2025
Physiologic mechanisms underlying polycystic kidney disease
Boletta A, Caplan M. Physiologic mechanisms underlying polycystic kidney disease. Physiological Reviews 2025, 105: 1553-1607. PMID: 39938884, PMCID: PMC12174308, DOI: 10.1152/physrev.00018.2024.Peer-Reviewed Original ResearchPrimary ciliaPolycystic kidney diseaseTrafficking of proteinsHuman ciliopathiesExtracellular signalsMultiple genesKidney diseaseProtein productionMolecular basisCell biologyMonogenic disordersCyst formationGenesRenal epithelial cellsProteinCiliaBiochemical informationApical surfaceEpithelial cellsFunctional expressionPhysiological propertiesWealth of informationPhysiological mechanismsCellsFibrocystin
2023
Structure and molecular mechanism of bacterial transcription activation
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends In Microbiology 2023, 32: 379-397. PMID: 37903670, DOI: 10.1016/j.tim.2023.10.001.Peer-Reviewed Original ResearchTranscription activation mechanismTranscription activation complexTranscription activationGene expressionActivation mechanismRecent structural studiesSignal transduction processesTranscription activatorExtracellular signalsTAC componentsActivation complexMechanistic diversityMolecular mechanismsTransduction processesDifferent intracellularImportant checkpointStructural studiesStructural featuresActivationExpressionMechanismCheckpointDiversitySystematic classificationActivator7SK methylation by METTL3 promotes transcriptional activity
Perez-Pepe M, Desotell A, Li H, Li W, Han B, Lin Q, Klein D, Liu Y, Goodarzi H, Alarcón C. 7SK methylation by METTL3 promotes transcriptional activity. Science Advances 2023, 9: eade7500. PMID: 37163588, PMCID: PMC10171809, DOI: 10.1126/sciadv.ade7500.Peer-Reviewed Original ResearchConceptsTranscriptional elongationTranscriptional responseAdaptive transcriptional responseHeterogeneous nuclear ribonucleoproteinsElongation factor complexPositive transcription elongation factor complexGrowth factorExtracellular signalsRNA modificationsRNA 7SKEpidermal growth factorCell signalingInduces phosphorylationMethyltransferase 3Nuclear ribonucleoproteinFactor complexTranscriptional activityUnknown functionMethylationMETTL3RibonucleoproteinPhosphorylationTEFbElongationSignaling
2020
Signaling Diversity Enabled by Rap1 and cAMP/PKA‐Regulated Plasma Membrane ERK with Distinct Temporal Dynamics
Keyes J, Ganesan A, Molinar-Inglis O, Hamidzadeh A, Ling M, Trejo J, Levchenko A, Zhang J. Signaling Diversity Enabled by Rap1 and cAMP/PKA‐Regulated Plasma Membrane ERK with Distinct Temporal Dynamics. The FASEB Journal 2020, 34: 1-1. DOI: 10.1096/fasebj.2020.34.s1.00680.Peer-Reviewed Original ResearchERK activityTemporal regulationPrecise temporal regulationMembrane protrusion dynamicsSequence-specific motifsSpecific subcellular locationsControl cell morphologyDifferent subcellular compartmentsMultiple cellular processesERK enzymatic activityCAMP/PKAERK biosensorEGF inducesKinase cascadeCellular processesExtracellular signalsSubcellular compartmentsSubcellular locationProtrusion dynamicsSubcellular regionsPlasma membraneSpecific motifsEnzymatic activityCell morphologyRap1
2016
Soluble Receptor for Advanced Glycation End Products Improves Stromal Cell–Derived Factor-1 Activity in Model Diabetic Environments
Olekson MP, Faulknor RA, Hsia HC, Schmidt AM, Berthiaume F. Soluble Receptor for Advanced Glycation End Products Improves Stromal Cell–Derived Factor-1 Activity in Model Diabetic Environments. Advances In Wound Care 2016, 5: 527-538. PMID: 28078186, PMCID: PMC5165672, DOI: 10.1089/wound.2015.0674.Peer-Reviewed Original ResearchStromal cell-derived factor-1Advanced glycation end productsPeripheral blood mononuclear cellsCellular responsesSoluble RAGEGlycation end productsBaseline ROS levelsGrowth factorExtracellular signalsExogenous SDF-1Mouse peripheral blood mononuclear cellsStem cell recruitmentHuman leukaemia 60 cellsCell-derived factor-1Exogenous growth factorsReactive oxygen species generationDiabetic murine woundsReceptor CXCR-4Blood mononuclear cellsWound healingCellular migrationCell migrationOxygen species generationMurine excisional wound modelROS levelsShort-lived myeloid cell lifespan is regulated by a long non-coding RNA
Kotzin J, Spencer S, McCright S, Uthaya Kumar D, Mowel W, Makiya M, Klion A, Williams A, Flavell R, Henao-Mejia J. Short-lived myeloid cell lifespan is regulated by a long non-coding RNA. The Journal Of Immunology 2016, 196: 202.28-202.28. DOI: 10.4049/jimmunol.196.supp.202.28.Peer-Reviewed Original ResearchLong non-coding RNAsNon-coding RNAsNovel long non-coding RNAAllele-specific mannerPro-survival cytokinesLocus-specific regulationPro-apoptotic genesExtracellular signalsMyeloid cellsEnvironmental cuesPrecise regulationGene expressionRegulatory mechanismsCell homeostasisImmune cell homeostasisLncRNAsShort lifespanPotential therapeutic targetCell lifespanRNATherapeutic targetCellsLifespanRegulationHost response
2015
G Protein–Coupled Receptor Signaling Networks from a Systems Perspective
Roth S, Kholodenko B, Smit M, Bruggeman F. G Protein–Coupled Receptor Signaling Networks from a Systems Perspective. Molecular Pharmacology 2015, 88: 604-616. PMID: 26162865, DOI: 10.1124/mol.115.100057.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsRole of GPCRsSignal transduction networksProtein-protein interactionsSystems biology studiesSystems biology researchProtein-coupled receptorsCell surface receptorsSignaling networksExtracellular signalsMammalian cellsSignaling routeSingle proteinIntracellular proteinsExternal cuesAdaptive responseBiophysical conceptsProteinReceptorsFeedforward circuitryCellsConformationResponseCuesReceptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels
Levitan I, Kaczmarek L. Receptors and Transduction Mechanisms I: Receptors Coupled Directly to Ion Channels. 2015, 239-262. DOI: 10.1093/med/9780199773893.003.0011.ChaptersReceptors and Transduction Mechanisms II: Indirectly Coupled Receptor/Ion Channel Systems
Levitan I, Kaczmarek L. Receptors and Transduction Mechanisms II: Indirectly Coupled Receptor/Ion Channel Systems. 2015, 263-294. DOI: 10.1093/med/9780199773893.003.0012.ChaptersProtein phosphorylationSecond messenger-dependent protein kinasesReceptor-channel couplingIon channel proteinsAppropriate biological responseExtracellular signalsDirect phosphorylationSpecific membrane receptorsProtein kinaseRegulatory componentsChannel proteinsSecond messenger systemsMembrane receptorsTransduction mechanismsIon channelsPhosphorylationBiological responsesMessenger systemsIon channel systemsDiversityTarget cellsSignal recognitionNeuronal excitabilityCellsKinaseEGFR mutations cause a lethal syndrome of epithelial dysfunction with progeroid features
Ganetzky R, Finn E, Bagchi A, Zollo O, Conlin L, Deardorff M, Harr M, Simpson MA, McGrath JA, Zackai E, Lemmon MA, Sondheimer N. EGFR mutations cause a lethal syndrome of epithelial dysfunction with progeroid features. Molecular Genetics & Genomic Medicine 2015, 3: 452-458. PMID: 26436111, PMCID: PMC4585453, DOI: 10.1002/mgg3.156.Peer-Reviewed Original ResearchEpidermal growth factor receptorExtracellular domainEpidermal growth factor signalingGrowth factor signalingPatient-derived fibroblastsBinding of EGFExtracellular signalsGrowth factor receptorEarly senescenceFactor signalingDownstream targetsOncogenic transformationTissue developmentTyrosine kinaseConstitutive activationReceptor phosphorylationLarge familyFactor receptorProgeroid featuresAccelerated expressionMutationsΒ-galactosidaseEGFEGFR genotypeActivationHuntingtin-Associated Protein 1 Interacts with Breakpoint Cluster Region Protein to Regulate Neuronal Differentiation
Huang PT, Chen CH, Hsu IU, Salim S, Kao SH, Cheng CW, Lai CH, Lee CF, Lin YF. Huntingtin-Associated Protein 1 Interacts with Breakpoint Cluster Region Protein to Regulate Neuronal Differentiation. PLOS ONE 2015, 10: e0116372. PMID: 25671650, PMCID: PMC4324908, DOI: 10.1371/journal.pone.0116372.Peer-Reviewed Original ResearchConceptsBreakpoint cluster region proteinMicrotubule-dependent traffickingNeuronal differentiationRho GTPase regulatorsRegion proteinsProtein 1 interactsNeuro-2a cellsExtracellular signalsBrain-enriched proteinProteomic analysisGTPase regulatorDownstream effectorsPostnatal lethalityHAP1Neuronal cellsWild-type mouse brainProtein 1TraffickingNeurite outgrowthTropomyosin-related kinaseProteinKinaseNeurodegenerative diseasesDifferentiationMicrotubules
2014
Characterization of Extracellular Signal-regulated Kinase 5 (ERK5) Activation in Human Umbilical Vein Endothelial Cells (HUVECs) Exposed to Disturbed and Uniform Pulsatile Flow
Shalaby S, Chitragari G, Sumpio B, Sumpio B. Characterization of Extracellular Signal-regulated Kinase 5 (ERK5) Activation in Human Umbilical Vein Endothelial Cells (HUVECs) Exposed to Disturbed and Uniform Pulsatile Flow. Journal Of Surgical Research 2014, 186: 691. DOI: 10.1016/j.jss.2013.11.1067.Peer-Reviewed Original Research
2013
G Protein‐Coupled Receptors and Adipogenesis: A Focus on Adenosine Receptors
Eisenstein A, Ravid K. G Protein‐Coupled Receptors and Adipogenesis: A Focus on Adenosine Receptors. Journal Of Cellular Physiology 2013, 229: 414-421. PMID: 24114647, PMCID: PMC4362544, DOI: 10.1002/jcp.24473.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsAdenosine receptorsExtracellular signalsAdenosine signalingObesity epidemicMetabolic consequencesDevelopment of therapeuticsBlood flowDownstream messengersReceptorsTranscriptional eventsAdipose tissueMature adipocytesAdipocyte differentiationCellular differentiationMetabolic homeostasisAdenosineCoupled receptorsAdipocytesPhysiological outcomesDifferentiation processExcess nutrientsRegulation functionAdipogenesisDifferentiation
2012
Poised RNA Polymerase II Changes over Developmental Time and Prepares Genes for Future Expression
Gaertner B, Johnston J, Chen K, Wallaschek N, Paulson A, Garruss A, Gaudenz K, De Kumar B, Krumlauf R, Zeitlinger J. Poised RNA Polymerase II Changes over Developmental Time and Prepares Genes for Future Expression. Cell Reports 2012, 2: 1670-1683. PMID: 23260668, PMCID: PMC3572839, DOI: 10.1016/j.celrep.2012.11.024.Peer-Reviewed Original ResearchConceptsPol IIMammalian embryonic stem cellsGenes de novoDevelopmental control genesPolycomb group repressionFuture gene expressionRNA Pol IIRNA polymerase IIEmbryonic stem cellsTissue-specific fashionChromatin stateDrosophila embryosPolymerase IIExtracellular signalsDevelopmental programStages of differentiationGene expressionControl genesDevelopmental timeSynchronous inductionDynamic expressionGenesStem cellsDe novoFuture expressionPreparation of acute subventricular zone slices for calcium imaging.
Lacar B, Young SZ, Platel JC, Bordey A. Preparation of acute subventricular zone slices for calcium imaging. Journal Of Visualized Experiments 2012, e4071. PMID: 23023088, PMCID: PMC3490239, DOI: 10.3791/4071.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsCell typesSVZ cellsProgenitor cellsNeurogenic zonesSubventricular zoneFluo-4 AM dyeNeural progenitor cellsIntermediate progenitor cellsExtracellular signalsDiffusible signalsIntercellular signalingSVZ cell typesTime-lapse moviesCalcium indicator dyeCalcium activityIndividual cellsRostral-caudal axisNeuroblast migrationThree-dimensional arrangementAdult hippocampal subgranular zonePostnatal brainAdhesion moleculesHippocampal subgranular zoneMature astrocytesNeuroblasts
2009
PI3K/Akt signalling‐mediated protein surface expression sensed by 14‐3‐3 interacting motif
Chung J, Okamoto Y, Coblitz B, Li M, Qiu Y, Shikano S. PI3K/Akt signalling‐mediated protein surface expression sensed by 14‐3‐3 interacting motif. The FEBS Journal 2009, 276: 5547-5558. PMID: 19691494, PMCID: PMC4301307, DOI: 10.1111/j.1742-4658.2009.07241.x.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAmino Acid MotifsAmino Acid SequenceAnimalsBinding SitesCattleCell LineCell MembraneHumansMembrane ProteinsPhosphatidylinositol 3-KinasesPhosphorylationProtein BindingProto-Oncogene Proteins c-aktReceptors, G-Protein-CoupledReceptors, PeptideRecombinant Fusion ProteinsSignal TransductionTransfectionConceptsCell surface expressionMembrane proteinsEndoplasmic reticulum localization signalsSurface expressionDifferent extracellular signalsFetal bovine serumPost-translational modificationsSpecific protein localizationG protein-coupled receptorsDominant-negative AktC-terminal sequencesKinase B pathwayProtein-coupled receptorsGenetic screenCell surface membraneLocalization signalCargo proteinsActive kinaseExtracellular signalingExtracellular signalsProtein localizationProtein surface expressionKinase activityBovine serumCellular responses
2008
TGF-β activates ERK5 in human renal epithelial cells
Browne JA, Pearson AL, Zahr RA, Niculescu-Duvaz I, Baines DL, Dockrell ME. TGF-β activates ERK5 in human renal epithelial cells. Biochemical And Biophysical Research Communications 2008, 373: 440-444. PMID: 18588859, DOI: 10.1016/j.bbrc.2008.06.058.Peer-Reviewed Original ResearchMeSH KeywordsCell Line, TumorEpithelial CellsHumansImidazolesKidneyMADS Domain ProteinsMEF2 Transcription FactorsMitogen-Activated Protein Kinase 7Myogenic Regulatory Factorsp38 Mitogen-Activated Protein KinasesProtein Kinase InhibitorsProtein Serine-Threonine KinasesPyridinesReceptor, Transforming Growth Factor-beta Type IReceptors, Transforming Growth Factor betaTransforming Growth Factor betaConceptsExtracellular signal-regulated kinase 5Epidermal growth factorMAP kinaseERK5 activationMyocyte enhancer factor 2Epithelial cell phenotypeP38 MAP kinase inhibitorRenal epithelial cellsMAP kinase inhibitorHuman renal epithelial cellsEmbryonic lethalityGrowth factorExtracellular signalsSB 202190Cell differentiationKinase 5Human PTECsPhospho-ERK5Cell phenotypeFactor 2KinaseEpithelial cellsKinase inhibitorsReceptor activityActivation
2007
ROCK and Rho: Biochemistry and Neuronal Functions of Rho-Associated Protein Kinases
Schmandke A, Schmandke A, Strittmatter SM. ROCK and Rho: Biochemistry and Neuronal Functions of Rho-Associated Protein Kinases. The Neuroscientist 2007, 13: 454-469. PMID: 17901255, PMCID: PMC2849133, DOI: 10.1177/1073858407303611.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Adhesion MoleculesCentral Nervous SystemCytoskeletonHumansLipoproteinsMyelin ProteinsNerve Tissue ProteinsNeuronsNogo ProteinsProtein Processing, Post-TranslationalReceptor Protein-Tyrosine KinasesReceptors, G-Protein-CoupledReceptors, Immunologicrho GTP-Binding Proteinsrho-Associated KinasesSignal TransductionConceptsProtein kinaseRho-Associated Protein KinaseSignal transduction mechanismsNeuronal functionDiverse neuronal functionsActin cytoskeletonRho familyExtracellular signalsROCK functionSignaling pathwaysBiochemical knowledgeCell survivalTransduction mechanismsCell migrationAxonal guidanceDendritic spine morphologyKinaseROCK pathwayPathwayNeuronal regenerationSpine morphologyRhoBrain developmentKey rolePotential sitesInduction of Vascular Permeability: βPIX and GIT1 Scaffold the Activation of Extracellular Signal-regulated Kinase by PAK
Stockton R, Reutershan J, Scott D, Sanders J, Ley K, Schwartz MA. Induction of Vascular Permeability: βPIX and GIT1 Scaffold the Activation of Extracellular Signal-regulated Kinase by PAK. Molecular Biology Of The Cell 2007, 18: 2346-2355. PMID: 17429073, PMCID: PMC1877103, DOI: 10.1091/mbc.e06-07-0584.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCapillary PermeabilityCattleCell Cycle ProteinsCells, CulturedEndothelial CellsEnzyme ActivationExtracellular Signal-Regulated MAP KinasesGuanine Nucleotide Exchange FactorsHumansInflammationLipopolysaccharidesLungMicep21-Activated KinasesPeptidesProtein Serine-Threonine KinasesRho Guanine Nucleotide Exchange FactorsConceptsP21-activated kinaseMitogen-activated protein kinase kinaseEndothelial cell-cell junctionsExtracellular signal-regulated kinaseCell-cell junctionsProtein kinase kinaseMyosin light chain phosphorylationLight chain phosphorylationSignal-regulated kinaseCell-permeant peptideActivation of ERKKinase kinaseExtracellular signalsPAK functionChain phosphorylationCritical regulatorKinaseCell contractilityCell typesCultured endothelial cellsPhosphorylationMouse lung injury modelMyosin phosphorylationEndothelial cellsGIT1Lack of Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Signaling Shows a New Type of Melanoma
Shields JM, Thomas NE, Cregger M, Berger AJ, Leslie M, Torrice C, Hao H, Penland S, Arbiser J, Scott G, Zhou T, Bar-Eli M, Bear JE, Der CJ, Kaufmann WK, Rimm DL, Sharpless NE. Lack of Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Signaling Shows a New Type of Melanoma. Cancer Research 2007, 67: 1502-1512. PMID: 17308088, DOI: 10.1158/0008-5472.can-06-3311.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinaseERK activationB-RafERK activityMitogen-Activated Protein Kinase SignalingSignal-regulated kinase kinaseN-RASERK MAPK cascadeProtein Kinase SignalingPrimary human melanocytesRNA expression profilesCell linesEpithelial-mesenchymal transformationDistinct melanoma subtypeMAPK cascadeKinase kinaseExtracellular signalsTranscriptional targetsKinase signalingProtein kinaseExpression profilesEpithelial markersMelanoma cell linesRAS/RAFPrimary human tumors
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply