2025
PLK4 inhibition as a strategy to enhance non-small cell lung cancer radiosensitivity.
Dominguez-Vigil I, Banik K, Baro M, Contessa J, Hayman T. PLK4 inhibition as a strategy to enhance non-small cell lung cancer radiosensitivity. Molecular Cancer Therapeutics 2025, of1-of12. PMID: 40296663, DOI: 10.1158/1535-7163.mct-24-0978.Peer-Reviewed Original ResearchNon-small cell lung cancerLung cancerCFI-400945Mitotic catastropheNon-small cell lung cancer radiosensitizationRadiosensitivity of NSCLC cell linesCentrosome amplificationRadiation-induced tumor growth delayPLK4 inhibitionCell deathCurative-intent chemoradiationIncreased G2/M cell cycle arrestPolo-like kinase 4Subtype of lung cancerCell lung cancerIncreased centrosome amplificationCancer-related mortalityG2/M cell cycle arrestNSCLC cell linesCell cycle phase distributionClinical trial evaluationTargeting PLK4NSCLC in vitroCell cycle arrestPotential therapeutic targetInhibition of MIF with an Allosteric Inhibitor Triggers Cell Cycle Arrest in Acute Myeloid Leukemia
Pantouris G, Khurana L, Tilstam P, Benner A, Cho T, Lelaidier M, Perrée M, Rosenbaum Z, Leng L, Foss F, Bhandari V, Verma A, Bucala R, Lolis E. Inhibition of MIF with an Allosteric Inhibitor Triggers Cell Cycle Arrest in Acute Myeloid Leukemia. ACS Omega 2025, 10: 17441-17452. PMID: 40352549, PMCID: PMC12059935, DOI: 10.1021/acsomega.4c10969.Peer-Reviewed Original ResearchAcute myeloid leukemiaMacrophage migration inhibitory factorCell cycle arrestNational Cancer InstituteMyeloid leukemiaMicroenvironment of acute myeloid leukemiaMIF receptorMultiple AML cell linesCycle arrestAcute myeloid leukemia pathogenesisInhibition of macrophage migration inhibitory factorPromote tumor cell survivalAcute myeloid leukemia cell survivalAcute myeloid leukemia cellsCell survivalCell linesAcute myeloid leukemia cell line HL-60Triggered cell cycle arrestTumor cell survivalAML cell linesMigration inhibitory factorMIF inhibitorExtract mechanistic insightsG0/G1 cell cycle arrestProliferation of AML cellsAdding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury
Baker M, Cantley L. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. Journal Of Clinical Investigation 2025, 135: e188358. PMID: 40091836, PMCID: PMC11910233, DOI: 10.1172/jci188358.Peer-Reviewed Original ResearchConceptsAcute kidney injuryTubular epithelial cellsKidney injuryTubular cellsCases of acute kidney injuryImmune-mediated processPersistence of inflammationBiphasic immune responseChronic kidney diseaseCell deathTubular cell injuryLymphocyte subsetsTubular repairCell cycle arrestOutflow obstructionTEC differentiationPreclinical findingsLymphocytic infiltrationProinflammatory macrophagesKidney diseaseModulate inflammationImmune responseActivated macrophagesMetabolic reprogrammingTubular castsGenome-scale CRISPR/Cas9 screening reveals the role of PSMD4 in colibactin-mediated cell cycle arrest
Dougherty M, Hoffmann R, Hernandez M, Airan Y, Gharaibeh R, Herzon S, Yang Y, Jobin C. Genome-scale CRISPR/Cas9 screening reveals the role of PSMD4 in colibactin-mediated cell cycle arrest. MSphere 2025, 10: e00692-24. PMID: 39918307, PMCID: PMC11934320, DOI: 10.1128/msphere.00692-24.Peer-Reviewed Original ResearchConceptsCell cycle arrestCycle arrestCRISPR/Cas9 screenDNA damageGenome-scale CRISPR/Cas9 screensGenome-wide CRISPR/Cas9 knockout screenRegulating cell cycle arrestRNA polymerase IIIRNA processing factorsCRISPR/Cas9 knockout screenG2-M cell cycle arrestGenotoxic secondary metabolitesHT-29 cellsHost response pathwaysPolymerase IIIKnockout screenHost pathwaysCell fateProteasome subunitsColony sizeColibactin-producing bacteriaColibactinRNA sequencingColony formation rateGene expressioncSTAR analysis identifies endothelial cell cycle as a key regulator of flow-dependent artery remodeling
Deng H, Rukhlenko O, Joshi D, Hu X, Junk P, Tuliakova A, Kholodenko B, Schwartz M. cSTAR analysis identifies endothelial cell cycle as a key regulator of flow-dependent artery remodeling. Science Advances 2025, 11: eado9970. PMID: 39752487, PMCID: PMC11698091, DOI: 10.1126/sciadv.ado9970.Peer-Reviewed Original ResearchConceptsShear stressCell cycle-dependent kinasesHigh shear stressLow shear stressOscillatory shear stressPhysiological shear stressFluid shear stressCell cycle arrestRegulatory networksTranscriptomic statesResponse to drug treatmentCycle arrestCell cycleEndothelial cell cycleDisease susceptibilityRegulatory mechanismsVessel behaviorCDK2Endothelial cellsIn vitroStressRegulationVascular endothelial cellsRemodelingCells
2024
CRISPR-based dissection of microRNA-23a ~ 27a ~ 24-2 cluster functionality in hepatocellular carcinoma
Cui M, Liu Z, Wang S, Bae S, Guo H, Zhou J, Liu R, Wang L. CRISPR-based dissection of microRNA-23a ~ 27a ~ 24-2 cluster functionality in hepatocellular carcinoma. Oncogene 2024, 43: 2708-2721. PMID: 39112518, PMCID: PMC11364504, DOI: 10.1038/s41388-024-03115-z.Peer-Reviewed Original ResearchConceptsMiR-23aMiR-27aCRISPR interferenceCRISPR activationHigh-throughput RNA-seqCell migrationCDK1/cyclin B activityReduced cell growth in vitroMiRNA target predictionCell cycle arrestMiRNA clusterHepatocellular carcinoma cellsCell growth in vitroRNA-seqGene networksTarget predictionCRISPR knockoutOncogenic roleGrowth in vitroCycle arrestMature miRNAsMiRNAsG2/M phaseSignaling pathwayOncogenic functionUBXN3B is crucial for B lymphopoiesis
Geng T, Yang D, Lin T, Harrison A, Wang B, Cao Z, Torrance B, Fan Z, Wang K, Wang Y, Yang L, Haynes L, Cheng G, Vella A, Flavell R, Pereira J, Fikrig E, Wang P. UBXN3B is crucial for B lymphopoiesis. EBioMedicine 2024, 106: 105248. PMID: 39018756, PMCID: PMC11287013, DOI: 10.1016/j.ebiom.2024.105248.Peer-Reviewed Original ResearchUbiquitin regulatory XPre-BCR signalingB cell receptorB lymphopoiesisKnockout miceValosin-containing proteinCaspase-3 protein levelsCell cycle arrestBone marrow transferNormal B lymphopoiesisUbiquitin ligaseIncreased viral loadCell-intrinsic mannerPathogenesis of severe acute respiratory syndrome coronavirus 2RNA sequencingCycle arrestDNA virusesCell survivalMarrow transferMultiple virusesSingle-cellImmunofluorescence microscopyViral loadMature BRespiratory virusesSenNet recommendations for detecting senescent cells in different tissues
Suryadevara V, Hudgins A, Rajesh A, Pappalardo A, Karpova A, Dey A, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver C, Aguayo-Mazzucato C, Baker D, Bernlohr D, Jurk D, Mangarova D, Quardokus E, Enninga E, Schmidt E, Chen F, Duncan F, Cambuli F, Kaur G, Kuchel G, Lee G, Daldrup-Link H, Martini H, Phatnani H, Al-Naggar I, Rahman I, Nie J, Passos J, Silverstein J, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer L, Ding L, Wang L, Adams L, Ruiyang L, Doolittle M, Teneche M, Schafer M, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez P, Vasilikos P, Adams P, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery R, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic V, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nature Reviews Molecular Cell Biology 2024, 25: 1001-1023. PMID: 38831121, PMCID: PMC11578798, DOI: 10.1038/s41580-024-00738-8.Peer-Reviewed Original ResearchSenescent cellsDetect senescent cellsIrreversible cell cycle arrestCellular senescenceCell cycle arrestSenescence markersBiomarker Working GroupCycle arrestCellular senescence markersBiological processesCell biologyPostmitotic cellsSenescent phenotypeCirculating markersTissue culture studiesSenescence signatureSenescenceCellsMorphological featuresDetrimental roleTissueMarkersSeasonal investigationStructural insights into PPP2R5A degradation by HIV-1 Vif
Hu Y, Delviks-Frankenberry K, Wu C, Arizaga F, Pathak V, Xiong Y. Structural insights into PPP2R5A degradation by HIV-1 Vif. Nature Structural & Molecular Biology 2024, 31: 1492-1501. PMID: 38789685, DOI: 10.1038/s41594-024-01314-6.Peer-Reviewed Original ResearchHost-virus protein interactionsCullin RING E3 ubiquitin ligasesInduced G2/M cell cycle arrestSets of proteinsG2/M cell cycle arrestSubstrate-binding siteCryogenic-electron microscopy structuresProtein phosphatase 2ADegradation-independent mechanismCell cycle arrestUbiquitin ligaseProtein interactionsPhosphatase 2AAntiviral proteinCycle arrestDegradation-dependentA-resolutionHIV-1 VifPPP2R5AStructural insightsDiverse interactionsProteinCellular studiesPhosphatase activityPotential target1073 GENOME-SCALE CRISPR/CAS9 SCREENING REVEALS THE ROLE OF PSMD4 IN COLIBACTIN-MEDIATED CELL CYCLE ARREST
Dougherty M, Hoffmann R, Airan Y, Gharaibeh R, Herzon S, Yang Y, Jobin C. 1073 GENOME-SCALE CRISPR/CAS9 SCREENING REVEALS THE ROLE OF PSMD4 IN COLIBACTIN-MEDIATED CELL CYCLE ARREST. Gastroenterology 2024, 166: s-253. DOI: 10.1016/s0016-5085(24)01066-7.Peer-Reviewed Original ResearchRole of Neurocellular Endoplasmic Reticulum Stress Response in Alzheimer’s Disease and Related Dementias Risk
Aceves M, Granados J, Leandro A, Peralta J, Glahn D, Williams-Blangero S, Curran J, Blangero J, Kumar S. Role of Neurocellular Endoplasmic Reticulum Stress Response in Alzheimer’s Disease and Related Dementias Risk. Genes 2024, 15: 569. PMID: 38790197, PMCID: PMC11121587, DOI: 10.3390/genes15050569.Peer-Reviewed Original ResearchTranscriptional response to ER stressProtein kinase RNA-like ER kinaseActivating transcription factor 6Inositol-requiring enzyme-1ER stress responseUnfolded protein responseElevated endoplasmic reticulumAlzheimer's diseaseResponse to ER stressSarco/endoplasmic reticulum Ca2+-ATPaseNeural stem cellsRNA-like ER kinaseStress responseAnalysis of DE genesG1/S phase cell cycle arrestEndoplasmic reticulum stress responseInduced G1/S-phase cell cycle arrestPostmortem AD brainsGene network analysisTranscription factor 6E2F transcription factor 1Animal models of ADCell cycle arrestModel of ADBinding protein 1Temporal coordination of the transcription factor response to H2O2 stress
Jose E, March-Steinman W, Wilson B, Shanks L, Parkinson C, Alvarado-Cruz I, Sweasy J, Paek A. Temporal coordination of the transcription factor response to H2O2 stress. Nature Communications 2024, 15: 3440. PMID: 38653977, PMCID: PMC11039679, DOI: 10.1038/s41467-024-47837-w.Peer-Reviewed Original ResearchConceptsGroup of transcription factorsTranscription factorsResponse to H2O2 stressTranscription factor activityCell cycle arrestDose-dependent outcomeRepair oxidative damageOxidative stressDose-dependent activationTime-lapse imagingH2O2 stressCell deathRestoring redox balanceDose-dependentlyTranscriptionRedox balanceGlucose oxidase enzymeNF-kBFactor activityEfficacy and safety of brigimadlin (BI 907828), an MDM2–p53 antagonist, in patients (pts) with advanced biliary tract cancer: Data from two phase Ia/Ib dose-escalation/expansion trials.
Macarulla T, Yamamoto N, Tolcher A, Hafez N, Lugowska I, Ramlau R, Geng J, Li J, Teufel M, Maerten A, LoRusso P. Efficacy and safety of brigimadlin (BI 907828), an MDM2–p53 antagonist, in patients (pts) with advanced biliary tract cancer: Data from two phase Ia/Ib dose-escalation/expansion trials. Journal Of Clinical Oncology 2024, 42: 487-487. DOI: 10.1200/jco.2024.42.3_suppl.487.Peer-Reviewed Original ResearchBiliary tract cancerTreatment-related AEsAdvanced biliary tract cancerMonotherapy trialsStable diseasePartial responseCombination trialsMouse double minute 2MDM2-p53 antagonistsEscalating dosesSolid tumorsCases of biliary tract cancerTP53 wild-type tumorsAnti-PD-1 antibodyStandard-of-care chemotherapyData cut-offWild-type tumorsAdvanced/metastatic solid tumorsResponding ptsMDM2-p53MDM2 amplified tumorsDouble minute 2MDM2-amplifiedAmpullary adenocarcinomaCell cycle arrest
2023
Computational Discovery and Validation of NAD+ Biosynthesis As Unique Vulnerability in B-Lymphoid Malignancies
Li Q, Robinson M, Leveille E, Zhang C, Sun R, Cheng Z, Kume K, Cosgun K, Kothari S, Khanduja D, Nakada D, Müschen M. Computational Discovery and Validation of NAD+ Biosynthesis As Unique Vulnerability in B-Lymphoid Malignancies. Blood 2023, 142: 418. DOI: 10.1182/blood-2023-190269.Peer-Reviewed Original ResearchSmall molecule inhibitorsDrug discovery toolNAMPT inhibitorsCompound screenCell type-specific targetsCell linesMolecule inhibitorsPurine/pyrimidine metabolismTumor cell linesEnergy metabolismSalvage biosynthesis pathwaySolid tumor cell linesB cell developmentCellular energy metabolismB cell signalingAmino acid metabolismCell cycle arrestDiscovery toolDepletion of metabolitesBiosynthesis pathwayCompetitive fitnessRate-limiting enzymeNAMPT deletionConditional mouse modelEnergy stressMYC to BCL6 State-Transitions Determine Cell Size and Metabolic Fluctuations and Define a Novel Biorhythm in B-Cell Malignancies
Cheng Z, Kume K, Müschen M. MYC to BCL6 State-Transitions Determine Cell Size and Metabolic Fluctuations and Define a Novel Biorhythm in B-Cell Malignancies. Blood 2023, 142: 2769. DOI: 10.1182/blood-2023-190972.Peer-Reviewed Original ResearchGerminal center-derived B-cell lymphomaB cell developmentCell size fluctuationsCell cycleImmunoglobulin light chain gene recombinationDNA damage-induced apoptosisDistinct cellular statesNormal B cell developmentDamage-induced apoptosisExit cell cycleCell sizeB cell transitionGene expression profilesQuiescent phenotypeOncogenic tyrosine kinasesCell cycle arrestActivation of autophagySingle-cell sortingCellular statesCell divisionHigher glycolysis activityMYC transcriptionB cell cycleSuppression of glycolysisExpression profilesPaclitaxel effects on axonal localization and vesicular trafficking of NaV1.8
Baker C, Tyagi S, Higerd-Rusli G, Liu S, Zhao P, Dib-Hajj F, Waxman S, Dib-Hajj S. Paclitaxel effects on axonal localization and vesicular trafficking of NaV1.8. Frontiers In Molecular Neuroscience 2023, 16: 1130123. PMID: 36860665, PMCID: PMC9970094, DOI: 10.3389/fnmol.2023.1130123.Peer-Reviewed Original ResearchChemotherapy-induced peripheral neuropathyDorsal root gangliaPTX treatmentDRG axonsEffect of paclitaxelVoltage-gated sodium channel NaPain syndromePeripheral neuropathyDRG neuronsSodium channel NaRoot gangliaCell cycle arrestNeuronal somataSensory neuronsSide effectsTherapeutic targetingTumor growthPaclitaxel effectAntineoplastic agentsAxonal localizationPaclitaxelNumber of NaAxonal compartmentAxonsChannel NaHyperosmotic stress response regulates interstitial homeostasis and pathogenic inflammation
Sumida T. Hyperosmotic stress response regulates interstitial homeostasis and pathogenic inflammation. The Journal Of Biochemistry 2023, 173: 159-166. PMID: 36722164, DOI: 10.1093/jb/mvad009.Peer-Reviewed Original ResearchConceptsHyperosmotic stress responseStress responseCell type-specific mannerFundamental cellular responsesType-specific mannerHeat shock proteinsCell cycle arrestImmune cell differentiationOsmolyte synthesisContext of diseaseHyperosmotic stressIon transportersHyperosmotic responseMetabolic remodelingMolecular mechanismsCellular responsesShock proteinsCell differentiationHuman diseasesCellular shrinkageCycle arrestAdaptative responseSpecific mannerTissue microenvironmentTissue immune homeostasis3189 – REVISITING THE HEMATOPOIETIC AND ERYTHROPOIETIC DEFECTS IN RPS19 AND RPL5 HAPLOINSUFFICIENCY AT THE DEVELOPMENTAL LEVEL
Tang Y, Ling T, Durand S, Palis J, Steiner L, Mohandas N, Gallagher P, Lipton J, Crispino J, Blanc L. 3189 – REVISITING THE HEMATOPOIETIC AND ERYTHROPOIETIC DEFECTS IN RPS19 AND RPL5 HAPLOINSUFFICIENCY AT THE DEVELOPMENTAL LEVEL. Experimental Hematology 2023, 124: s144. DOI: 10.1016/j.exphem.2023.06.296.Peer-Reviewed Original ResearchRibosomal proteinsDiamond-Blackfan anemiaGlobal protein synthesisTerminal erythroid differentiationStem cell exhaustionHematopoietic stem cell exhaustionKey transcription factorInherited bone marrow failure syndromeFailure of erythropoiesisCell cycle arrestHematopoietic developmentMutant cellsTranscription factorsProgenitor stageCRISPR/Erythroid differentiationVav-iCreMendelian ratioDefective erythropoiesisRPS19Bone marrow failure syndromesLoxP sitesProtein synthesisBone marrow failureHematopoietic progenitors
2022
Cell Cycle and Senescence Regulation by Podocyte Histone Deacetylase 1 and 2
Rangel P, Cross E, Liu C, Pedigo C, Tian X, Gutiérrez-Calabrés E, Nagata S, Priyadarshini A, Lerner G, Bunda P, Perincheri S, Gu J, Zhao H, Wang Y, Inoue K, Ishibe S. Cell Cycle and Senescence Regulation by Podocyte Histone Deacetylase 1 and 2. Journal Of The American Society Of Nephrology 2022, 34: 433-450. PMID: 36414418, PMCID: PMC10103311, DOI: 10.1681/asn.2022050598.Peer-Reviewed Original ResearchConceptsCell cycle entryDNA damageSenescence-associated β-galactosidase activityDouble knockout miceRole of HDACsNormal glomerular filtration barrierAssociated phenotypesP21-mediated cell cycle arrestOpen chromatin conformationGlomerular filtration barrierSevere proteinuriaKidney failureProinflammatory cytokinesCell cycle regulationHistone deacetylase 1Cell cycle arrestKi67 expressionSustained DNA damagePodocyte lossIntact expressionMice leadsPodocyte-specific lossMatrix metalloproteinasesPodocyte detachmentProteinuriatRNA-m1A modification promotes T cell expansion via efficient MYC protein synthesis
Liu Y, Zhou J, Li X, Zhang X, Shi J, Wang X, Li H, Miao S, Chen H, He X, Dong L, Lee GR, Zheng J, Liu RJ, Su B, Ye Y, Flavell RA, Yi C, Wu Y, Li HB. tRNA-m1A modification promotes T cell expansion via efficient MYC protein synthesis. Nature Immunology 2022, 23: 1433-1444. PMID: 36138184, DOI: 10.1038/s41590-022-01301-3.Peer-Reviewed Original ResearchConceptsCell expansionKey functional proteinsVivo physiological roleDe novo protein productionCell cycle arrestTranslational controlRNA modificationsMyc proteinFunctional proteinsTranslation efficiencyKey proteinsCell homeostasisProtein productionPhysiological roleProtein synthesisProliferative stateCycle arrestConditional deletionT cell homeostasisNaive T cellsProteinQuiescent stateSpecific subsetT cellsCells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply