2025
CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left‐Right Patterning in Xenopus tropicalis
Kostiuk V, Kabir R, Akbari R, Rushing A, González D, Kim A, Kim A, Zenisek D, Khokha M. CACNA1G, A Heterotaxy Candidate Gene, Plays a Role in Ciliogenesis and Left‐Right Patterning in Xenopus tropicalis. Genesis 2025, 63: e70009. PMID: 40008628, PMCID: PMC11867209, DOI: 10.1002/dvg.70009.Peer-Reviewed Original ResearchConceptsCongenital heart diseaseCACNA1GLow-voltage-activated calcium channelsExpression of Cacna1gCalcium channelsPatient cohortCardiac functionLR patterningHeterotaxyLR organizerChannel familyCACNA1SHeart diseaseLeft-rightG expressionXenopus tropicalisAbnormal expressionProcess of cilia formationCardiac loopingMultiple organsSignaling cascadesLR asymmetryPatientsT-typeEmbryonic development
2021
Extracellular cap domain is an essential component of the TRPV1 gating mechanism
Nadezhdin KD, Neuberger A, Nikolaev YA, Murphy LA, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nature Communications 2021, 12: 2154. PMID: 33846324, PMCID: PMC8041747, DOI: 10.1038/s41467-021-22507-3.Peer-Reviewed Original ResearchConceptsCap domainC-terminusIon conductance pathwaysNumerous physiological processesTransient receptor potential channelsTRP channel familyCryo-EMPhysiological processesChannel familyExtracellular entranceHuman diseasesGating mechanismΒ-sheetConductance pathwayCritical determinantMolecular sensorsOpen probabilityPotential channelsIon selectivityEssential componentTRPV1 functionDomainTerminusProteinDeletion
2019
Mammalian TRP ion channels are insensitive to membrane stretch
Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vásquez V, Laver DR, Martinac B. Mammalian TRP ion channels are insensitive to membrane stretch. Journal Of Cell Science 2019, 132: jcs238360. PMID: 31722978, PMCID: PMC6918743, DOI: 10.1242/jcs.238360.Peer-Reviewed Original ResearchConceptsTRP channelsTouch-insensitive mutantsMembrane stretchIon channelsTRP ion channel familyIon channel familyTransient receptor potential (TRP) ion channelsTRP ion channelsMammalian subfamiliesMammalian membersPotential ion channelsArtificial bilayer systemInsensitive mutantsCytoplasmic tethersDownstream componentsMechanosensory processesSignaling cascadesChannel familyCellular componentsBlood pressure regulationCell membraneCerebrospinal fluid flowMechanical forcesStretch activationPressure regulation
2017
A Gate Hinge Controls the Epithelial Calcium Channel TRPV5
van der Wijst J, Leunissen EH, Blanchard MG, Venselaar H, Verkaart S, Paulsen CE, Bindels RJ, Hoenderop JG. A Gate Hinge Controls the Epithelial Calcium Channel TRPV5. Scientific Reports 2017, 7: 45489. PMID: 28374795, PMCID: PMC5379628, DOI: 10.1038/srep45489.Peer-Reviewed Original ResearchConceptsEpithelial calcium channel TRPV5Detailed molecular insightStructure-function analysisSite-directed mutagenesisChannel gating mechanismCalcium channel TRPV5TRP channel familyCarboxy terminusDepth structure-function analysisFunctional crosstalkGlycine residueHomology modelingMolecular insightsChannel familyCell deathPermeation pathwayChannel functionChannel TRPV5Increased cell deathNovel insightsIntracellular poresGating mechanismFlexible linkerPore regionTRPV5
2015
Retracted: Posttranslational regulation of polycystin‐2 protein expression as a novel mechanism of cholangiocyte reaction and repair from biliary damage
Spirli C, Villani A, Mariotti V, Fabris L, Fiorotto R, Strazzabosco M. Retracted: Posttranslational regulation of polycystin‐2 protein expression as a novel mechanism of cholangiocyte reaction and repair from biliary damage. Hepatology 2015, 62: 1828-1839. PMID: 26313562, PMCID: PMC4681612, DOI: 10.1002/hep.28138.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulum stressorsGene expressionAutophagy pathwayExtracellular signal-regulated kinase 1/2 (ERK1/2) pathwayProtein expressionUbiquitin-like proteinSignal-regulated kinase 1/2 pathwayProteasome inhibitor MG-132HIF-1α transcriptional activityKinase 1/2 pathwayProtein kinase APC2 gene expressionPC2 expressionInhibitor MG-132Activation of ERK1/2Transient receptor potential (TRP) channel familyNonselective calcium channelPosttranslational regulationMember 1 proteinPolycystin-2Treatment of cholangiocytesKinase ATranscriptional activityChannel familyMG-132Single-particle electron microscopy in the study of membrane protein structure
De Zorzi R, Mi W, Liao M, Walz T. Single-particle electron microscopy in the study of membrane protein structure. Microscopy 2015, 65: 81-96. PMID: 26470917, PMCID: PMC4749050, DOI: 10.1093/jmicro/dfv058.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsSingle-particle electron microscopyMembrane protein structuresMembrane proteinsProtein structureAtomic modelElectron microscopyMore membrane proteinsUnprecedented qualityTransient receptor potential (TRP) channel familyDevice cameraChannel familyProteinStructure refinementMicroscopyStructureEnhanced potentialMinor roleCrystalsTechnical advancesTechnical limitationsGreat advantageShort orderFamily
2012
Expression, Purification and Functional Reconstitution of Slack Sodium-Activated Potassium Channels
Yan Y, Yang Y, Bian S, Sigworth FJ. Expression, Purification and Functional Reconstitution of Slack Sodium-Activated Potassium Channels. The Journal Of Membrane Biology 2012, 245: 667-674. PMID: 22729647, PMCID: PMC3903048, DOI: 10.1007/s00232-012-9425-7.Peer-Reviewed Original ResearchConceptsPotassium channel activityΑ-subunitPotassium channel α-subunitChannel activityGene codesFunctional reconstitutionMembrane vesiclesChannel familyCell typesPlanar bilayer membranesPotassium channelsBilayer membranesExpressionReconstitutionPurificationProteinVesiclesMembraneActivityFamilySodium ions
2004
Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1
Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004, 427: 260-265. PMID: 14712238, DOI: 10.1038/nature02282.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAnkyrinsCalcium ChannelsCalcium SignalingCannabinoidsCapsaicinCarbacholCells, CulturedCloning, MolecularDronabinolHumansMustard PlantNerve Tissue ProteinsNeurons, AfferentNociceptorsOocytesPlant OilsRatsRats, Sprague-DawleyRNA, MessengerThapsigarginTransient Receptor Potential ChannelsTrigeminal GanglionTRPA1 Cation ChannelTRPC Cation ChannelsConceptsMustard oilPrimary sensory neuronsSensory nerve fibersSensory nerve endingsTRP ion channel familyExcitatory effectsNerve endingsNerve fibersIon channel familyPungent ingredientSensory neuronsTopical applicationPsychoactive componentΔ9-tetrahydrocannabinolTRP channelsMolecular targetsANKTM1Channel familyMolecular mechanismsAllyl isothiocyanatePainInflammationWidespread useCapsaicinHypersensitivity
2003
International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels
Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O’Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS. International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels. Pharmacological Reviews 2003, 55: 583-586. PMID: 14657415, DOI: 10.1124/pr.55.4.9.Peer-Reviewed Original Research
2001
Receptors and Transduction Mechanisms II: Indirectly Coupled Receptor/Ion Channel Systems
B.Levitan I, Kaczmarek L. Receptors and Transduction Mechanisms II: Indirectly Coupled Receptor/Ion Channel Systems. 2001, 285-314. DOI: 10.1093/oso/9780195145236.003.0012.Peer-Reviewed Original ResearchExtracellular signalsSingle protein complexIon channel familyMembrane ion channelsBiological responsesFamily of receptorsProtein complexesIntercellular communicationTarget cellsChannel familyIon channelsIon channel systemsCellsSpecific receptorsNeuronal excitabilityParticular target cellsFinal stepReceptorsFamilyTransductionBiochemistryComplexesResponseExcitabilityNeuronsBradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition
Chuang H, Prescott E, Kong H, Shields S, Jordt S, Basbaum A, Chao M, Julius D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 2001, 411: 957-962. PMID: 11418861, DOI: 10.1038/35082088.Peer-Reviewed Original ResearchConceptsPlasma membrane phosphatidylinositolNerve growth factorTyrosine kinase receptorsActivation of PLCGrowth factorTRP channel familyMembrane phosphatidylinositolChannel familyKinase receptorsBiochemical mechanismsMolecular levelBiochemical studiesIon channelsCellular levelChannel activityHeat-activated ion channelExpression of VR1Sensory nerve endingsChemical stimuliSense of painSensory neuronsEndogenous factorsPrimary afferentsNerve endingsCapsaicin receptor
1996
Effects of Rapamycin on Ryanodine Receptor/Ca2+-Release Channels From Cardiac Muscle
Kaftan E, Marks A, Ehrlich B. Effects of Rapamycin on Ryanodine Receptor/Ca2+-Release Channels From Cardiac Muscle. Circulation Research 1996, 78: 990-997. PMID: 8635249, DOI: 10.1161/01.res.78.6.990.Peer-Reviewed Original ResearchConceptsRelease channelFK506-binding proteinCardiac muscleLong-term depressionEffect of rapamycinChannel functionProlyl isomerase activityRelease of Ca2Ryanodine receptor/Ca2Immunosuppressant drugsSkeletal muscle isoformCardiac RyRIsomerase activityRyanodine receptorRapamycinRyRsChannel familyImportant regulatory roleCis-trans peptidylOpen probabilitySubmicromolar concentrationsCell typesDrugsMuscleMuscle isoform
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply