2025
Dietary oleic acid drives obesogenic adipogenesis via modulation of LXRα signaling
Wing A, Jeffery E, Church C, Goodell J, Saavedra-Peña R, Saha M, Holtrup B, Voisin M, Alavi N, Floody M, Wang Z, Zapadka T, Garabedian M, Varshney R, Rudolph M, Rodeheffer M. Dietary oleic acid drives obesogenic adipogenesis via modulation of LXRα signaling. Cell Reports 2025, 44: 115527. PMID: 40208790, PMCID: PMC12073628, DOI: 10.1016/j.celrep.2025.115527.Peer-Reviewed Original ResearchAdipocyte precursor cellsDietary fatPlasma monounsaturated fatty acidsAssociated with human obesityHuman adipocyte precursor cellsMonounsaturated fatty acidsDietary fat compositionDietary screeningFatty acidsDietary fatty acidsHuman obesityAdipose expansionMetabolic healthObesity epidemicAkt2 signalingLXR activationPrecursor cellsAdipose biologyOleic acidHyperplasiaObesityAdipocyte hyperplasiaDietary oleic acidPhysiological regulationAdipogenesis
2017
Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1
Rathjen T, Yan X, Kononenko NL, Ku MC, Song K, Ferrarese L, Tarallo V, Puchkov D, Kochlamazashvili G, Brachs S, Varela L, Szigeti-Buck K, Yi CX, Schriever SC, Tattikota SG, Carlo AS, Moroni M, Siemens J, Heuser A, van der Weyden L, Birkenfeld AL, Niendorf T, Poulet JFA, Horvath TL, Tschöp MH, Heinig M, Trajkovski M, Haucke V, Poy MN. Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nature Neuroscience 2017, 20: 1096-1103. PMID: 28628102, PMCID: PMC5533218, DOI: 10.1038/nn.4590.Peer-Reviewed Original Research
2012
The G protein regulator AGS-3 allows C. elegans to alter behaviors in response to food deprivation
Hofler C, Koelle MR. The G protein regulator AGS-3 allows C. elegans to alter behaviors in response to food deprivation. Worm 2012, 1: 56-60. PMID: 24058824, PMCID: PMC3670173, DOI: 10.4161/worm.19042.Peer-Reviewed Original ResearchC. elegansAGS-3Genetic model organismRIC-8Model organismsMolecular mechanismsElegansG proteinsBehavioral responsesFood deprivationO familyGαoProteinNervous system functionBiochemical changesNeural responsesBrain actRecent studiesFood-seeking behaviorHuman obesityFood restrictionOrganismsSpeciesDeprivationObesity
1985
Cellular mechanisms in selected states of insulin resistance: Human obesity, glucocorticoid excess, and chronic renal failure
Amatruda J, Livingston J, Lockwood D. Cellular mechanisms in selected states of insulin resistance: Human obesity, glucocorticoid excess, and chronic renal failure. Diabetes/Metabolism Research And Reviews 1985, 1: 293-317. PMID: 3915256, DOI: 10.1002/dmr.5610010304.Peer-Reviewed Original Research
1979
The Influence of Obesity and Diabetes in the Monkey on Insulin and Glucagon Binding to Liver Membranes*
LOCKWOOD D, HAMILTON C, LIVINGSTON J. The Influence of Obesity and Diabetes in the Monkey on Insulin and Glucagon Binding to Liver Membranes*. Endocrinology 1979, 104: 76-81. PMID: 221171, DOI: 10.1210/endo-104-1-76.Peer-Reviewed Original ResearchConceptsGroup of obese animalsObese animalsInsulin resistanceFasting plasma insulin concentrationInsulin bindingInfluence of obesityGlucagon bindingPlasma glucagon levelsHormone resistanceHypothalamic obesityImpairment of insulin bindingCarbohydrate intoleranceSpontaneous obesityHepatic insulin receptorsDiminished insulinPlasma insulin concentrationsHuman obesityNonketotic diabetesSignificant inverse relationshipObesityPrimate modelGlucagon levelsRhesus monkeysPlasma glucagonDiabetes
1975
Insulin Receptor: Role in the Resistance of Human Obesity to Insulin
Amatruda J, Livingston J, Lockwood D. Insulin Receptor: Role in the Resistance of Human Obesity to Insulin. Science 1975, 188: 264-266. PMID: 164059, DOI: 10.1126/science.164059.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply