2025
CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left‐Right Patterning in Xenopus tropicalis
Kostiuk V, Kabir R, Akbari R, Rushing A, González D, Kim A, Kim A, Zenisek D, Khokha M. CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left‐Right Patterning in Xenopus tropicalis. Genesis 2025, 63: e70009. PMID: 40008628, PMCID: PMC11867209, DOI: 10.1002/dvg.70009.Peer-Reviewed Original ResearchConceptsCongenital heart diseaseCACNA1GLow-voltage-activated calcium channelsExpression of Cacna1gCalcium channelsPatient cohortCardiac functionLR patterningHeterotaxyLR organizerChannel familyCACNA1SHeart diseaseLeft-rightG expressionXenopus tropicalisAbnormal expressionProcess of cilia formationCardiac loopingMultiple organsSignaling cascadesLR asymmetryPatientsT-typeEmbryonic development
2024
On the origin of mitosis-derived human embryo aneuploidy
Leem J, Gowett M, Bolarinwa S, Mogessie B. On the origin of mitosis-derived human embryo aneuploidy. Nature Communications 2024, 15: 10391. PMID: 39613785, PMCID: PMC11607320, DOI: 10.1038/s41467-024-54953-0.Peer-Reviewed Original ResearchThe maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus
Kojima M, Hoppe C, Giraldez A. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nature Reviews Genetics 2024, 26: 245-267. PMID: 39587307, PMCID: PMC11928286, DOI: 10.1038/s41576-024-00792-0.Peer-Reviewed Original ResearchO-077 Depletion of MFF from oocytes impairs mitochondrial dynamics, leading to inhibited oocyte maturation and early embryonic development in mice
Hua R, Hai Z, Gu J, Yeung W, Wang T. O-077 Depletion of MFF from oocytes impairs mitochondrial dynamics, leading to inhibited oocyte maturation and early embryonic development in mice. Human Reproduction 2024, 39: deae108.083. DOI: 10.1093/humrep/deae108.083.Peer-Reviewed Original ResearchMitochondrial fission factorEarly embryonic developmentMitochondrial dynamicsGV oocytesOocyte competenceKnockout mouse modelOvulated oocytesOocyte maturationCultured in vitroFemale miceEmbryonic developmentCre-loxP conditional knockout systemMouse modelGerminal vesicleRegulation of mitochondrial dynamicsMethods Female miceIn vitro maturationEmbryo development ratesRegulating mitochondrial dynamicsInhibited oocyte maturationMorphology of mitochondriaEarly embryo developmentPolar body extrusionAbnormal mitochondrial distributionConditional knockout systemCpG island turnover events predict evolutionary changes in enhancer activity
Kocher A, Dutrow E, Uebbing S, Yim K, Rosales Larios M, Baumgartner M, Nottoli T, Noonan J. CpG island turnover events predict evolutionary changes in enhancer activity. Genome Biology 2024, 25: 156. PMID: 38872220, PMCID: PMC11170920, DOI: 10.1186/s13059-024-03300-z.Peer-Reviewed Original ResearchConceptsHuman-gained enhancersCpG islandsFunction of transcriptional enhancersEvolution of biological diversityHuman CpG islandsGene regulatory changesInfluence enhancer activityCpG island contentHistone modification levelsEnhanced activitySpecies-specific activityTrait evolutionNucleotide substitutionsHistone modificationsTranscriptional enhancersMouse orthologEvolutionary changesTurnover eventsModification levelsMammalian speciesMultiple tissuesEmbryonic developmentMouse diencephalonHuman embryonic developmentSpeciesMannose controls mesoderm specification and symmetry breaking in mouse gastruloids
Dingare C, Cao D, Yang J, Sozen B, Steventon B. Mannose controls mesoderm specification and symmetry breaking in mouse gastruloids. Developmental Cell 2024, 59: 1523-1537.e6. PMID: 38636516, DOI: 10.1016/j.devcel.2024.03.031.Peer-Reviewed Original ResearchConceptsMesoderm specificationFeatures of embryonic developmentWnt pathway regulationEarly mesoderm developmentProtein glycosylationPathway regulationProteomic analysisIntracellular recyclingMesoderm developmentEmbryonic developmentGlycolytic intermediatesMannoseGlucose transportCompetitive inhibitorGlycosylationGlucose removalVascular development, remodeling and maturation
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Current Topics In Developmental Biology 2024, 159: 344-370. PMID: 38729681, DOI: 10.1016/bs.ctdb.2024.02.001.Peer-Reviewed Original ResearchGene expression patternsKnowledge of vascular biologyControlling nutrient uptakeEarly embryonic developmentDysfunctional vasculatureVascular systemVascular system developmentSystem dysfunctionExpression patternsOrgan physiologyFunctional circulatory systemEndothelial cellsTherapeutic potentialEmbryonic developmentVascular system dysfunctionNutrient uptakeBlood vesselsSemi-permeable barrierVascular biologyHuman morbiditySUMOylation Fine-Tunes Endothelial HEY1 in the Regulation of Angiogenesis
Ren R, Ding S, Ma K, Jiang Y, Wang Y, Chen J, Wang Y, Kou Y, Fan X, Zhu X, Qin L, Qiu C, Simons M, Wei X, Yu L. SUMOylation Fine-Tunes Endothelial HEY1 in the Regulation of Angiogenesis. Circulation Research 2024, 134: 203-222. PMID: 38166414, PMCID: PMC10872267, DOI: 10.1161/circresaha.123.323398.Peer-Reviewed Original ResearchDNA-binding capabilityElectrophoretic mobility shift assaysEndothelial cell-specific expressionMobility shift assaysHairy/EnhancerCell-specific expressionPrimary human endothelial cellsNotch pathway componentsE-box promoter elementsEndothelial cellsRegulation of angiogenesisHelix familyPostnatal vascular growthHey1 functionsTranscriptional complexChromatin immunoprecipitationE3 ligaseRTK signalingEmbryonic developmentMatrigel plug assayPromoter elementsBioinformatics analysisShift assaysSUMOylationDNA binding
2023
Self-patterning of human stem cells into post-implantation lineages
Pedroza M, Gassaloglu S, Dias N, Zhong L, Hou T, Kretzmer H, Smith Z, Sozen B. Self-patterning of human stem cells into post-implantation lineages. Nature 2023, 622: 574-583. PMID: 37369348, PMCID: PMC10584676, DOI: 10.1038/s41586-023-06354-4.Peer-Reviewed Original ResearchConceptsStem cellsPlacental cell typesPost-implantation embryonic developmentHuman pluripotent stem cellsPluripotent stem cellsHuman embryonic developmentEmbryonic developmentHuman stem cellsCongenital pathologyPost-implantation epiblastDiverse cell statesSingle-cell transcriptomicsAmniotic ectodermExtra-embryonic endodermSpontaneous differentiationSignaling hubThree-dimensional structureSecreted modulatorsCell types
2022
Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR
Sempou E, Kostiuk V, Zhu J, Cecilia Guerra M, Tyan L, Hwang W, Camacho-Aguilar E, Caplan M, Zenisek D, Warmflash A, Owens N, Khokha M. Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR. Nature Communications 2022, 13: 6681. PMID: 36335122, PMCID: PMC9637099, DOI: 10.1038/s41467-022-34363-w.Peer-Reviewed Original ResearchConceptsPluripotent cellsAdult tissue homeostasisCell fate commitmentDifferentiated cell fatesLeft-right patterningPluripotent embryonic cellsHuman embryonic stem cellsTemporal transcriptome analysisGene regulatory networksExpense of differentiationEmbryonic stem cellsGerm layer differentiationMembrane depolarizationFate commitmentPluripotent stateCell fateTranscriptome analysisRegulatory networksMyogenic lineageEmbryonic developmentTissue homeostasisDifferentiated fateEmbryonic cellsCandidate genesPluripotencyKap-β2/Transportin mediates β-catenin nuclear transport in Wnt signaling
Hwang WY, Kostiuk V, González DP, Lusk CP, Khokha M. Kap-β2/Transportin mediates β-catenin nuclear transport in Wnt signaling. ELife 2022, 11: e70495. PMID: 36300792, PMCID: PMC9665845, DOI: 10.7554/elife.70495.Peer-Reviewed Original ResearchConceptsNuclear transport receptorsΒ-catenin nuclear transportNuclear transportΒ-cateninExcessive WntΒ-catenin nuclear importHeterologous model systemsΒ-catenin accumulatesPrimary embryonic axisNuclear transport machineryRan-dependent mannerNuclear localization signalTCF/LEF reporterPY-NLSNuclear importLocalization signalTransport machineryTransport receptorsResponsive genesEmbryonic developmentEmbryonic axisWnt signalingKey effectorsDirect bindingHuman diseasesInterplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading
Staddon M, Murrell M, Banerjee S. Interplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading. Soft Matter 2022, 18: 7877-7886. PMID: 36205535, PMCID: PMC9700261, DOI: 10.1039/d2sm00757f.Peer-Reviewed Original ResearchConceptsSubstrate rigidityCollective cell motionSubstrate stiffnessTissue fluidityStiff substratesCell-matrix adhesionTraction force generationCell-cell interactionsCell motionTissue morphogenesisSoft elastic matrixCell collectivesEmbryonic developmentCell crawlingCell spreadingCell monolayersSolid tissuesCell behaviorMechanical behaviorPredictive understandingMechanical propertiesCancer invasionCell aggregatesElastic matrixCell propertiesMetabolic Regulation of Mitochondrial Dynamics and Cardiac Function
Rudokas M, Cacheux M, Akar F. Metabolic Regulation of Mitochondrial Dynamics and Cardiac Function. 2022, 197-211. DOI: 10.1007/978-3-031-08309-9_6.BooksMitochondrial dynamicsNormal embryonic developmentMitochondrial dynamics proteinsDynamic organellesMitochondrial networkMitochondrial fusionDynamic proteinsEmbryonic developmentFragmented mitochondriaKey proteinsKey regulatorFunctional importanceMetabolic regulationAltered regulationMitochondriaFission eventsFundamental processesProteinCardiac mitochondriaFission resultsRegulationMorphological changesRecent advancesOrganellesRegulatorEpigenetic Epidemiology of Autism and Other Neurodevelopmental Disorders
Wang S, Jiang Y. Epigenetic Epidemiology of Autism and Other Neurodevelopmental Disorders. 2022, 405-426. DOI: 10.1007/978-3-030-94475-9_17.ChaptersEpigenome-wide association studiesAbnormal DNA methylationDNA methylationHistone modificationsTissue-specific patternsNeurodevelopmental disordersEpigenetic regulationEpigenetic epidemiologyEmbryonic developmentEpigenetic dysregulationGenetic lociEpigenetic reprogramingAssociation studiesMethylationRecent technical advancesEnvironmental factorsRegion analysisEpimutationsReprogramingEtiology of NDDIntellectual disabilityLociTechnical advancesAllelesRegulationTumor suppressor CEBPA interacts with and inhibits DNMT3A activity
Chen X, Zhou W, Song R, Liu S, Wang S, Chen Y, Gao C, He C, Xiao J, Zhang L, Wang T, Liu P, Duan K, Cheng Z, Zhang C, Zhang J, Sun Y, Jackson F, Lan F, Liu Y, Xu Y, Wong J, Wang P, Yang H, Xiong Y, Chen T, Li Y, Ye D. Tumor suppressor CEBPA interacts with and inhibits DNMT3A activity. Science Advances 2022, 8: eabl5220. PMID: 35080973, PMCID: PMC8791617, DOI: 10.1126/sciadv.abl5220.Peer-Reviewed Original ResearchDNA methyltransferasesDNA methylationDe novo DNA methylationMammalian embryonic developmentNovo DNA methylationPRC2 target genesLonger splice isoformsCCAAT/enhancer binding protein αAberrant DNA methylationEnhancer binding protein αDNMT3A activityDNMT3a isoformsDNA substratesEmbryonic developmentSpecific lociTarget genesSplice isoformsDNA-hypomethylating agentN-terminusShort isoformProtein αMethylationFunctional differencesIsoformsMutationsChapter 21 Normal vascular identity (arteries, veins, and lymphatics) and malformations
Gonzalez L, Dardik A. Chapter 21 Normal vascular identity (arteries, veins, and lymphatics) and malformations. 2022, 251-263. DOI: 10.1016/b978-0-12-822546-2.00016-2.ChaptersVascular identityArterial-venous identityEphrin-B2Corresponding biological functionsCritical molecular markersDelta-like 4Eph-B4Ephrin-B2 expressionEmbryonic developmentGrowth factor receptorBiological functionsMolecular markersArterial identityFunction mutationsVenous identityMolecular determinantsMolecular signaturesPhenotypic switchFactor receptorVascular endothelial growth factor receptorTranslational applicationsEndothelial growth factor receptorExpressionPathological conditionsMutations
2021
The Embryological Landscape of Mayer-Rokitansky-Kuster-Hauser Syndrome: Genetics and Environmental Factors.
Kyei-Barffour I, Margetts M, Vash-Margita A, Pelosi E. The Embryological Landscape of Mayer-Rokitansky-Kuster-Hauser Syndrome: Genetics and Environmental Factors. The Yale Journal Of Biology And Medicine 2021, 94: 657-672. PMID: 34970104, PMCID: PMC8686787.Peer-Reviewed Original ResearchConceptsMRKH syndromeClinical presentationMayer-RokitanskyEmbryonic developmentEnvironmental factorsEpigenetic changesFunctional validationCandidate genesGenetic analysisMolecular mechanismsDevelopmental pathwaysKüster-Hauser syndromeEarly organogenesisKuster-Hauser syndromeKey pathwaysGenetic componentInheritance patternEnvironmental compoundsIncomplete penetranceClinical managementDiscordant phenotypesEarly diagnosisAnimal modelsGeneticsTranslational studiesDifferential adhesion regulates neurite placement via a retrograde zippering mechanism
Sengupta T, Koonce NL, Vázquez-Martínez N, Moyle MW, Duncan LH, Emerson SE, Han X, Shao L, Wu Y, Santella A, Fan L, Bao Z, Mohler W, Shroff H, Colón-Ramos DA. Differential adhesion regulates neurite placement via a retrograde zippering mechanism. ELife 2021, 10: e71171. PMID: 34783657, PMCID: PMC8843091, DOI: 10.7554/elife.71171.Peer-Reviewed Original ResearchConceptsDifferential adhesionDifferential adhesion mechanismsSYG-1SYG-2Developmental programEmbryonic developmentNeurite tipsZippering mechanismBiophysical principlesNeurite shaftSynaptic specificityBrain neuropilSingle neuriteLayers occursAlternate mechanismAdhesion mechanismExpressionNeuritesZipperingAdhesionMechanismOutgrowthMeasuring Cell-Edge Protrusion Dynamics during Spreading using Live-Cell Microscopy.
Lukic N, Saha T, Lapetina S, Gendler M, Lehmann G, Koleske AJ, Gil-Henn H. Measuring Cell-Edge Protrusion Dynamics during Spreading using Live-Cell Microscopy. Journal Of Visualized Experiments 2021 PMID: 34779432, PMCID: PMC8672187, DOI: 10.3791/63157.Peer-Reviewed Original ResearchConceptsCell edge protrusionCell migrationProtrusion dynamicsKey actin regulatorsLive-cell microscopyMulticellular organismsActin regulatorsCoordinated regulationEmbryonic developmentMembrane dynamicsEssential eventRegeneration of tissuesCancer metastasisTissue invasionPathological disordersRufflesProtrusionMigrationOrganismsRegulatorHomeostasisRegulationInvasionDysregulationDynamicsMethods for Differentiating hiPSCs into Vascular Smooth Muscle Cells
Li ML, Luo J, Ellis MW, Riaz M, Ajaj Y, Qyang Y. Methods for Differentiating hiPSCs into Vascular Smooth Muscle Cells. Methods In Molecular Biology 2021, 2375: 21-34. PMID: 34591296, DOI: 10.1007/978-1-0716-1708-3_3.Peer-Reviewed Original ResearchConceptsHuman induced pluripotent stem cellsVascular smooth muscle cellsPluripotent stem cellsLateral plate mesodermEarly embryonic developmentStem cellsSmooth muscle cellsHuman pluripotent stem cellsInduced pluripotent stem cellsExtracellular matrix proteinsMuscle cellsMesoderm lineagePlate mesodermEmbryonic developmentVascular cell sourceEmbryoid bodiesEB formationMatrix proteinsCellular interactionsDisease modelingPhysiological characteristicsVascular tissueTissue-engineered vascular graftsCell-based therapiesCell replacement
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply