2025
Correction of sodium channel mutations in sensory neurons reverses aberrant properties
Shim J, Tanaka B, Taub D, Mis M, Schulman B, Snavely A, Cheng Y, Laedermann C, Buttermore E, Ren A, Hermawan C, Dou D, Kawaguchi R, Geschwind D, Dib-Hajj S, Waxman S, Woolf C. Correction of sodium channel mutations in sensory neurons reverses aberrant properties. Brain 2025, awaf155. PMID: 40279376, DOI: 10.1093/brain/awaf155.Peer-Reviewed Original ResearchGain-of-function mutationsSensory neuronsElectrophysiological propertiesDisease presentationVoltage gated sodium channel Nav1.7Paroxysmal extreme pain disorderSmall fiber neuropathySodium channel Nav1.7Rodent sensory neuronsPain-related disordersCell linesSodium channel mutationsInherited erythromelalgiaEffects of gain-of-function mutationsFiber neuropathyPain disordersChannel mutationsControl iPSCsPatient samplesG mutationIPSCsIon channelsNeuronsPersonalized medicineNav1.7Optic nerve injury impairs intrinsic mechanisms underlying electrical activity in a resilient retinal ganglion cell
Zapadka T, Tran N, Demb J. Optic nerve injury impairs intrinsic mechanisms underlying electrical activity in a resilient retinal ganglion cell. The Journal Of Physiology 2025 PMID: 39985791, DOI: 10.1113/jp286414.Peer-Reviewed Original ResearchOptic nerve crushRetinal ganglion cellsOptic nerveGanglion cellsSynaptic inputsVoltage-gated sodium channel currentsRetinal ganglion cell typesVoltage-gatedRetinal ganglion cell survivalChelation of intracellular calciumResting membrane potentialOptic nerve injuryVoltage-gated currentsAxonal injurySodium channel currentsRetinal ganglion cell axonsRGC typesAlpha retinal ganglion cellsAxon initial segmentIntracellular calciumRate of survivalNerve injuryElectrophysiological propertiesNerve crushIntrinsic excitabilityBK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus
Ancatén-González C, Meza R, Gonzalez-Sanabria N, Segura I, Alcaino A, Peña-Pichicoi A, Latorre R, Chiu C, Chávez A. BK channels mediate a presynaptic form of mGluR-LTD in the neonatal hippocampus. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2411506122. PMID: 39773031, PMCID: PMC11745352, DOI: 10.1073/pnas.2411506122.Peer-Reviewed Original ResearchConceptsBK channelsLong-term depressionMGluR-LTDNeonatal hippocampusPostsynaptic metabotropic glutamate receptorsActivation of BK channelsChannel open probabilityCA3-CA1 synapsesMetabotropic glutamate receptorsArachidonic acid metabolitesRegulating synaptic strengthActivity-dependent changesOpen probabilityHippocampal slicesCircuit maturationCA3-CA1Glutamate receptorsElectrophysiological propertiesPresynaptic formP7-P10Synaptic strengthAcid metabolitesCentral synapsesNeuronal functionSynaptic functionAdvancements in techniques for human iPSC-derived cardiomyocytes maturation: mechanical and electrical stimulation approaches
Lu Y, Liu Y, Yan Y, Fooladi S, Qyang Y. Advancements in techniques for human iPSC-derived cardiomyocytes maturation: mechanical and electrical stimulation approaches. Biophysical Reviews 2025, 17: 169-183. PMID: 40060015, PMCID: PMC11885779, DOI: 10.1007/s12551-024-01267-6.Peer-Reviewed Original ResearchHuman induced pluripotent stem cell-derived cardiomyocytesMaturity of human-induced pluripotent stem cell-derived cardiomyocytesPluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesIon channel expressionCell-derived cardiomyocytesChannel expressionCo-culture systemElectrophysiological propertiesAdult cardiomyocytesCardiomyocyte maturationSynchronous contractionProtein expressionGrowth factorSarcomere alignmentClinical practiceElectrical pacingElectrical stimulation techniquesMaturation protocolsCardiomyocytesCo-cultureRegenerative medicineElectrical stimulation approachesDisease modelsDrug screening
2024
Quantitative Assessment of Mitochondrial Morphology and Electrophysiological Function in the Diabetic Heart
Cacheux M, Rudokas M, Tieu A, Rizk J, Hummel M, Akar F. Quantitative Assessment of Mitochondrial Morphology and Electrophysiological Function in the Diabetic Heart. Methods In Molecular Biology 2024, 2803: 75-86. PMID: 38676886, DOI: 10.1007/978-1-0716-3846-0_6.Peer-Reviewed Original ResearchConceptsMitochondrial shapeMitochondrial networkMitochondrial architectureSubcellular localizationMitochondrial morphologyDiabetic heartOxidative phosphorylationATP synthesisAction potentialsSarcolemmal ion channelsExcitation-contraction couplingFission eventsOptical action potentialsExcitation-contractionCardiac myocytesElectrophysiological properties
2023
In situ regeneration of inner hair cells in the damaged cochlea by temporally regulated co-expression of Atoh1 and Tbx2
Li X, Ren M, Gu Y, Zhu T, Zhang Y, Li J, Li C, Wang G, Song L, Bi Z, Liu Z. In situ regeneration of inner hair cells in the damaged cochlea by temporally regulated co-expression of Atoh1 and Tbx2. Development 2023, 150 PMID: 38078650, DOI: 10.1242/dev.201888.Peer-Reviewed Original Research
2021
Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk
Powell SK, O’Shea C, Townsley K, Prytkova I, Dobrindt K, Elahi R, Iskhakova M, Lambert T, Valada A, Liao W, Ho SM, Slesinger PA, Huckins LM, Akbarian S, Brennand KJ. Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk. Molecular Psychiatry 2021, 28: 1970-1982. PMID: 34493831, PMCID: PMC8898985, DOI: 10.1038/s41380-021-01273-0.Peer-Reviewed Original ResearchConceptsInduced dopaminergic neuronsDopaminergic neuronsMidbrain dopaminergic neuron developmentNeuron identityHuman induced pluripotent stem cellsCannabis use disorderDopaminergic neuron developmentAction potential durationGlutamatergic neuronsDopamine synthesisSpontaneous burstsPotential durationUse disordersNeuronal subtypesPsychiatric diseasesBipolar disorderElectrophysiological propertiesDisease riskHyperpolarization potentialPsychiatric disease riskNeuron developmentOscillatory activityNeuronsHeterogenous cell populationsCell populations
2020
A method for differentiating human induced pluripotent stem cells toward functional cardiomyocytes in 96-well microplates
Balafkan N, Mostafavi S, Schubert M, Siller R, Liang K, Sullivan G, Bindoff L. A method for differentiating human induced pluripotent stem cells toward functional cardiomyocytes in 96-well microplates. Scientific Reports 2020, 10: 18498. PMID: 33116175, PMCID: PMC7595118, DOI: 10.1038/s41598-020-73656-2.Peer-Reviewed Original ResearchConceptsPluripotent stem cellsCapacity of pluripotent stem cellsFunctional cardiomyocytesStem cellsFunctional human cardiomyocytesHuman induced pluripotent stem cellsCardiac-specific markersSerum-free culture mediumElectrophysiological propertiesHuman cardiomyocytesSelf-renewalCardiomyocytesProtein levelsHuman diseasesSpecific markersDevelopmental biologyCell typesMicroplate formatEfficient differentiationCulture mediumCellsDisease
2019
Up and Down States of Cortical Neurons in Focal Limbic Seizures
Yue Z, Freedman IG, Vincent P, Andrews JP, Micek C, Aksen M, Martin R, Zuckerman D, Perrenoud Q, Neske GT, Sieu LA, Bo X, Cardin JA, Blumenfeld H. Up and Down States of Cortical Neurons in Focal Limbic Seizures. Cerebral Cortex 2019, 30: 3074-3086. PMID: 31800015, PMCID: PMC7197089, DOI: 10.1093/cercor/bhz295.Peer-Reviewed Original ResearchConceptsFocal limbic seizuresDeep anesthesiaLimbic seizuresCortical neuronsVivo whole-cell recordingsDepressed cortical functionInput resistanceNeocortical slow wavesSubcortical arousal systemsLoss of consciousnessWhole-cell recordingsCortical-subcortical networksSeizure propagationMembrane potentialRat modelCortical functionTemporal lobeSeizuresCortical arousalExtracellular recordingsElectrophysiological propertiesCortical electrophysiologyFiring rateAnesthesiaArousal systemEnhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment
Huang CY, Peres Moreno Maia-Joca R, Ong CS, Wilson I, DiSilvestre D, Tomaselli GF, Reich DH. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. Journal Of Molecular And Cellular Cardiology 2019, 138: 1-11. PMID: 31655038, DOI: 10.1016/j.yjmcc.2019.10.001.Peer-Reviewed Original ResearchConceptsInsulin-like growth factor-1HiPSC-CMsSarcoplasmic reticulum functionGrowth factor-1Pluripotent stem cell-derived cardiomyocytesStem cell-derived cardiomyocytesCell-derived cardiomyocytesAdult cardiac phenotypeTDI treatmentContractile propertiesElectrophysiological propertiesThyroid hormonesCardiac phenotypeAdult myocardiumCardiac microtissuesPharmacological propertiesRecapitulate aspectsFactor 1Gene expression profilesHuman iPSCBiochemical factorsImmature stateMyocardiumStem cellsPluripotent stem cellsPatient-independent human induced pluripotent stem cell model: A new tool for rapid determination of genetic variant pathogenicity in long QT syndrome
Chavali NV, Kryshtal DO, Parikh SS, Wang L, Glazer AM, Blackwell DJ, Kroncke BM, Shoemaker MB, Knollmann BC. Patient-independent human induced pluripotent stem cell model: A new tool for rapid determination of genetic variant pathogenicity in long QT syndrome. Heart Rhythm 2019, 16: 1686-1695. PMID: 31004778, PMCID: PMC6935564, DOI: 10.1016/j.hrthm.2019.04.031.Peer-Reviewed Original ResearchConceptsLong QT syndromeExtracellular field potentialsQT syndromeHiPSC-CMGenetic testingPluripotent stem cell modelsHiPSC modelsSudden cardiac deathStem cell modelUnrelated healthy volunteersVentricular action potentialPatch-clamp studiesNovel missense variantVoltage-dependent inactivationCardiac deathClinical benefitCommercial genetic testingGenetic variant pathogenicityHealthy volunteersCell modelElectrophysiological propertiesAction potentialsBeating rateUnknown significancePatch clamp
2018
Detection of local and remote cellular damage caused by spinal cord and peripheral nerve injury using a heat shock signaling reporter system
Hashimoto-Torii K, Sasaki M, Chang YW, Hwang H, Waxman SG, Kocsis JD, Rakic P, Torii M. Detection of local and remote cellular damage caused by spinal cord and peripheral nerve injury using a heat shock signaling reporter system. IBRO Neuroscience Reports 2018, 5: 91-98. PMID: 30480161, PMCID: PMC6240805, DOI: 10.1016/j.ibror.2018.11.003.Peer-Reviewed Original ResearchPeripheral nerve injurySpinal cordNerve injuryPeripheral nerve injury resultsAltered electrophysiological propertiesNerve injury resultsSecondary damageHeat shock factor 1Neuropathic painInjury resultsInjury siteClinical abnormalitiesShock factor 1Mouse modelMemory dysfunctionElectrophysiological propertiesCordFactor 1Cellular damageFurther deteriorationInjuryReporter systemAbnormalitiesImmediate stress responseCellsOptical Action Potential Mapping in Acute Models of Ischemia–Reperfusion Injury: Probing the Arrhythmogenic Role of the Mitochondrial Translocator Protein
Ilkan Z, Strauss B, Campana C, Akar FG. Optical Action Potential Mapping in Acute Models of Ischemia–Reperfusion Injury: Probing the Arrhythmogenic Role of the Mitochondrial Translocator Protein. Methods In Molecular Biology 2018, 1816: 133-143. PMID: 29987816, DOI: 10.1007/978-1-4939-8597-5_10.Peer-Reviewed Original ResearchConceptsOptical action potential mappingIschemia-reperfusion injuryTranslocator proteinPost-ischemic arrhythmiasIonotropic propertiesPostischemic arrhythmiasR injuryHypertensive ratsAcute modelArrhythmogenic roleElectrophysiological substrateElectrophysiological propertiesArrhythmia mechanismsPharmacological inhibitionIntact heartInjuryTSPO ligandsMitochondrial translocator proteinArrhythmiasTSPO geneHeartPatientsRatsQuantitative assessmentIncidenceHigh-Throughput Investigation of Contractile and Electrophysiological Properties of Optically Stimulated hiPSC-CM Monolayers
Parikh S, Chavali N, Glazer A, Shaffer C, Blair M, Roden D, Knollmann B. High-Throughput Investigation of Contractile and Electrophysiological Properties of Optically Stimulated hiPSC-CM Monolayers. Biophysical Journal 2018, 114: 384a. DOI: 10.1016/j.bpj.2017.11.2122.Peer-Reviewed Original ResearchHiPSC-CM monolayersElectrophysiological properties
2015
Layer 4 Pyramidal Neurons Exhibit Robust Dendritic Spine Plasticity In Vivo after Input Deprivation
Miquelajauregui A, Kribakaran S, Mostany R, Badaloni A, Consalez G, Portera-Cailliau C. Layer 4 Pyramidal Neurons Exhibit Robust Dendritic Spine Plasticity In Vivo after Input Deprivation. Journal Of Neuroscience 2015, 35: 7287-7294. PMID: 25948276, PMCID: PMC4420789, DOI: 10.1523/jneurosci.5215-14.2015.Peer-Reviewed Original ResearchConceptsPyramidal neuronsInput deprivationWhisker trimmingSynaptic plasticityLayer 4 pyramidal neuronsDendritic spine lossDendritic spine plasticitySensory processingDendritic spine dynamicsRobust synaptic plasticityL4 neuronsSpine lossCre miceLayer 2/3Spine plasticityTransgenic miceElectrophysiological propertiesSpine dynamicsCortex exhibitNeuronsDeprivation resultsTwo-photon microscopyApical tuftMiceVivo
2013
The Dyslexia-Associated Gene Dcdc2 Is Required for Spike-Timing Precision in Mouse Neocortex
Che A, Girgenti MJ, LoTurco J. The Dyslexia-Associated Gene Dcdc2 Is Required for Spike-Timing Precision in Mouse Neocortex. Biological Psychiatry 2013, 76: 387-396. PMID: 24094509, PMCID: PMC4025976, DOI: 10.1016/j.biopsych.2013.08.018.Peer-Reviewed Original ResearchMeSH Keywords2-Amino-5-phosphonovalerateAction PotentialsAnimalsDyslexiaExcitatory Amino Acid AntagonistsGene ExpressionMembrane PotentialsMiceMice, KnockoutMicroelectrodesMicrotubule-Associated ProteinsNeocortexPatch-Clamp TechniquesPhenolsPiperidinesPyramidal CellsReceptors, N-Methyl-D-AspartateReverse Transcriptase Polymerase Chain ReactionSequence Analysis, RNATissue Culture TechniquesConceptsAmino-5-phosphonovaleric acidWhole-cell patch-clamp recordingsActivity of NMDARsAction potential firingWild-type micePatch-clamp recordingsTranscriptase-polymerase chain reactionSpike-timing precisionPyramidal neuronsElectrophysiological assessmentNMDAR antagonistsPolymerase chain reactionRo 25Neocortical activationClamp recordingsNeuronal physiologyElectrophysiological propertiesMouse neocortexRibonucleic acid sequencingFunctional increaseTemporal precisionChain reactionSequencing screenGene expressionNeocortexElectrophysiological Remodeling in Heart Failure
Akar F, Tomaselli G. Electrophysiological Remodeling in Heart Failure. 2013, 369-386. DOI: 10.1007/978-1-4471-4881-4_22.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsHeart failureTreatment of arrhythmiasCellular electrophysiological propertiesIon channelsSafe therapyConduction abnormalitiesElectrophysiological remodelingSudden deathNovel pharmacologicalArrhythmogenic triggersElectrophysiological propertiesAction potentialsArrhythmiasFunctional consequencesIonic mechanismsMolecular mechanismsOrgan levelFailureTherapyAbnormalitiesPharmacologicalRepolarization
2012
2. Screening for clinical correlation with 14 cerebral RNA editing sites in temporal lobe epilepsy
Krestel H, Nirkko A, von Lehe M, Jagella C, Moskau-Hartmann S, Becker A, Elger C, Seeburg P. 2. Screening for clinical correlation with 14 cerebral RNA editing sites in temporal lobe epilepsy. Clinical Neurophysiology 2012, 123: e108. DOI: 10.1016/j.clinph.2012.03.066.Peer-Reviewed Original ResearchTemporal lobe epilepsyNon-epileptic subjectsMesial temporal lobe epilepsyLobe epilepsyTLE patientsEpilepsy durationEpilepsy severityCerebral RNANon-significant decreaseIon channelsMTLE patientsPotassium channel Kv1.1Seizure frequencyCerebral excitabilityEpilepsy onsetClinical correlationClinical markersInterictal EEGReceptor BPatientsStrong inverse correlationElectrophysiological propertiesBrain tissueEpilepsyChannel Kv1.1A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis
Shields SD, Cheng X, Gasser A, Saab CY, Tyrrell L, Eastman EM, Iwata M, Zwinger PJ, Black JA, Dib‐Hajj S, Waxman SG. A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis. Annals Of Neurology 2012, 71: 186-194. PMID: 22367990, DOI: 10.1002/ana.22665.Peer-Reviewed Original ResearchConceptsMultiple sclerosisCerebellar dysfunctionMouse modelPurkinje neuronsNervous systemNew transgenic mouse modelPurkinje neuron firingDisease-modifying agentsSodium channel Nav1.8Healthy nervous systemPeripheral nervous systemTransgenic mouse modelCerebellar Purkinje neuronsWild-type littermatesNav1.8 expressionNeurons altersSymptom burdenSymptomatic therapySymptom progressionNav1.8Electrophysiological propertiesNeuron firingDysfunctionEAEMotor behavior
2010
Hippocampal AMPA Receptor Gating Controlled by Both TARP and Cornichon Proteins
Kato AS, Gill MB, Ho MT, Yu H, Tu Y, Siuda ER, Wang H, Qian YW, Nisenbaum ES, Tomita S, Bredt DS. Hippocampal AMPA Receptor Gating Controlled by Both TARP and Cornichon Proteins. Neuron 2010, 68: 1082-1096. PMID: 21172611, PMCID: PMC3034222, DOI: 10.1016/j.neuron.2010.11.026.Peer-Reviewed Original ResearchConceptsTransmembrane AMPA receptor regulatory proteinsAMPA receptor complexesHippocampal neuronsAMPA receptorsCornichon ProteinsReceptor complexAMPA receptor traffickingReceptor regulatory proteinsGlutamate applicationKnockout miceTARP γReceptor pharmacologyCNIH-2Electrophysiological propertiesPostsynaptic densityAMPA receptor gatingSubunit combinationsProtein levelsResensitizationReceptor traffickingNeuronsPharmacologyReceptorsReceptor gatingRecombinant systems
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply