2025
Vimentin filament transport and organization revealed by single-particle tracking and 3D FIB-SEM
Renganathan B, Moore A, Yeo W, Petruncio A, Ackerman D, Weigel A, Team T, Pasolli H, Xu C, Shtengel G, Hess H, Serpinskaya A, Zhang H, Lippincott-Schwartz J, Gelfand V. Vimentin filament transport and organization revealed by single-particle tracking and 3D FIB-SEM. Journal Of Cell Biology 2025, 224: e202406054. PMID: 40062969, PMCID: PMC11893169, DOI: 10.1083/jcb.202406054.Peer-Reviewed Original Research
2024
Unveiling the secrets of vimentin filament architecture relevant to human disease
Lomakin I, Ho M, Bunick C. Unveiling the secrets of vimentin filament architecture relevant to human disease. Nature Structural & Molecular Biology 2024, 31: 849-851. PMID: 38684931, PMCID: PMC11955283, DOI: 10.1038/s41594-024-01301-x.Peer-Reviewed Original Research
2021
Keratin 1 as a cell-surface receptor in cancer
Ogunnigbagbe O, Bunick CG, Kaur K. Keratin 1 as a cell-surface receptor in cancer. Biochimica Et Biophysica Acta (BBA) - Reviews On Cancer 2021, 1877: 188664. PMID: 34890750, PMCID: PMC8818032, DOI: 10.1016/j.bbcan.2021.188664.Peer-Reviewed Original ResearchConceptsImportant cellular functionsGlycine-rich loopType II keratinsCell surface receptorsReceptor-mediated endocytosisKeratin 1Cell surface expressionCellular functionsC-terminusCentral domainEpithelial cell markersCancer progressionIntermediate filamentsFibrous proteinsCancer cellsK1 expressionOxidative stressCancerous cellsCell markersImmune evasionCellsExpressionKeratinCsk1Endocytosis
2020
Pulling the springs of a cell by single-molecule force spectroscopy
Mukherjee C, Bera M, Ainavarapu S, Sengupta K. Pulling the springs of a cell by single-molecule force spectroscopy. Emerging Topics In Life Sciences 2020, 5: 77-87. PMID: 33284963, DOI: 10.1042/etls20200254.Peer-Reviewed Original ResearchConceptsSingle-molecule force spectroscopyFilamentous proteinsForce spectroscopyExtracellular matrix proteinsNucleoskeletal proteinsTraction forceMatrix proteinsNecessary anchorageProteinIntermediate filamentsWhole cellsCurrent understandingTissue repairFundamental unitCellsBiochemical changesFibrillar networkMechanotransductionMicrotubulesMicrofilamentsECMFilamentsRegenerationNucleusRecent insight into intermediate filament structure
Eldirany SA, Lomakin IB, Ho M, Bunick CG. Recent insight into intermediate filament structure. Current Opinion In Cell Biology 2020, 68: 132-143. PMID: 33190098, PMCID: PMC7925366, DOI: 10.1016/j.ceb.2020.10.001.Peer-Reviewed Original ResearchConceptsIntermediate filamentsAssembly mechanismVariable N-terminalMultiple cellular processesCentral rod domainIntermediate filament structureCoil 1BCellular processesStudy of keratinsTail domainFilament assemblyRod domainC-terminalN-terminalElectrostatic surfacePathologic mutationsKey playersFilament structureRecent insightsComplex formationProteinHuman tissuesGlial fibrillary acidic proteinAcidic proteinDomain
2019
Human keratin 1/10‐1B tetramer structures reveal a knob‐pocket mechanism in intermediate filament assembly
Eldirany SA, Ho M, Hinbest AJ, Lomakin IB, Bunick CG. Human keratin 1/10‐1B tetramer structures reveal a knob‐pocket mechanism in intermediate filament assembly. The EMBO Journal 2019, 38: embj2018100741. PMID: 31036554, PMCID: PMC6545558, DOI: 10.15252/embj.2018100741.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SubstitutionCircular DichroismCrystallography, X-RayCytoskeletonDynamic Light ScatteringHumansHydrophobic and Hydrophilic InteractionsIntermediate Filament ProteinsKeratin-1Keratin-10Models, MolecularMutation, MissenseProtein FoldingProtein Interaction Domains and MotifsProtein MultimerizationProtein Structure, QuaternaryProtein Structure, SecondarySkin DiseasesConceptsFilament assemblyN-terminal hydrophobic pocketIntermediate filament assemblyTetramer assemblyÅ structureÅ resolutionCircular dichroism measurementsTetramer formationAssembly mechanismHydrophobic faceHydrophobic pocketSecondary structureOctamer structureEpidermolytic palmoplantar keratodermaKeratin filamentsIntermediate filamentsMutationsPathogenic mutationsTetramer structureDichroism measurementsAtomic resolutionAssemblyBiochemical determinantsKeratin 1/10TetramerRudhira/BCAS3 couples microtubules and intermediate filaments to promote cell migration for angiogenic remodeling
Joshi D, Inamdar M. Rudhira/BCAS3 couples microtubules and intermediate filaments to promote cell migration for angiogenic remodeling. Molecular Biology Of The Cell 2019, 30: 1437-1450. PMID: 30995157, PMCID: PMC6724693, DOI: 10.1091/mbc.e18-08-0484.Peer-Reviewed Original ResearchConceptsCell migrationCytoskeleton organizationMT stabilityIntermediate filamentsEC migrationCytoskeletal protein essentialMT-IFVimentin intermediate filamentsFocal adhesionsEndothelial cell migrationMouse developmentProtein essentialRudhiraAssign functionCytoskeleton modulationDynamic remodelingBlood vessel formationAngiogenic sproutingSprouting angiogenesisAngiogenic remodelingMicrotubulesEssential roleVessel formationSequence 3Migration
2017
Plakoglobin localization to the cell border restores desmosome function in cells lacking 14-3-3γ
Vishal S, Tilwani S, Dalal S. Plakoglobin localization to the cell border restores desmosome function in cells lacking 14-3-3γ. Biochemical And Biophysical Research Communications 2017, 495: 1998-2003. PMID: 29253567, DOI: 10.1016/j.bbrc.2017.12.080.Peer-Reviewed Original Research
2012
Spectraplakins: Master orchestrators of cytoskeletal dynamics
Suozzi KC, Wu X, Fuchs E. Spectraplakins: Master orchestrators of cytoskeletal dynamics. Journal Of Cell Biology 2012, 197: 465-475. PMID: 22584905, PMCID: PMC3352950, DOI: 10.1083/jcb.201112034.Peer-Reviewed Original ResearchConceptsCytoskeletal networkFundamental cellular processesDifferent cytoskeletal networksMaster orchestratorCytoskeletal dynamicsCellular processesCell divisionSplice formsMultiple promotersDistinct functionsSpectraplakinsF-actinCell migrationIntermediate filamentsVast arrayRecent studiesEvidence pointsCytoskeletalCytoskeletonExonsGenesPromoterSpectrinMicrotubulesFilaments
2011
Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis
Sumigray KD, Chen H, Lechler T. Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis. Journal Of Cell Biology 2011, 194: 631-642. PMID: 21844209, PMCID: PMC3160577, DOI: 10.1083/jcb.201104009.Peer-Reviewed Original ResearchMeSH Keywords1-Alkyl-2-acetylglycerophosphocholine Esterasealpha CateninAnimalsCarrier ProteinsCell DifferentiationCell ProliferationCells, CulturedDesmoplakinsDesmosomesEpidermisFluorescent Antibody TechniqueKeratinocytesMiceMice, KnockoutMicrotubule-Associated ProteinsMicrotubulesPermeabilityProtein TransportRecombinant Fusion ProteinsTransfectionConceptsDesmosomal protein desmoplakinCortical microtubule organizationCentrosomal proteinsMicrotubule organizationCell cortexMicrotubule reorganizationCell-cell adhesion structuresPenetrant perinatal lethalityDramatic defectsDesmosome stabilityCytoskeletal networkAdhesion structuresPerinatal lethalityUnexpected roleSingle isoformDesmosomal componentsBarrier activityCell typesDesmosomal proteinsEpidermal differentiationKeratin filamentsIntermediate filamentsProteinLIS1Specific subset
2002
Intermediate filament–membrane attachments function synergistically with actin-dependent contacts to regulate intercellular adhesive strength
Huen A, Park J, Godsel L, Chen X, Bannon L, Amargo E, Hudson T, Mongiu A, Leigh I, Kelsell D, Gumbiner B, Green K. Intermediate filament–membrane attachments function synergistically with actin-dependent contacts to regulate intercellular adhesive strength. Journal Of Cell Biology 2002, 159: 1005-1017. PMID: 12499357, PMCID: PMC2173978, DOI: 10.1083/jcb.200206098.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsBiotinylationCadherinsCell AdhesionCell LineCell MembraneCytoskeletal ProteinsCytoskeletonDesmogleinsDesmoplakinsDesmosomesDetergentsDNA, ComplementaryGreen Fluorescent ProteinsHumansIntermediate FilamentsKeratinocytesKeratoderma, PalmoplantarL-Lactate DehydrogenaseLuminescent ProteinsMicroscopy, FluorescenceProtein BindingProtein Structure, TertiaryTime FactorsTransfectionTumor Cells, CulturedConceptsMembrane attachmentAdherens junctionsIntermediate filamentsIntercellular adhesive strengthCell surface distributionDetergent-insoluble poolIF cytoskeletonPlasma membraneIntercellular adhesionLatrunculin AActin filamentsJunctional plaquesA431 cellsTerminal truncationDesmosomal proteinsCell aggregatesTissue integrityWeakly adherentLactate dehydrogenase releaseReduced adhesionFacilitate formationCell sheetsNormal keratinocytesSpecific decreaseDehydrogenase releaseDeciduoid Mesothelioma: A Report of 5 Cases and Literature Review
Shia J, Erlandson R, Klimstra D. Deciduoid Mesothelioma: A Report of 5 Cases and Literature Review. Ultrastructural Pathology 2002, 26: 355-363. PMID: 12537760, DOI: 10.1080/0913120290104647.Peer-Reviewed Original ResearchConceptsCases of deciduoid mesotheliomaDeciduoid mesotheliomaPathological featuresHistory of asbestos exposureMonths to 5 yearsFollow-up timeFemale predominanceClinical findingsMorphologic spectrumMesotheliomaHistological appearanceSurvival timeAsbestos exposurePatientsYoung femalesAge rangePeritoneumDocumented historyMonthsUltrastructural basisIntermediate filamentsCytoplasmic intermediate filamentsReportsLiterature reportsPleura
2001
Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia
Ameen N, Figueroa Y, Salas P. Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia. Journal Of Cell Science 2001, 114: 563-575. PMID: 11171325, DOI: 10.1242/jcs.114.3.563.Peer-Reviewed Original ResearchConceptsIntermediate filamentsPolarized epithelial cellsApical membrane proteinsEpithelial cellsSyntaxin 3Apical domainFemale sterilityMembrane proteinsApical markerNovel functionGamma-tubulinNovel roleApical poleSimple epitheliaCell typesColorectal hyperplasiaCK intermediate filamentsNull micePhenotypeBasolateral levelsNecrotic cellsMembrane phenotypeCellsFilamentsCytoplasm of enterocytes
1986
Growth of non-pigmented ciliary epithelial cells in serum-free hormone-supplemented media
Coca-Prados M, Chatt G. Growth of non-pigmented ciliary epithelial cells in serum-free hormone-supplemented media. Experimental Eye Research 1986, 43: 617-629. PMID: 3792464, DOI: 10.1016/s0014-4835(86)80028-8.Peer-Reviewed Original ResearchConceptsNPE cellsClathrin-coated vesiclesCiliary epithelial cellsNerve growth factorEpithelial cellsNon-pigmented ciliary epithelial cellsCellular polarityGrowth factorCellular junctionsPrimary culturesCoated pitsArtificial substratesTransport activityCulture mediumMicrofilament bundlesCell growthSerum-free hormone-supplemented mediumJunctional complexesIntermediate filamentsCell proliferationAdjacent cellsCellsSerum-free culture medium
1984
Human ciliary epithelia in monolayer culture
Kondo K, Coca-Prados M, Sears M. Human ciliary epithelia in monolayer culture. Experimental Eye Research 1984, 38: 423-433. PMID: 6373335, DOI: 10.1016/0014-4835(84)90197-0.Peer-Reviewed Original Research
1981
Different polypeptides form the intermediate filaments in bovine hoof and esophageal epithelium and in aortic endothelium.
Milstone L, McGuire J. Different polypeptides form the intermediate filaments in bovine hoof and esophageal epithelium and in aortic endothelium. Journal Of Cell Biology 1981, 88: 312-316. PMID: 7193680, PMCID: PMC2111748, DOI: 10.1083/jcb.88.2.312.Peer-Reviewed Original ResearchConceptsAmino acid sequence homologyFilament-forming proteinsPeptide mapsLimited proteolytic digestionSDS-polyacrylamide gelsDifferent bovine tissuesSequence homologyDifferent polypeptidesEndothelial cellsCultured endothelial cellsPolypeptideIntermediate filamentsProteolytic digestionPolyacrylamide gelsBovine tissuesFilamentsCellsFragmentsHomologyEpitheliumProteinBovine hoofAortic endotheliumEsophageal epitheliumViable portion
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply