2025
Highly stable planar asymmetric suspended membranes for investigating protein dynamics and membrane fusion
Bera M, Kalyana Sundaram R, Coleman J, Chatterjee A, Thoduvayil S, Pincet F, Ramakrishnan S. Highly stable planar asymmetric suspended membranes for investigating protein dynamics and membrane fusion. Nature Protocols 2025, 1-25. PMID: 40461798, DOI: 10.1038/s41596-025-01192-2.Peer-Reviewed Original ResearchMembrane fusionSingle-vesicle fusion assayMembrane fusion eventsProtein dynamics analysisMembrane fusion mechanismFluorescently labeled proteinsProtein-lipid interactionsSNARE proteinsTotal internal reflection fluorescenceFusion eventsMolecular chaperonesInvestigate protein dynamicsTime-lapse imagingCellular signalingLipid asymmetryFusion assayBiological processesLipid membranesProtein dynamicsMembrane model systemsLiving cellsMembrane environmentNear-native environmentMolecular componentsReflection fluorescenceBiallelic variants in the conserved ribosomal protein chaperone gene PDCD2 are associated with hydrops fetalis and early pregnancy loss
Landry-Voyer A, Holling T, Mis E, Hassani Z, Alawi M, Ji W, Jeffries L, Kutsche K, Bachand F, Lakhani S. Biallelic variants in the conserved ribosomal protein chaperone gene PDCD2 are associated with hydrops fetalis and early pregnancy loss. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2426078122. PMID: 40208938, PMCID: PMC12012559, DOI: 10.1073/pnas.2426078122.Peer-Reviewed Original ResearchConceptsRibosomal RNA processingRNA processingNonimmune hydrops fetalisRibosomal biogenesis disordersNext generation sequencingRibosome biogenesisPregnancy lossPatient variantsMolecular chaperonesExome sequencingGeneration sequencingPDCD2Biallelic variantsGenetic variantsHydrops fetalisIndependent familiesIn vivo approachesAffected fetusMolecular causesPrimary fibroblastsDevelopmental defectsMonogenic disordersAssociated with hydrops fetalisUS5Early pregnancy lossInfection-relevant conditions dictate differential versus coordinate expression of Salmonella chaperones and cochaperones
Chan C, Mukai K, Groisman E. Infection-relevant conditions dictate differential versus coordinate expression of Salmonella chaperones and cochaperones. MBio 2025, 16: e00227-25. PMID: 40162747, PMCID: PMC12077118, DOI: 10.1128/mbio.00227-25.Peer-Reviewed Original ResearchConceptsInfection-relevant conditionsJ-domainProtein homeostasisChaperone DnaKCytoplasmic MgMolecular chaperonesNucleotide exchange factor GrpEChaperone trigger factorSigma factor RpoHProteins co-translationallyExpression of molecular chaperonesPreventing protein aggregationIncreased mRNA amountsPerturb protein homeostasisMRNA amountsCochaperone DnaJRpoH proteinCo-translationallyPost-translationallyCochaperoneExpressed genesFolded proteinsDnaKCoordinated expressionChaperoneDSP-1, the major fibronectin type-II protein of donkey seminal plasma is a small heat-shock protein and exhibits chaperone-like activity against thermal and oxidative stress
Alim S, Cheppali S, Pawar S, Swamy M. DSP-1, the major fibronectin type-II protein of donkey seminal plasma is a small heat-shock protein and exhibits chaperone-like activity against thermal and oxidative stress. Biochimica Et Biophysica Acta (BBA) - Proteins And Proteomics 2025, 1873: 141064. PMID: 39956303, DOI: 10.1016/j.bbapap.2025.141064.Peer-Reviewed Original ResearchConceptsChaperone-like activitySeminal plasmaFibronectin type IITetramer to monomersSperm capacitationSurface hydrophobicityMolecular chaperonesClient proteinsHeat shock proteinsBiophysical studiesAlcohol dehydrogenaseOxidative stressPhysiological ligandsShock proteinsProteinHead group moietySHspsBinding of phosphorylcholineCholine phospholipidsBindingFibronectinDehydrogenaseChaperoneSpermMammals
2021
Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration
Nakamura T, Oh C, Zhang X, Lipton S. Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radical Biology And Medicine 2021, 172: 562-577. PMID: 34224817, PMCID: PMC8579830, DOI: 10.1016/j.freeradbiomed.2021.07.002.Peer-Reviewed Original ResearchConceptsProtein misfoldingUbiquitin-proteasome systemCellular protein quality control machineryReactive oxygen speciesS-nitrosylationProtein quality control machineryQuality control machineryPost-translational modificationsNeurodegenerative diseasesProtein S-nitrosylationGenetic mutationsMost neurodegenerative diseasesMolecular chaperonesROS/RNSControl machineryLysosomal pathwayRare genetic mutationsMolecular mechanismsMolecular eventsMisfoldingMitochondrial dysfunctionTyrosine nitrationProteinOxygen speciesNeuronal demise
2017
Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks
Bing X, Attardo GM, Vigneron A, Aksoy E, Scolari F, Malacrida A, Weiss BL, Aksoy S. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proceedings Of The Royal Society B 2017, 284: 20170360. PMID: 28659447, PMCID: PMC5489720, DOI: 10.1098/rspb.2017.0360.Peer-Reviewed Original ResearchConceptsPeptidoglycan recognition proteinsAfrican trypanosome parasitesTsetse fliesAmino acid metabolismWigglesworthia glossinidiaMultiple metabolic pathwaysObligate endosymbiontsMolecular chaperonesTransport machineryVertebrate bloodMetabolomic landscapeRecognition proteinsSeq analysisSymbiotic dialogueNucleotide biosynthesisAdenosyl methionineBiological functionsSpecialized cellsTsetse survivalTrypanosome parasitesEssential cofactorMetabolic pathwaysNew biological targetsAcid metabolismPhysiological networksChapter 27 Aberrant Nitric Oxide Signaling Contributes to Protein Misfolding in Neurodegenerative Diseases via S-Nitrosylation and Tyrosine Nitration
Nakamura T, Lipton S. Chapter 27 Aberrant Nitric Oxide Signaling Contributes to Protein Misfolding in Neurodegenerative Diseases via S-Nitrosylation and Tyrosine Nitration. 2017, 373-384. DOI: 10.1016/b978-0-12-804273-1.00027-2.Peer-Reviewed Original ResearchReactive oxygen speciesS-nitrosylationProtein misfoldingProtein quality control machineryQuality control machineryAberrant S-nitrosylationUbiquitin-proteasome systemCysteine thiol groupsNeurodegenerative diseasesMolecular chaperonesMisfolded proteinsControl machineryMolecular mechanismsMitochondrial impairmentTyrosine nitrationPathological productionProteinMisfoldingSignaling contributesKey pathological featureOxygen speciesNeuronal demiseNitrogen speciesNitrosative stressGenetic risk factors
2015
Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation
Malinovska L, Palm S, Gibson K, Verbavatz J, Alberti S. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: e2620-e2629. PMID: 25941378, PMCID: PMC4443358, DOI: 10.1073/pnas.1504459112.Peer-Reviewed Original ResearchMeSH KeywordsDictyosteliumElectrophoresis, Polyacrylamide GelFluorescence Recovery After PhotobleachingHumansHuntingtin ProteinMicroscopy, ElectronMicroscopy, FluorescenceNerve Tissue ProteinsPeptide Termination FactorsPrionsProtein Aggregation, PathologicalProteomeProteostasis DeficienciesSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsConceptsPrion-like proteinsD. discoideumMolecular chaperonesDictyostelium discoideumHuntingtin exon 1Yeast prion protein Sup35Prion-like domainsOverall aggregation propensityProtein-misfolding diseasesUbiquitin-proteasome systemPrion protein Sup35Rich proteomeHsp100 familyCellular proteostasisPrion stateCytosolic aggregatesSequence similarityPrion domainBioinformatics toolsProtein aggregationProteostatic capacityDiscoideumAggregation propensityProteomePrion protein
2014
Plant immunophilins: a review of their structure-function relationship
Vasudevan D, Gopalan G, Kumar A, Garcia V, Luan S, Swaminathan K. Plant immunophilins: a review of their structure-function relationship. Biochimica Et Biophysica Acta 2014, 1850: 2145-2158. PMID: 25529299, DOI: 10.1016/j.bbagen.2014.12.017.Peer-Reviewed Original ResearchConceptsPlant immunophilinsPlant biologyProtein foldingRegulation of photosynthesisLittle sequence homologyCell Signaling CatalystsPeptidyl-prolyl isomeraseProtein folding processLittle structural informationStructure-function relationshipsPhotosynthetic organellesMolecular chaperonesFunctional diversityProlyl isomeraseThylakoid lumenSubcellular localizationSequence homologyCYP familiesImmunophilinsPlant systemsDrug targetsFolding processMajor groupsNew functionsFKBP
2012
3.10 Chaperones and Protein Folding
Horwich A, Buchner J, Smock R, Gierasch L, Saibil H. 3.10 Chaperones and Protein Folding. 2012, 212-237. DOI: 10.1016/b978-0-12-374920-8.00313-1.Peer-Reviewed Original ResearchSubstrate proteinsMolecular chaperonesSolvent-exposed hydrophobic surfaceSmall heat shock proteinsChaperone-bound proteinsProtein binding domainsNon-native conformationsNon-native statesHeat shock proteinsBinding of ATPSpecialized proteinsProtein foldingChaperonesBinding domainsOligomeric assembliesBiophysical methodsShock proteinsConformational changesPolypeptide chainStress conditionsNative stateProteinCurrent understandingFoldingMultimolecular aggregates
2010
Dealing with Misfolded Proteins: Examining the Neuroprotective Role of Molecular Chaperones in Neurodegeneration
Ali YO, Kitay BM, Zhai RG. Dealing with Misfolded Proteins: Examining the Neuroprotective Role of Molecular Chaperones in Neurodegeneration. Molecules 2010, 15: 6859-6887. PMID: 20938400, PMCID: PMC3133442, DOI: 10.3390/molecules15106859.Peer-Reviewed Original ResearchConceptsMolecular chaperonesMisfolded proteinsNormal protein homeostasisRepair of proteinsProtein-protein interactionsHuman neurodegenerative diseasesNeurodegenerative diseasesNascent proteinsProtein homeostasisNetwork of moleculesCellular functionsConformational diseasesProteolytic machineryProtein speciesCellular stressChaperonesClearance of proteinsNormal proteinProteinFunctional classificationSuch diseasesFoldingEnvironmental factorsWide arrayTherapeutic potential
2007
Molecular mechanisms of nitrosative stress-mediated protein misfolding in neurodegenerative diseases
Nakamura T, Lipton S. Molecular mechanisms of nitrosative stress-mediated protein misfolding in neurodegenerative diseases. Cellular And Molecular Life Sciences 2007, 64: 1609-1620. PMID: 17453143, PMCID: PMC11136414, DOI: 10.1007/s00018-007-6525-0.Peer-Reviewed Original ResearchConceptsUbiquitin-proteasome systemNormal protein degradationProtein disulfide isomeraseMolecular chaperonesSpecific chaperonesGlucose-regulated protein 78Proper foldingProtein misfoldingAberrant proteinsProtein foldingUPS proteinsProtein degradationMolecular mechanismsShock proteinsConformational changesExcessive reactive oxygenCell deathNeuronal cell deathProteinChaperonesProtein 78Reactive oxygenMisfoldingNitrogen speciesNitrosative stress
2006
Molecular Chaperones and Quality Control in Noncoding RNA Biogenesis
WOLIN S, WURTMANN E. Molecular Chaperones and Quality Control in Noncoding RNA Biogenesis. Cold Spring Harbor Symposia On Quantitative Biology 2006, 71: 505-511. PMID: 17381333, DOI: 10.1101/sqb.2006.71.051.Peer-Reviewed Original ResearchConceptsRNA quality controlNoncoding RNAsMolecular chaperonesSm-like protein HfqQuality control pathwaysRNA biogenesisProtein HfqCorrect foldingEfficient foldingAnimal cellsExonucleolytic degradationLikely functionsLa proteinControl pathwaysQuality control systemRo proteinRNACertain bacteriaProteinChaperonesCritical roleFoldingFunctional structureBacteriaQuality control
2005
HSP70 binding modulates detachment of Na-K-ATPase following energy deprivation in renal epithelial cells
Riordan M, Sreedharan R, Wang S, Thulin G, Mann A, Stankewich M, Van Why S, Kashgarian M, Siegel NJ. HSP70 binding modulates detachment of Na-K-ATPase following energy deprivation in renal epithelial cells. American Journal Of Physiology. Renal Physiology 2005, 288: f1236-f1242. PMID: 15701813, DOI: 10.1152/ajprenal.00438.2004.Peer-Reviewed Original ResearchConceptsRenal epithelial cellsATP depletionMolecular chaperone Hsp70Binding of Hsp70Na-K-ATPaseFundamental cellular mechanismsRenal epithelial polarityCultured renal epithelial cellsEpithelial cellsHeat shock protein 70Protein clathrinEpithelial polarityMolecular chaperonesOverexpression of HSP70Chaperone Hsp70Shock protein 70Energy deprivationLLC-PK1 cellsStress proteinsMolecular mechanismsHSP bindingHSP70Cell lysatesCellular mechanismsATP turnover
1998
A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts
Pannone B, Xue D, Wolin S. A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. The EMBO Journal 1998, 17: 7442-7453. PMID: 9857199, PMCID: PMC1171088, DOI: 10.1093/emboj/17.24.7442.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAutoantigensFungal ProteinsGene DosageMolecular ChaperonesMolecular Sequence DataMutationN-Terminal Acetyltransferase CRibonucleoprotein, U4-U6 Small NuclearRibonucleoproteinsRibonucleoproteins, Small NuclearRNA Polymerase IIIRNA PrecursorsRNA-Binding ProteinsRNA, FungalRNA, MessengerSaccharomyces cerevisiae ProteinsSequence Homology, Amino AcidsnRNP Core ProteinsConceptsU6 snRNP assemblyPolymerase III transcriptsRNA polymerase III transcriptsSnRNP assemblyU6 snRNPLa proteinMolecular chaperonesYeast La proteinSm-like proteinsCore Sm proteinsFamily of proteinsSm proteinsU5 snRNPsU6 RNALhp1pFirst proteinPolymerase IIILa autoantigenNovel componentYeast cellsSnRNPEarly stepsLsm8pProteinTranscriptsDynamic activation of endothelial nitric oxide synthase by Hsp90
García-Cardeña G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa W. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 1998, 392: 821-824. PMID: 9580552, DOI: 10.1038/33934.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibiotics, AntineoplasticAortaBenzoquinonesCattleCell LineCOS CellsEndothelial Growth FactorsEndothelium, VascularEnzyme ActivationHistamineHSP90 Heat-Shock ProteinsHumansLactams, MacrocyclicLymphokinesMuscle RelaxationNitric OxideNitric Oxide SynthasePrecipitin TestsQuinonesRatsSignal TransductionStress, MechanicalTransfectionVascular Endothelial Growth Factor AVascular Endothelial Growth FactorsConceptsActivation of eNOSCellular targetsHeat shock protein 90Binding of HSP90Specific cellular targetsEndothelial nitric oxide synthaseMolecular chaperonesHsp90 associatesSignaling proteinsProtein foldingProtein 90Mechanotransduction pathwaysENOS complexG proteinsFluid shear stressHsp90Activation statePrecise roleGrowth factorDynamic activationVascular endothelial growth factorSynthaseNitric oxide synthaseEndothelial growth factorActivationChaperone Action in Folding Newly-Translated Cytosolic Proteins in Bacteria and Eukaryotes
Horwich A. Chaperone Action in Folding Newly-Translated Cytosolic Proteins in Bacteria and Eukaryotes. NATO ASI Series 1998, 41-63. DOI: 10.1007/978-3-642-51463-0_4.Peer-Reviewed Original ResearchNon-native conformationsNative statePrimary amino acid sequenceAmino acid sequenceNon-native statesSubstrate proteinsChaperone functionMolecular chaperonesBiogenesis stepsChaperone actionSpecialized proteinsCofactor bindingProtein foldingAction of nucleotidesPathway stepsMutational alterationsCytosolic proteinsAcid sequenceChaperonesSteric informationFolding processSuch hydrophobic interactionsProteinNative formEssential nature
1997
Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin FUNCTIONAL SIGNIFICANCE OF THE NOS CAVEOLIN BINDING DOMAININ VIVO *
Garcı́a-Cardeña G, Martasek P, Masters B, Skidd P, Couet J, Li S, Lisanti M, Sessa W. Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin FUNCTIONAL SIGNIFICANCE OF THE NOS CAVEOLIN BINDING DOMAININ VIVO *. Journal Of Biological Chemistry 1997, 272: 25437-25440. PMID: 9325253, DOI: 10.1074/jbc.272.41.25437.Peer-Reviewed Original ResearchConceptsCaveolin-1Peripheral membrane proteinsInteraction of eNOSC-terminal tailAmino acids 310Direct interactionCo-transfection experimentsSite-directed mutagenesisNovel functional roleEndothelial nitric oxide synthaseMolecular chaperonesCytoplasmic domainCaveolin isoformsDeletion mutantsMammalian cellsEndothelial cell lysatesGlutathione S-transferaseMembrane proteinsCaveolin-2Coat proteinNegative regulationCaveolin-3Endothelial cellsDirect bindingGolgi region
1994
Heat shock proteins and molecular chaperones: Mediators of protein conformation and turnover in the cell
Craig E, Weissman J, Horwich A. Heat shock proteins and molecular chaperones: Mediators of protein conformation and turnover in the cell. Cell 1994, 78: 365-372. PMID: 7914834, DOI: 10.1016/0092-8674(94)90416-2.Peer-Reviewed Original Research
1993
Folding and Assembly of Viral Membrane Proteins
Doms R, Lamb R, Rose J, Helenius A. Folding and Assembly of Viral Membrane Proteins. Virology 1993, 193: 545-562. PMID: 8460475, DOI: 10.1006/viro.1993.1164.Peer-Reviewed Original ResearchConceptsViral membrane proteinsQuality control mechanismsMolecular chaperonesGRP78-BiPMembrane proteinsER molecular chaperonesEffects of mutationsMisfolded proteinsProtein transportConformational maturationMisfolded moleculesProtein foldingEnergy-driven processChaperonesProtein structureMolecular mechanismsER environmentGRP78 synthesisExogenous proteinsNascent moleculesProteinDirect roleStructural variabilityControl mechanismsExperimental strategies
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply