2025
BPS2025 - Conformational transition of prestin—the electro-mechanical transducer in outer hair cells of the inner ear
Zhang C, Mariadasse R, Beckstein O, Santos-Sacchi J, Navaratnam D. BPS2025 - Conformational transition of prestin—the electro-mechanical transducer in outer hair cells of the inner ear. Biophysical Journal 2025, 124: 315a. DOI: 10.1016/j.bpj.2024.11.1746.Peer-Reviewed Original ResearchElectro-mechanical transducersConformational transition
2022
Integrin Conformational Dynamics and Mechanotransduction
Kolasangiani R, Bidone T, Schwartz M. Integrin Conformational Dynamics and Mechanotransduction. Cells 2022, 11: 3584. PMID: 36429013, PMCID: PMC9688440, DOI: 10.3390/cells11223584.Peer-Reviewed Original ResearchConceptsCell-cell adhesionCell-extracellular matrixExtracellular ligandsIntegrin affinityConformational dynamicsIntegrin familyConformational statesConformational transitionTissue integrityCell functionCentral mediatorRemarkable convergenceMechanical forcesForce transmissionCytoskeletonMechanotransductionAdhesionFirm adhesionUnanswered questionsIntegrinsNew informationPathwayLigandsLooking lively: emerging principles of pseudokinase signaling
Sheetz JB, Lemmon MA. Looking lively: emerging principles of pseudokinase signaling. Trends In Biochemical Sciences 2022, 47: 875-891. PMID: 35585008, PMCID: PMC9464697, DOI: 10.1016/j.tibs.2022.04.011.Peer-Reviewed Original ResearchConformational transitions in BTG1 antiproliferative protein and their modulation by disease mutants
Kots E, Mlynarczyk C, Melnick A, Khelashvili G. Conformational transitions in BTG1 antiproliferative protein and their modulation by disease mutants. Biophysical Journal 2022, 121: 3753-3764. PMID: 35459639, PMCID: PMC9617077, DOI: 10.1016/j.bpj.2022.04.023.Peer-Reviewed Original ResearchConceptsB-cell translocation gene 1Antiproliferative proteinAssociate with transcriptional cofactorsFamily of antiproliferative proteinsWild-typeFunctional interactionsDisease-linked mutationsSomatic missense mutationsCell cycle progressionMarkov state model analysisConformational transitionBinding partnersTranscriptional cofactorCellular partnersCellular processesProtein regionsDisease mutantsMissense mutationsCycle progressionBinding hotspotsBinding proteinFunctional associationEnsemble of conformationsMolecular mechanismsA2-A4
2021
Integrin-based mechanosensing through conformational deformation
Driscoll TP, Bidone TC, Ahn SJ, Yu A, Groisman A, Voth GA, Schwartz MA. Integrin-based mechanosensing through conformational deformation. Biophysical Journal 2021, 120: 4349-4359. PMID: 34509509, PMCID: PMC8553792, DOI: 10.1016/j.bpj.2021.09.010.Peer-Reviewed Original ResearchConceptsCellular mechanosensingFocal adhesion kinase activationIntegrin conformational activationLarge-scale conformational transitionsWild-type integrinIntegrin mutantsEmbryonic developmentConformational activationCellular stiffnessHigh-affinity stateKinase activationSubstrate stiffnessBiological processesIntegrin activationCell spreadingMutantsIntegrin conformationTraction stressConformational deformationConformational transitionIntegrinsMechanosensingSoluble ligandsAffinity stateMolecular-level information
2018
Liquid and Hydrogel Phases of PrPC Linked to Conformation Shifts and Triggered by Alzheimer’s Amyloid-β Oligomers
Kostylev MA, Tuttle MD, Lee S, Klein LE, Takahashi H, Cox TO, Gunther EC, Zilm KW, Strittmatter SM. Liquid and Hydrogel Phases of PrPC Linked to Conformation Shifts and Triggered by Alzheimer’s Amyloid-β Oligomers. Molecular Cell 2018, 72: 426-443.e12. PMID: 30401430, PMCID: PMC6226277, DOI: 10.1016/j.molcel.2018.10.009.Peer-Reviewed Original ResearchConceptsAmino-terminal GlyCellular prion proteinProtein phase separationAmyloid-β OligomersPlasma membraneMembraneless organellesAla residuesRecombinant PrPPrion proteinCell surfaceConformation shiftConformational transitionHelical conformationAβ speciesPrPSupSpongiform degenerationEndogenous AβOsOrganellesPrPCSuch domainsSpeciesDomainProteinAβOs
2017
Structural basis of MsbA-mediated lipopolysaccharide transport
Mi W, Li Y, Yoon SH, Ernst RK, Walz T, Liao M. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 2017, 549: 233-237. PMID: 28869968, PMCID: PMC5759761, DOI: 10.1038/nature23649.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine DiphosphateATP-Binding Cassette TransportersBacterial ProteinsBiological TransportCell MembraneCryoelectron MicroscopyEscherichia coliHydrophobic and Hydrophilic InteractionsLipid BilayersLipopolysaccharidesModels, MolecularNanostructuresPeriplasmProtein BindingProtein DomainsConceptsPeriplasmic leafletStructural basisSingle-particle cryo-electron microscopyCryo-electron microscopyÅ resolution structureLipid flippasesGram-negative bacteriaLipopolysaccharide transportTransmembrane domainInner membraneCytoplasmic leafletMsbAOuter membraneCell envelopeResolution structureCassette transportersADP-vanadateStructural mechanismsConformational transitionLPS recognitionFunctional stateFlippasesMsbA.Hydrophobic interactionsMembrane
2016
Force regulated conformational change of integrin αVβ3
Chen Y, Lee H, Tong H, Schwartz M, Zhu C. Force regulated conformational change of integrin αVβ3. Matrix Biology 2016, 60: 70-85. PMID: 27423389, PMCID: PMC5237428, DOI: 10.1016/j.matbio.2016.07.002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomechanical PhenomenaBiotinylationCell AdhesionCell LineEndothelial CellsErythrocytesExtracellular MatrixFibronectinsGene ExpressionGlassHumansIntegrin alphaVbeta3KineticsLungMiceMolecular ProbesPoint MutationProtein BindingProtein ConformationSignal TransductionSingle Molecule ImagingConceptsConformational changesTransduce signalsSingle-molecule levelIntegrin functionBiomembrane force probeMolecular machinesPhysiological functionsCell adhesionCell surfaceExtracellular matrixPoint mutationsConformational transitionIntegrinsEssential roleTumor metastasisExtended conformationConformationDynamic equilibriumEctodomainMutationsForce probePhagocytosisMembraneAngiogenesisFunction
2013
Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion
Hohlbein J, Aigrain L, Craggs T, Bermek O, Potapova O, Shoolizadeh P, Grindley N, Joyce C, Kapanidis A. Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion. Nature Communications 2013, 4: 2131. PMID: 23831915, PMCID: PMC3715850, DOI: 10.1038/ncomms3131.Peer-Reviewed Original ResearchConceptsClosed conformationDNA polymerase IIncorrect nucleotidesPolymerase ITernary complexSingle-molecule FRETActive site side chainsNucleotide selectionMutator phenotypeFidelity checkpointPrimary checkpointPhosphoryl transferFidelity mutantsConformational changesConformational landscapeDNA polymeraseNucleotide insertionConformational transitionDNA synthesisFRET valuesNucleotidesFree energy landscapeReduced affinityCheckpointConformationCalcium-dependent conformational transition of calmodulin determined by Fourier transform infrared spectroscopy
Yu T, Wu G, Yang H, Wang J, Yu S. Calcium-dependent conformational transition of calmodulin determined by Fourier transform infrared spectroscopy. International Journal Of Biological Macromolecules 2013, 56: 57-61. PMID: 23403030, DOI: 10.1016/j.ijbiomac.2013.02.004.Peer-Reviewed Original ResearchCell Shape Can Mediate the Spatial Organization of the Bacterial Cytoskeleton
Wang S, Wingreen NS. Cell Shape Can Mediate the Spatial Organization of the Bacterial Cytoskeleton. Biophysical Journal 2013, 104: 541-552. PMID: 23442905, PMCID: PMC3566457, DOI: 10.1016/j.bpj.2012.12.027.Peer-Reviewed Original ResearchConceptsBacterial cytoskeletonCell shapeCytoskeletal filamentsBacterial cytoskeletal proteinsRod-shaped cellsCytoskeletal proteinsCell wallCytoskeletal polymerizationCytoskeletonSpatial patterningMreBConformational transitionSpatial organizationFilament lengthSame membraneFilamentsMembraneFtsZSpatial patternsChemical energyFilament bendingProteinPatterningProper controlMicrofluidic approach
2009
Conformational transitions in DNA polymerase I revealed by single-molecule FRET
Santoso Y, Joyce CM, Potapova O, Le Reste L, Hohlbein J, Torella JP, Grindley ND, Kapanidis AN. Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 107: 715-720. PMID: 20080740, PMCID: PMC2818957, DOI: 10.1073/pnas.0910909107.Peer-Reviewed Original ResearchConceptsDNA polymerase IClosed conformationPolymerase IConformational transitionSingle-molecule fluorescence resonance energy transferEarly stepsSingle-molecule FRETFluorescence resonance energy transferAvailable crystallographic structuresResonance energy transferMost DNA polymerasesComplementary ribonucleotidesChemical stepIncorrect substratesPolymerase moleculesPol DNAReaction pathwaysAcceptor fluorophoresKinetic checkpointsConformational dynamicsConformational flexibilityNucleotide additionStructural studiesDNA polymeraseCrystallographic structure
2005
The Requirement for Mechanical Coupling Between Head and S2 Domains in Smooth Muscle Myosin ATPase Regulation and its Implications for Dimeric Motor Function
Tama F, Feig M, Liu J, Brooks C, Taylor K. The Requirement for Mechanical Coupling Between Head and S2 Domains in Smooth Muscle Myosin ATPase Regulation and its Implications for Dimeric Motor Function. Journal Of Molecular Biology 2005, 345: 837-854. PMID: 15588830, DOI: 10.1016/j.jmb.2004.10.084.Peer-Reviewed Original ResearchConceptsMyosin headsAlpha-helicesATP-dependent molecular motorSmooth muscle myosin IIMyosin II regulationCoiled-coil domainMuscle myosin IIInhibited stateMolecular motorsMyosin IIATPase regulationDimerization domainElastic network normal mode analysisAlpha-helixDomain movementsHomology modelingFunction of molecular motorsMyosinBiochemical dataConformational transitionRegulationNormal mode analysisExperimental structural dataStructural dataHeptad
1993
Substitution of a hydrophobic residue alters the conformational stability of Shaker K+ channels during gating and assembly
McCormack K, Lin L, Sigworth F. Substitution of a hydrophobic residue alters the conformational stability of Shaker K+ channels during gating and assembly. Biophysical Journal 1993, 65: 1740-1748. PMID: 8274662, PMCID: PMC1225901, DOI: 10.1016/s0006-3495(93)81202-5.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBiophysical PhenomenaBiophysicsDNA, ComplementaryDrosophilaDrug StabilityFemaleIon Channel GatingMembrane PotentialsMolecular Sequence DataMutagenesis, Site-DirectedOocytesPeptidesPotassium ChannelsProtein ConformationShaker Superfamily of Potassium ChannelsThermodynamicsXenopus laevisConceptsUncharged amino acid residuesLeucine heptad repeatWild-type subunitsPosition 370Large hydrophobic residuesAmino acid residuesSequence motifsConservative substitutionsHeptad repeatHydrophobic residuesVoltage-gated channelsLeucine residuesAcid residuesTertiary structureS4 segmentSpecific hydrophobic interactionsHydrophilic residuesResidue altersChannel subunitsInactivation gatingChannel complexSubunitsConformational stabilityConformational transitionResidues
1986
Open channel noise. II. A test for coupling between current fluctuations and conformational transitions in the acetylcholine receptor
Sigworth F. Open channel noise. II. A test for coupling between current fluctuations and conformational transitions in the acetylcholine receptor. Biophysical Journal 1986, 49: 1041-1046. PMID: 2423148, PMCID: PMC1329684, DOI: 10.1016/s0006-3495(86)83732-8.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply