathNerve Tissue ProteinsNogo Receptor 1Retinal Ganglion CellsSignal TransductionConceptsExperimental autoimmune encephalomyelitisCollapsin response mediator protein 2Optic nerveAxonal degenerationMultiple sclerosisAxonal vesicular transportAutoimmune encephalomyelitisInflammatory demyelinationAxonal integritySeverity of EAECre deletionAxonal transportRetinal ganglion cell axonsAxonal motor proteinsEAE-induced miceImmune-mediated destructionProgressive multiple sclerosisNeuron-specific deletionNogo receptor 1Ganglion cell axonsAnterograde transportFlx/Response mediator protein 2Adeno-associated virus serotype 2Phosphorylation of CRMP2Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production
Cotzomi E, Stathopoulos P, Lee CS, Ritchie AM, Soltys JN, Delmotte FR, Oe T, Sng J, Jiang R, K A, Vander Heiden JA, Kleinstein SH, Levy M, Bennett JL, Meffre E, O’Connor K. Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain 2019, 142: 1598-1615. PMID: 31056665, PMCID: PMC6536857, DOI: 10.1093/brain/awz106.Peer-Reviewed Original ResearchConceptsNeuromyelitis optica spectrum disorderB cell tolerance checkpointsNMOSD patientsNaïve B cellsAQP4 autoantibodiesTolerance checkpointsHealthy donorsB cellsEarly B cell tolerance checkpointsPeripheral B cell tolerance checkpointsMature naïve B cellsB cell tolerance defectsSeropositive NMOSD patientsOptica spectrum disorderRare autoimmune disorderNaïve B-cell compartmentB cell compartmentB cell populationsAquaporin-4 water channelsPathogenic autoantibodiesAutoantibody productionOptic nerveAutoimmune disordersSevere inflammationSpinal cord5 Suprasellar Pathology
Omay S, Anand V, Schwartz T. 5 Suprasellar Pathology. 2019, 61-69. DOI: 10.1007/978-3-319-64379-3_5.Peer-Reviewed Original ResearchSuprasellar lesionsCareful patient selectionVisual field lossEndonasal endoscopic approachEndocrine dysfunctionOptic nerveOptic apparatusPatient selectionSurgical interventionMicroneurosurgical approachesBrain retractionEndoscopic approachPituitary adenomasCarotid arteryEndoscopic methodsThird ventricleEndoscopic techniquesField lossPituitary glandSuprasellar pathologiesLesionsPathologyHydrocephalusTransplanumNerve
2017
The Xenopus tadpole: An in vivo model to screen drugs favoring remyelination
Mannioui A, Vauzanges Q, Fini JB, Henriet E, Sekizar S, Azoyan L, Thomas JL, Du Pasquier D, Giovannangeli C, Demeneix B, Lubetzki C, Zalc B. The Xenopus tadpole: An in vivo model to screen drugs favoring remyelination. Multiple Sclerosis Journal 2017, 24: 1421-1432. PMID: 28752787, DOI: 10.1177/1352458517721355.Peer-Reviewed Original ResearchConceptsSphingosine-1-phosphate receptor 5Receptor 5Sphingosine-1-phosphate receptor 1Efficacy of siponimodNumber of oligodendrocytesSpontaneous remyelinationMultiple sclerosisOptic nervePromyelinating effectE. coli nitroreductaseRemyelinationDual agonistsVivo modelReceptor 1SiponimodConditional ablationOligodendrocytesXenopus tadpolesVivo screeningCRISPR/Cas9 gene editingVivoCas9 gene editingDemyelinationSclerosisGreen fluorescent protein reporterClinical Significance of Optic Nerve Enhancement on Magnetic Resonance Imaging in Enucleated Retinoblastoma Patients
Kim JW, Madi I, Lee R, Zolfaghari E, Jubran R, Lee TC, Murphree AL, Berry JL. Clinical Significance of Optic Nerve Enhancement on Magnetic Resonance Imaging in Enucleated Retinoblastoma Patients. Ophthalmology Retina 2017, 1: 369-374. PMID: 31047563, PMCID: PMC7448757, DOI: 10.1016/j.oret.2017.03.013.Peer-Reviewed Original ResearchOptic nerve enhancementAbnormal MRI findingsOptic nerve invasionNerve enhancementOptic nerveMRI scansNerve invasionMRI findingsClinical significanceRetinoblastoma patientsMagnetic resonance imaging (MRI) findingsPostoperative contrast enhancementTransected optic nerveContrast enhancementAbnormal contrast enhancementRetrospective chart reviewPostoperative MRI scansPrimary outcome measureResonance Imaging FindingsLast clinical followRadiographic grading systemMagnetic resonance imagingPostoperative enhancementPreoperative chemotherapyChart reviewOptic Nerve Obscuration in Retinoblastoma: A Risk Factor for Optic Nerve Invasion
Berry JL, Zolfaghari E, Chen A, Murphree AL, Jubran R, Kim JW. Optic Nerve Obscuration in Retinoblastoma: A Risk Factor for Optic Nerve Invasion. Ocular Oncology And Pathology 2017, 3: 283-291. PMID: 29344482, PMCID: PMC5757559, DOI: 10.1159/000464468.Peer-Reviewed Original ResearchOptic nerve invasionNerve invasionAdvanced retinoblastomaOptic nervePostlaminar optic nerve invasionPoor prognostic signPostlaminar invasionSalvage therapySalvage groupPrimary enucleationGlobe salvageRetrospective reviewPrognostic signRisk factorsIntraocular tumorsHistopathologic analysisSmall cohortNervePatientsDiagnosisRetinoblastomaEyesSecond groupInvasionTreatmentNEUROSARCOIDOSIS MASQUERADING AS A CENTRAL NERVOUS SYSTEM TUMOR
Elia M, Kombo N, Huang J. NEUROSARCOIDOSIS MASQUERADING AS A CENTRAL NERVOUS SYSTEM TUMOR. Retinal Cases & Brief Reports 2017, 11: s166-s169. PMID: 27571425, DOI: 10.1097/icb.0000000000000402.Peer-Reviewed Original ResearchConceptsOphthalmic examinationOptic nerveHigh-dose oral prednisoneCentral nervous system gliomasCentral nervous system tumorsDiagnosis of neurosarcoidosisIsolated brain lesionOptic nerve infiltrationSerial ophthalmic examinationsRight optic nerveCase of neurosarcoidosisVisual field testingNervous system tumorsLow-grade gliomasMethotrexate weeklyNerve infiltrationOral prednisoneNoncaseating granulomasPrednisone taperNeurologic symptomsOcular sarcoidosisCNS lesionsLeft eyeBrain biopsyFluorescein angiography
2016
Restoring immune tolerance in neuromyelitis optica
Bar-Or A, Steinman L, Behne J, Benitez-Ribas D, Chin P, Clare-Salzler M, Healey D, Kim J, Kranz D, Lutterotti A, Martin R, Schippling S, Villoslada P, Wei C, Weiner H, Zamvil S, Smith T, Yeaman M, Aktas O, Amezcua L, Appiwatanakul M, Asgari N, Banwell B, Bennett J, Bowen J, Cabre P, Chitnis T, Cohen J, De Seze J, Fujihara K, Han M, Hellwig K, Hintzen R, Hooper D, Iorio R, Jacob A, Jarius S, Kim H, Kissani N, Klawiter E, Kleiter I, Lana-Peixoto M, Leite M, Levy M, Lublin F, Draayer Y, Marignier R, Matiello M, Nakashima I, O’Connor K, Palace J, Pandit L, Paul F, Prayoonwiwat N, Riley C, Ruprecht K, Saiz A, Siritho S, Tenembaum S, Weinshenker B, Wingerchuk D, Würfel J. Restoring immune tolerance in neuromyelitis optica. Neurology Neuroimmunology & Neuroinflammation 2016, 3: &na;. PMID: 27648464, PMCID: PMC5015540, DOI: 10.1212/nxi.0000000000000277.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsNMO/SDImmune toleranceAquaporin-4Neuromyelitis optica spectrum disorderNormal host defense mechanismsOptica spectrum disorderHost defense mechanismsOral tolerizationNeuromyelitis opticaOptic nerveParticular brain regionsAutoimmune diseasesAstrocyte functionSpinal cordClinical variantsNovel therapiesDominant autoantigenClinical developmentPotential cureB cellsBrain regionsExperimental modelDiseaseCharacteristic phenotypeAutoantigensRestoring immune tolerance in neuromyelitis optica
Steinman L, Bar-Or A, Behne J, Benitez-Ribas D, Chin P, Clare-Salzler M, Healey D, Kim J, Kranz D, Lutterotti A, Martin R, Schippling S, Villoslada P, Wei C, Weiner H, Zamvil S, Yeaman M, Smith T, Consortium G, Aktas O, Amezcua L, Appiwatanakul M, Asgari N, Banwell B, Bennett J, Bowen J, Cabre P, Chitnis T, Cohen J, De Seze J, Fujihara K, Han M, Hellwig K, Hintzen R, Hooper D, Iorio R, Jacob A, Jarius S, Kim H, Kissani N, Klawiter E, Kleiter I, Lana-Peixoto M, Leite M, Levy M, Lublin F, Draayer Y, Marignier R, Matiello M, Nakashima I, O’Connor K, Palace J, Pandit L, Paul F, Prayoonwiwat N, Riley C, Ruprecht K, Saiz A, Siritho S, Tenembaum S, Weinshenker B, Wingerchuk D, Würfel J. Restoring immune tolerance in neuromyelitis optica. Neurology Neuroimmunology & Neuroinflammation 2016, 3: &na;. PMID: 27648463, PMCID: PMC5015539, DOI: 10.1212/nxi.0000000000000276.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsNMO/SDNeuromyelitis opticaImmune toleranceAquaporin-4 (AQP4) water channel proteinKey immune mechanismsImmune tolerizationDevelopment of cancerEmpirical therapyOptic nerveRandomized trialsImmunologic suppressionAutoimmune diseasesSerious infectionsAstrocyte dysfunctionCurrent therapiesImmune mechanismsSpinal cordClinical variantsDominant autoantigenAquaporin-4Therapeutic restorationRestorative techniquesTherapyOpticaPatients
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply