2025
Genome-wide analyses identify 30 loci associated with obsessive–compulsive disorder
Strom N, Gerring Z, Galimberti M, Yu D, Halvorsen M, Abdellaoui A, Rodriguez-Fontenla C, Sealock J, Bigdeli T, Coleman J, Mahjani B, Thorp J, Bey K, Burton C, Luykx J, Zai G, Alemany S, Andre C, Askland K, Bäckman J, Banaj N, Barlassina C, Nissen J, Bienvenu O, Black D, Bloch M, Børte S, Bosch R, Breen M, Brennan B, Brentani H, Buxbaum J, Bybjerg-Grauholm J, Byrne E, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini M, Ciullo V, Cook E, Crosby J, Cullen B, De Schipper E, Delorme R, Djurovic S, Elias J, Estivill X, Falkenstein M, Fundin B, Garner L, Gironda C, Goes F, Grados M, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler K, Hounie A, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson E, Kelley K, Klawohn J, Krasnow J, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin N, Meier S, Miguel E, Mulhern M, Nestadt P, Nurmi E, O’Connell K, Osiecki L, Ousdal O, Palviainen T, Pedersen N, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle M, Ripke S, Rosário M, Sampaio A, Schiele M, Skogholt A, Sloofman L, Smit J, Artigas M, Thomas L, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink N, Walker C, Wang Y, Wendland J, Winsvold B, Yao Y, Zhou H, Agrawal A, Alonso P, Berberich G, Bucholz K, Bulik C, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez T, Fyer A, Gaziano J, Geller D, Grabe H, Greenberg B, Hanna G, Hickie I, Hougaard D, Kathmann N, Kennedy J, Lai D, Landén M, Hellard S, Leboyer M, Lochner C, McCracken J, Medland S, Mortensen P, Neale B, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls D, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga J, Rasmussen S, Richter M, Rosenberg D, Ruhrmann S, Samuels J, Sandin S, Sandor P, Spalletta G, Stein D, Stewart S, Storch E, Stranger B, Turiel M, Werge T, Andreassen O, Børglum A, Walitza S, Hveem K, Hansen B, Rück C, Martin N, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart J, Breen G, Nestadt G, Kaprio J, Arnold P, Grice D, Knowles J, Ask H, Verweij K, Davis L, Smit D, Crowley J, Scharf J, Stein M, Gelernter J, Mathews C, Derks E, Mattheisen M. Genome-wide analyses identify 30 loci associated with obsessive–compulsive disorder. Nature Genetics 2025, 57: 1389-1401. PMID: 40360802, PMCID: PMC12165847, DOI: 10.1038/s41588-025-02189-z.Peer-Reviewed Original ResearchConceptsObsessive-compulsive disorderGenome-wide association studiesGenetic riskObsessive-compulsive disorder casesGenome-wide significant lociMedium spiny neuronsGenome-wide analysisMajor histocompatibility complexGene-based approachPsychiatric disordersSpiny neuronsTourette syndromeAnorexia nervosaSignificant lociEffector genesAssociation studiesAssociated with excitatory neuronsMultiple genesGenetic variantsAssociated with inflammatory bowel diseaseBody mass indexGenetic heritabilityDisordersExcitatory neuronsInflammatory bowel diseasePhysiologic mechanisms underlying polycystic kidney disease
Boletta A, Caplan M. Physiologic mechanisms underlying polycystic kidney disease. Physiological Reviews 2025, 105: 1553-1607. PMID: 39938884, PMCID: PMC12174308, DOI: 10.1152/physrev.00018.2024.Peer-Reviewed Original ResearchPrimary ciliaPolycystic kidney diseaseTrafficking of proteinsHuman ciliopathiesExtracellular signalsMultiple genesKidney diseaseProtein productionMolecular basisCell biologyMonogenic disordersCyst formationGenesRenal epithelial cellsProteinCiliaBiochemical informationApical surfaceEpithelial cellsFunctional expressionPhysiological propertiesWealth of informationPhysiological mechanismsCellsFibrocystin
2024
An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus
Sagawa C, Thomson G, Mermaz B, Vernon C, Liu S, Jacob Y, Irish V. An efficient multiplex approach to CRISPR/Cas9 gene editing in citrus. Plant Methods 2024, 20: 148. PMID: 39342225, PMCID: PMC11438372, DOI: 10.1186/s13007-024-01274-4.Peer-Reviewed Original ResearchSimultaneous editing of multiple genesMultiple genesGene editingEudicot plant speciesPol III promotersTarget multiple genesGenus fallRPS5A promoterCRISPR/Cas9 gene editingCRISPR/Cas9-mediated gene editingMultiplex gene editingGenome engineeringIII promotersGenetic screeningPlant speciesCas9 endonucleaseEditing efficiencyGene editing efficiencySgRNAGenesArabidopsisUBQ10SpeciesSimultaneous editingPromoterWhole-genome Sequencing Association Analysis of Quantitative Platelet Traits in A Large Cohort of β-thalassemia
Wang X, Zhang Q, Chen X, Huang Y, Zhang W, Liao L, Zhang X, Huang B, Huang Y, Ye Y, Song M, Lao J, Chen J, Feng X, Long X, Liu Z, Zhu W, Yu L, Fan C, Tang D, Zhong T, Fang M, Li C, Niu C, Huang L, Lin B, Hua X, Jin X, Li Z, Xu X. Whole-genome Sequencing Association Analysis of Quantitative Platelet Traits in A Large Cohort of β-thalassemia. Genomics Proteomics & Bioinformatics 2024, qzae065. PMID: 39331630, DOI: 10.1093/gpbjnl/qzae065.Peer-Reviewed Original ResearchPlatelet traitsAnalysis of whole-genome sequencing dataWhole-genome sequencing dataFunctional annotation dataGenotype-phenotype association studiesRare variantsLack of genetic studiesMean platelet volumeNoncoding genomeWhole genomeSequence dataAssociation studiesMultiple genesGenetic studiesB-thalassemia patientsB-thalassemiaPhenotypic heterogeneityIntegrated analysisTraitsMissenseGenesPotential targetVariantsRV analysisGenomeDietary EPA and DHA enrichment of a high fat diet during doxorubicin-based chemotherapy attenuated neuroinflammatory gene expression in the brain of C57bl/6 ovariectomized mice
Ormiston K, Melink Z, Andridge R, Lustberg M, DeVries A, Murphy K, Emmers K, Ziouzenkova O, Belury M, Orchard T. Dietary EPA and DHA enrichment of a high fat diet during doxorubicin-based chemotherapy attenuated neuroinflammatory gene expression in the brain of C57bl/6 ovariectomized mice. Brain Behavior And Immunity 2024, 123: 370-382. PMID: 39313165, DOI: 10.1016/j.bbi.2024.09.021.Peer-Reviewed Original ResearchHOMA-IRChemotherapy-related cognitive impairmentHigh-fatDietary eicosapentaenoic acidDocosahexaenoic acidBlood-brain barrier regulationDoxorubicin-based chemotherapyFemale C57BL/6 miceLF groupEicosapentaenoic acidBody fat lossLow-fat (LFHF dietNeuroinflammatory gene expressionLipid metabolismMultiple genesReduction of oxidative stressAlterations of glucoseFat (LFHigh-fat dietGene expressionOvariectomized miceC57BL/6 miceChemotherapy agentsBreast cancerShared Genetic Architecture Between Schizophrenia and Anorexia Nervosa: A Cross-trait Genome-Wide Analysis
Lu Z, Ploner A, Birgegård A, Adan R, Alfredsson L, Ando T, Andreassen O, Baker J, Bergen A, Berrettini W, Birgegård A, Boden J, Boehm I, Perica V, Brandt H, Breen G, Bryois J, Buehren K, Bulik C, Burghardt R, Cassina M, Cichon S, Coleman J, Cone R, Courtet P, Crawford S, Crow S, Crowley J, Danner U, Davis O, de Zwaan M, Dedoussis G, DeSocio J, Dick D, Dikeos D, Dina C, Dmitrzak-Weglarz M, Docampo E, Duncan L, Egberts K, Ehrlich S, Escaramís G, Esko T, Estivill X, Farmer A, Favaro A, Fernández-Aranda F, Fischer K, Föcker M, Foretova L, Forstner A, Forzan M, Franklin C, Gallinger S, Giegling I, Giusti-Rodríguez P, Gonidakis F, Gordon S, Gorwood P, Mayora M, Grove J, Guillaume S, Guo Y, Hakonarson H, Halmi K, Hanscombe K, Hatzikotoulas K, Hauser J, Hebebrand J, Helder S, Herms S, Herpertz-Dahlmann B, Herzog W, Hinney A, Horwood L, Hübel C, Huckins L, Hudson J, Imgart H, Inoko H, Janout V, Jiménez-Murcia S, Johnson C, Jordan J, Julià A, Kalsi G, Kaminská D, Kaplan A, Kaprio J, Karhunen L, Karwautz A, Kas M, Kaye W, Kennedy J, Kennedy M, Keski-Rahkonen A, Kiezebrink K, Kim Y, Klareskog L, Klump K, Landén M, Larsen J, Le Hellard S, Leppä V, Li D, Lichtenstein P, Lilenfeld L, Lin B, Lissowska J, Luykx J, Maj M, Marsal S, Martin N, Mattheisen M, Mattingsdal M, Medland S, Metspalu A, Meulenbelt I, Micali N, Mitchell K, Mitchell J, Monteleone A, Monteleone P, Mortensen P, Munn-Chernoff M, Nacmias B, Navratilova M, Ntalla I, Olsen C, Ophoff R, Padyukov L, Pantel J, Papezova H, Parker R, Pearson J, Pedersen N, Petersen L, Pinto D, Purves K, Raevuori A, Ramoz N, Reichborn-Kjennerud T, Ricca V, Ripatti S, Ripke S, Ritschel F, Roberts M, Rujescu D, Rybakowski F, Santonastaso P, Scherag A, Scherer S, Schmidt U, Schork N, Schosser A, Seitz J, Slachtova L, Slagboom P, Landt M, Slopien A, Sorbi S, Strober M, Sullivan P, Świątkowska B, Szatkiewicz J, Tenconi E, Thornton L, Tortorella A, Treasure J, Tsitsika A, Tyszkiewicz-Nwafor M, van Elburg A, van Furth E, Wade T, Wagner G, Watson H, Werge T, Whiteman D, Widen E, Woodside D, Yao S, Yilmaz Z, Zeggini E, Zerwas S, Zipfel S, Breen G, Bulik C, Bulik C, Bergen S. Shared Genetic Architecture Between Schizophrenia and Anorexia Nervosa: A Cross-trait Genome-Wide Analysis. Schizophrenia Bulletin 2024, 50: 1255-1265. PMID: 38848516, PMCID: PMC11349005, DOI: 10.1093/schbul/sbae087.Peer-Reviewed Original ResearchPolygenic overlapConditional/conjunctional false discovery rateGenome-wide association studiesGenome-wide analysisConcordant effect directionsProportion of variantsNovel lociFalse discovery rateFunctional annotationGenetic architectureGenetic enrichmentAssociation studiesMultiple genesSynapse organizationMendelian randomization analysisGenetic associationCo-aggregationLociGenetic componentGenetic etiologyAnorexia nervosaFamilial co-aggregationDiscovery rateGenetic factorsRandomization analysisTopologically associating domains define the impact of de novo promoter variants on autism spectrum disorder risk
Nakamura T, Ueda J, Mizuno S, Honda K, Kazuno A, Yamamoto H, Hara T, Takata A. Topologically associating domains define the impact of de novo promoter variants on autism spectrum disorder risk. Cell Genomics 2024, 4: 100488. PMID: 38280381, PMCID: PMC10879036, DOI: 10.1016/j.xgen.2024.100488.Peer-Reviewed Original ResearchConceptsWhole-genome sequencingASD genesWhole-genome sequencing dataTopologically associating domainsInfluence multiple genesGene regulatory mechanismsASD-associated genesGenetic architectureASD heritabilityMultiple genesASD probandsPromoter variantsGenesAutism spectrum disorder riskHuman induced pluripotent stem cellsPromoterPluripotent stem cellsTADStudies of autism spectrum disorderVariantsAutism spectrum disorderStem cellsSequenceProbandsHeritability
2023
Single-cell reconstruction and mutation enrichment analysis identifies dysregulated cardiomyocyte and endothelial cells in congenital heart disease
Tambi R, Zehra B, Nandkishore S, Sharafat S, Kader F, Nassir N, Mohamed N, Ahmed A, Abdel Hameid R, Alasrawi S, Brueckner M, Kuebler W, Chung W, Alsheikh-Ali A, Di Donato R, Uddin M, Berdiev B. Single-cell reconstruction and mutation enrichment analysis identifies dysregulated cardiomyocyte and endothelial cells in congenital heart disease. Physiological Genomics 2023, 55: 634-646. PMID: 37811720, PMCID: PMC11550899, DOI: 10.1152/physiolgenomics.00070.2023.Peer-Reviewed Original ResearchConceptsSingle-cell transcriptomesCHD genesRisk genesEndocardial cellsMultiple genesCell typesSingle-cell transcriptomicsPhenotypic heterogeneityDe novo variantsCongential heart diseaseSingle-cell reconstructionGenesReconstruction analysisNeonatal congenital anomaliesGene heterogeneityAnalysis identifiesTranscriptomeMissense variantsNovo variantsCongenital heart diseaseGenomicsHeterogenous expressionFunction variantsHeart diseaseGenetics guidelinesActivity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders
Ma Y, Bendl J, Hartley B, Fullard J, Abdelaal R, Ho S, Kosoy R, Gochman P, Rapoport J, Hoffman G, Brennand K, Roussos P. Activity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders. Biological Psychiatry 2023, 95: 187-198. PMID: 37454787, PMCID: PMC10787819, DOI: 10.1016/j.biopsych.2023.07.003.Peer-Reviewed Original ResearchConceptsTranscriptional programsBrain-related disordersGlutamatergic neuronsGene coexpression network analysisSignificant heritability enrichmentsEnhancer-promoter interactionsCoexpression network analysisDisease-associated genesExpression of genesLarge-scale geneticMultiomics data integrationChromatin accessibilityEpigenomic changesHeritability enrichmentGenetic regulationRegulatory elementsMultiple genesSequence variationGene expressionAxon guidanceGenetic riskPotassium chloride-induced depolarizationActivity-dependent changesDepolarization-induced changesGenes
2022
Chapter 25 Pharmacogenomics and outcomes for hepatocellular cancer treatment
Ghanta M, Hussain M, Karnalkar A, Nagabhishek S, Nuthalapati P, Bhaskar L. Chapter 25 Pharmacogenomics and outcomes for hepatocellular cancer treatment. 2022, 401-414. DOI: 10.1016/b978-0-323-99283-1.00003-3.Peer-Reviewed Original ResearchHepatocellular carcinomaEffects of systemic treatmentRisk factorsPrevalence of genetic variantsSystemic therapy efficacyHepatocellular carcinoma recurrenceHuman genomeMultiple genesSingle-geneGenetic variantsSystemic treatmentPharmacogenomicsGenetic abnormalitiesTherapy efficacyViral infectionGenetic mutationsEconomic burdenPotential targetGeographic prevalenceEfficacyGenomeFood habitsRiskGenesCarcinoma
2021
Genomics of Obsessive-Compulsive Disorder—Toward Personalized Medicine in the Era of Big Data
Szejko N, Dunalska A, Lombroso A, McGuire JF, Piacentini J. Genomics of Obsessive-Compulsive Disorder—Toward Personalized Medicine in the Era of Big Data. Frontiers In Pediatrics 2021, 9: 685660. PMID: 34746045, PMCID: PMC8564378, DOI: 10.3389/fped.2021.685660.Peer-Reviewed Original ResearchPsychiatric Genomics ConsortiumCommon disease-common variant hypothesisCommon variant hypothesisContext of genomicsGenetic codeGenetic association studiesMultiple genesAssociation studiesGenomics ConsortiumPolygenic risk scoresGenomicsGenetic contributionMendelian randomizationPolygenic disorderPersonalized medicineObsessive-compulsive disorderUK BiobankNew pathwayOCD pathogenesisAvailable databasesGenesDisease-specific databasesChina Kadoorie BiobankPathwayCo-existing pathologyStructural variants are a major source of gene expression differences in humans and often affect multiple nearby genes
Scott AJ, Chiang C, Hall IM. Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes. Genome Research 2021, 31: gr.275488.121. PMID: 34544830, PMCID: PMC8647827, DOI: 10.1101/gr.275488.121.Peer-Reviewed Original ResearchRare structural variantsGene expression differencesStructural variantsNearby genesExpression differencesGene expressionMultiple nearby genesIndividual structural variantsHuman genome diversityMobile element insertionsGene expression changesGene expression outliersCommon structural variantsCurrent annotationGenome diversityPhenotypic variationGTEx projectRegulatory elementsElement insertionsExpression outliersMultiple genesDifferent genesExpression changesMultitissue analysesGenesDirect characterization of cis-regulatory elements and functional dissection of complex genetic associations using HCR–FlowFISH
Reilly SK, Gosai SJ, Gutierrez A, Mackay-Smith A, Ulirsch JC, Kanai M, Mouri K, Berenzy D, Kales S, Butler GM, Gladden-Young A, Bhuiyan RM, Stitzel ML, Finucane HK, Sabeti PC, Tewhey R. Direct characterization of cis-regulatory elements and functional dissection of complex genetic associations using HCR–FlowFISH. Nature Genetics 2021, 53: 1166-1176. PMID: 34326544, PMCID: PMC8925018, DOI: 10.1038/s41588-021-00900-4.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingBayes TheoremClustered Regularly Interspaced Short Palindromic RepeatsDelta-5 Fatty Acid DesaturaseDeoxyribonuclease IFatty Acid DesaturasesFlow CytometryGATA1 Transcription FactorHumansIn Situ Hybridization, FluorescenceK562 CellsLIM Domain ProteinsModels, GeneticPolymorphism, Single NucleotideProto-Oncogene ProteinsQuantitative Trait LociRegulatory Sequences, Nucleic AcidRNA, Guide, CRISPR-Cas SystemsConceptsCis-regulatory elementsGenome-wide association signalsGenome functionEpigenetic mappingComplex genetic associationsFunctional dissectionNearest geneGenetic variationAssociation signalsNative transcriptsTarget genesCausal variantsMultiple genesEndogenous functionsReporter assaysGenesCre activitySitu hybridizationGenetic associationFlow cytometryLociTranscriptsHierarchical Bayesian modelReaction fluorescenceHybridizationMulti-ethnic genome-wide association analyses of white blood cell and platelet traits in the Population Architecture using Genomics and Epidemiology (PAGE) study
Hu Y, Bien S, Nishimura K, Haessler J, Hodonsky C, Baldassari A, Highland H, Wang Z, Preuss M, Sitlani C, Wojcik G, Tao R, Graff M, Huckins L, Sun Q, Chen M, Mousas A, Auer P, Lettre G, Tang W, Qi L, Thyagarajan B, Buyske S, Fornage M, Hindorff L, Li Y, Lin D, Reiner A, North K, Loos R, Raffield L, Peters U, Avery C, Kooperberg C. Multi-ethnic genome-wide association analyses of white blood cell and platelet traits in the Population Architecture using Genomics and Epidemiology (PAGE) study. BMC Genomics 2021, 22: 432. PMID: 34107879, PMCID: PMC8191001, DOI: 10.1186/s12864-021-07745-5.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesPlatelet traitsAfrican AmericansPopulation ArchitectureAssociation studiesAssociation analysisAncestry-specific genome-wide association studiesEuropean ancestryGenome-wide association analysisAttenuation of effect estimatesGenome-wide significant variantsVariant association analysisGenome-wide significanceRacially/ethnically diverse populationsPopulations of European ancestryGenetic association studiesAncestry-specificComplex traitsSignificant variantsHispanics/LatinosMultiple genesAncestry groupsEffect estimatesEA populationsEA participantsA simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes
Kroll F, Powell GT, Ghosh M, Gestri G, Antinucci P, Hearn TJ, Tunbak H, Lim S, Dennis HW, Fernandez JM, Whitmore D, Dreosti E, Wilson SW, Hoffman EJ, Rihel J. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. ELife 2021, 10: e59683. PMID: 33416493, PMCID: PMC7793621, DOI: 10.7554/elife.59683.Peer-Reviewed Original ResearchConceptsKnockout methodComplex mutant phenotypesLarge genetic screenRapid genetic screeningGenetic screenMutant phenotypeEffective CRISPRBiallelic knockoutMolecular rhythmsHuman genesInjected embryosCircadian clockLarval zebrafishBehavioral phenotypesMultiple genesComplex phenotypesCurrent CRISPRTriple knockoutAttractive modelGenesGenetic contributionZebrafishPhenotypeKnockoutCRISPR
2018
Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing
Zhang H, Pan H, Zhou C, Wei Y, Ying W, Li S, Wang G, Li C, Ren Y, Li G, Ding X, Sun Y, Li G, Song L, Li Y, Yang H, Liu Z. Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Development 2018, 145: dev168906. PMID: 30275281, DOI: 10.1242/dev.168906.Peer-Reviewed Original ResearchConceptsGene functionMultiple genesHair cell generationProtein-coding sequencesMulti-gene interactionsModel organismsFunctional genesZygotic mutationsGene crucialHigh-throughput screeningBase editingMouse mutantsStop codonSingle mutationGenesCRISPRCell generationGenetic mutationsMutationsMouse breedingNormal hearing functionDrosophilaMutantsBreedingCodonGenetic testing to modulate when to operate in thoracic aortic disease
Kostiuk V, Brownstein A, Ziganshin B, Elefteriades J. Genetic testing to modulate when to operate in thoracic aortic disease. Journal Of Visualized Surgery 2018, 4: 193-193. DOI: 10.21037/jovs.2018.07.14.Peer-Reviewed Original ResearchMolecular geneticsThoracic aortic aneurysmSurgical treatment optionsNon-syndromic thoracic aortic aneurysmsMolecular profilingSmooth muscle cell functionFamilial thoracic aortic aneurysmsMultiple genesSpecific genesMuscle cell functionTAA patientsTreatment optionsExtracellular matrixCell functionThoracic aortic diseaseGenesPositive family historyGeneticsProfilingTAA developmentAortic diseaseAortic aneurysmCurrent classificationDisease progressionFamily historyDe novo truncating variants in WHSC1 recapitulate the Wolf–Hirschhorn (4p16.3 microdeletion) syndrome phenotype
Derar N, Al-Hassnan Z, Al-Owain M, Monies D, Abouelhoda M, Meyer B, Moghrabi N, Alkuraya F. De novo truncating variants in WHSC1 recapitulate the Wolf–Hirschhorn (4p16.3 microdeletion) syndrome phenotype. Genetics In Medicine 2018, 21: 185-188. PMID: 29892088, DOI: 10.1038/s41436-018-0014-8.Peer-Reviewed Original ResearchConceptsDe novo truncating variantsHaploinsufficiency of multiple genesSingle-gene levelMicrodeletion syndromeDisease genesGenomic disordersExome sequencingMultiple genesSingle-geneWHSC1Syndrome phenotypeCore phenotypePhenotypePhenotypic expressionLociWolf-HirschhornGenesPhenotypic componentsMicrodeletionHaploinsufficiencyVariantsMilder variantsHemizygosityConclusionOur studySequenceGenetic testing for hereditary prostate cancer: Current status and limitations
Zhen JT, Syed J, Nguyen KA, Leapman MS, Agarwal N, Brierley K, Llor X, Hofstatter E, Shuch B. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer 2018, 124: 3105-3117. PMID: 29669169, DOI: 10.1002/cncr.31316.BooksConceptsCheckpoint kinase 2Protein C-terminal helicase 1MutL homolog 1Single gene alterationsBreast cancer gene 1Next-generation sequencingHelicase 1Multiple genesAtaxia telangiectasiaKinase 2Gene 1Single gene polymorphismsHomolog 1Strong hereditary componentPostmeiotic segregationHomeobox B13NibrinBRCA1/BRCA2Hereditary componentApproval of olaparibProspective analysis of somatic and germline genetic alterations in patients with ampullary carcinomas.
Wong W, O'Reilly E, Varghese A, Yu K, Iacobuzio-Donahue C, Shia J, Klimstra D, Allen P, Lowery M. Prospective analysis of somatic and germline genetic alterations in patients with ampullary carcinomas. Journal Of Clinical Oncology 2018, 36: 308-308. DOI: 10.1200/jco.2018.36.4_suppl.308.Peer-Reviewed Original ResearchSomatic genetic testingAmpullary carcinomaGermline alterationsSomatic alterationsMSK-IMPACTFamily history of cancerRare gastrointestinal cancerTargetable somatic alterationsGermline genetic alterationsHistory of cancerOpt-in strategyMedian ageClinicopathological featuresClinical historyGenetic alterationsFamily historySubgroup analysisGastrointestinal cancerMultiple genesGenetic testingProspective analysisScreening implicationsTreatment historyPatientsGenes
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply