2025
p53-inducible lncRNA LOC644656 causes genotoxic stress-induced stem cell maldifferentiation and cancer chemoresistance
Tamura A, Yamagata K, Kono T, Fujimoto M, Fuchigami T, Nishimura M, Yokoyama M, Nakayama A, Hashimoto N, Sakuma I, Mitsukawa N, Kawashima Y, Ohara O, Motohashi S, Kawakami E, Miki T, Onodera A, Tanaka T. p53-inducible lncRNA LOC644656 causes genotoxic stress-induced stem cell maldifferentiation and cancer chemoresistance. Nature Communications 2025, 16: 4818. PMID: 40410129, PMCID: PMC12102190, DOI: 10.1038/s41467-025-59886-w.Peer-Reviewed Original ResearchConceptsDNA damage responseDamage responseDNA damageDNA damage signalingResistance to genotoxic stressTGF-b signalingGenotoxic stressDamage signalingDNA-PKcsLineage-specific differentiationLoss of stemnessPoor patient survivalStem cell biologyEmbryonic stem cellsMolecular mechanismsDNACell biologyEnhanced chemoresistanceCancer chemoresistancePotential therapeutic targetDifferentiation pathwayCell propagationHuman embryonic stem cellsStem cell propagationChemoresistanceIn Memoriam: Mike Sheetz
Wolfenson H, Giannone G, Schwartz M. In Memoriam: Mike Sheetz. Journal Of Cell Biology 2025, 224: e202503048. PMCID: PMC11927584, DOI: 10.1083/jcb.202503048.Peer-Reviewed Original ResearchPhysiologic mechanisms underlying polycystic kidney disease
Boletta A, Caplan M. Physiologic mechanisms underlying polycystic kidney disease. Physiological Reviews 2025, 105: 1553-1607. PMID: 39938884, PMCID: PMC12174308, DOI: 10.1152/physrev.00018.2024.Peer-Reviewed Original ResearchPrimary ciliaPolycystic kidney diseaseTrafficking of proteinsHuman ciliopathiesExtracellular signalsMultiple genesKidney diseaseProtein productionMolecular basisCell biologyMonogenic disordersCyst formationGenesRenal epithelial cellsProteinCiliaBiochemical informationApical surfaceEpithelial cellsFunctional expressionPhysiological propertiesWealth of informationPhysiological mechanismsCellsFibrocystin
2024
DNA-Based Molecular Clamp for Probing Protein Interactions and Structure under Force
Chung M, Zhou K, Powell J, Lin C, Schwartz M. DNA-Based Molecular Clamp for Probing Protein Interactions and Structure under Force. ACS Nano 2024, 18: 27590-27596. PMID: 39344156, PMCID: PMC11518680, DOI: 10.1021/acsnano.4c08663.Peer-Reviewed Original ResearchConceptsTalin rod domainNegative-stain electron microscopyDouble-stranded DNADNA clampProtein functionRod domainCryptic sitesProtein interactionsMolecular clampCellular mechanotransductionStudy proteinsBiochemical studiesCell biologyAdult physiologyProtein conformationTalinProteinBiochemical scaleMultiple diseasesDNAARPC5LVinculinStructural analysisEmbryogenesisDNA-based devicesPIWI-interacting RNAs: who, what, when, where, why, and how
Haase A, Ketting R, Lai E, van Rij R, Siomi M, Svoboda P, van Wolfswinkel J, Wu P. PIWI-interacting RNAs: who, what, when, where, why, and how. The EMBO Journal 2024, 43: 5335-5339. PMID: 39327528, PMCID: PMC11574264, DOI: 10.1038/s44318-024-00253-8.Peer-Reviewed Original ResearchPIWI-interacting RNAsPiRNA biologySelfish genetic elementsAdult mammalian testisGerm cell biologyRegulate gene expressionPIWI proteinsMammalian testisGenetic elementsEvolutionary biologistsAntiviral defenseGene expressionCell biologyBiologyPIWIRNATestisGeneticistsBiologistsProteinGermPlanariaDefenseExpressionBiochemistsA comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals
Konstantinidou P, Loubalova Z, Ahrend F, Friman A, Almeida M, Poulet A, Horvat F, Wang Y, Losert W, Lorenzi H, Svoboda P, Miska E, van Wolfswinkel J, Haase A. A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals. Cell Reports 2024, 43: 114777. PMID: 39302833, PMCID: PMC11615739, DOI: 10.1016/j.celrep.2024.114777.Peer-Reviewed Original ResearchPIWI-interacting RNAsPiwi-interacting RNA clustersPiRNA clustersPiRNA biologySilencing mobile genetic elementsGenomic piRNA clustersSingle-stranded precursorsMobile genetic elementsSafeguarding genome integrityGerm cell biologySpecies-specific variationGenome invadersTranscriptional readthroughTransposon insertionGenetic elementsGenome integrityRetroviral invasionMolecular mechanismsCell biologyRNAMammalsSpeciesBiologyTransposonReadthroughThe physiological and pathological roles of RNA modifications in T cells
Deng Y, Zhou J, Li H. The physiological and pathological roles of RNA modifications in T cells. Cell Chemical Biology 2024, 31: 1578-1592. PMID: 38986618, DOI: 10.1016/j.chembiol.2024.06.003.Peer-Reviewed Original ResearchRNA modificationsDynamic chemical modificationsInternal RNA modificationFunctions of mammalian cellsT cell developmentPathological roleRNA transcriptsCellular stimuliMammalian cellsRNA moleculesPost-transcriptionallyT cell biologyT cell survivalT cellsCell developmentCell survivalCell biologyRNAT cell-based immunotherapyCell-based immunotherapyT cell immunityAdaptive immunityCellsDifferentiationCell immunitySenNet recommendations for detecting senescent cells in different tissues
Suryadevara V, Hudgins A, Rajesh A, Pappalardo A, Karpova A, Dey A, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver C, Aguayo-Mazzucato C, Baker D, Bernlohr D, Jurk D, Mangarova D, Quardokus E, Enninga E, Schmidt E, Chen F, Duncan F, Cambuli F, Kaur G, Kuchel G, Lee G, Daldrup-Link H, Martini H, Phatnani H, Al-Naggar I, Rahman I, Nie J, Passos J, Silverstein J, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer L, Ding L, Wang L, Adams L, Ruiyang L, Doolittle M, Teneche M, Schafer M, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez P, Vasilikos P, Adams P, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery R, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic V, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nature Reviews Molecular Cell Biology 2024, 25: 1001-1023. PMID: 38831121, PMCID: PMC11578798, DOI: 10.1038/s41580-024-00738-8.Peer-Reviewed Original ResearchSenescent cellsDetect senescent cellsIrreversible cell cycle arrestCellular senescenceCell cycle arrestSenescence markersBiomarker Working GroupCycle arrestCellular senescence markersBiological processesCell biologyPostmitotic cellsSenescent phenotypeCirculating markersTissue culture studiesSenescence signatureSenescenceCellsMorphological featuresDetrimental roleTissueMarkersSeasonal investigationEngineered heart tissue: Design considerations and the state of the art
Gokhan I, Blum T, Campbell S. Engineered heart tissue: Design considerations and the state of the art. Biophysics Reviews 2024, 5: 021308. PMID: 38912258, PMCID: PMC11192576, DOI: 10.1063/5.0202724.Peer-Reviewed Original ResearchTargeting immunogenic cell stress and death for cancer therapy
Galluzzi L, Guilbaud E, Schmidt D, Kroemer G, Marincola F. Targeting immunogenic cell stress and death for cancer therapy. Nature Reviews Drug Discovery 2024, 23: 445-460. PMID: 38622310, PMCID: PMC11153000, DOI: 10.1038/s41573-024-00920-9.Peer-Reviewed Original ResearchImmunogenic cell deathTherapeutic strategiesImmunogenic cell death inducerImmunologically cold tumorsConventional therapeutic strategiesCell deathCancer cell biologyICD inducersCold tumorsAnticancer treatmentCancer therapyCancerCell stressDeathTreatmentCell biologyTranslational effortsImmunotherapyDiscovery platformTumorTherapyInducerLesionsImmunologyOptimizing Visualization of Axonal Transport of Endogenous Cargo by Fluorescence Microscopy in Living Caenorhabditis elegans.
Glomb O, Lyu M, Yogev S. Optimizing Visualization of Axonal Transport of Endogenous Cargo by Fluorescence Microscopy in Living Caenorhabditis elegans. Journal Of Visualized Experiments 2024 PMID: 38436410, DOI: 10.3791/66236.Peer-Reviewed Original ResearchConceptsSynaptic vesicle precursorsCaenorhabditis elegansAxonal cargosLoss of axonal transportCRISPR-Cas9 genome editingAxonal transportImpairs neuronal growthNeuronal cell biologySite of synthesisCas9 genome editingRAB-3Vesicle precursorsC. elegansGenome editingEndogenous labelingEndogenous cargoAxonal proteinsLiving Caenorhabditis elegansCell biologyCytoplasmic backgroundFluorescence microscopyCargoNeuronal growthNeuronal cell bodiesCaenorhabditisA serendipitous discovery of a family of membrane remodelling proteins
De Camilli P. A serendipitous discovery of a family of membrane remodelling proteins. Nature Cell Biology 2024, 26: 173-173. PMID: 38307996, DOI: 10.1038/s41556-023-01307-5.Peer-Reviewed Original ResearchCalcium flow at ER-TGN contact sites facilitates secretory cargo export
Ramazanov B, Parchure A, Di Martino R, Kumar A, Chung M, Kim Y, Griesbeck O, Schwartz M, Luini A, von Blume J. Calcium flow at ER-TGN contact sites facilitates secretory cargo export. Molecular Biology Of The Cell 2024, 35: ar50. PMID: 38294859, PMCID: PMC11064664, DOI: 10.1091/mbc.e23-03-0099.Peer-Reviewed Original ResearchHow cell biology can save the planet
Neugebauer K. How cell biology can save the planet. Nature Cell Biology 2024, 26: 4-4. PMID: 38228830, DOI: 10.1038/s41556-023-01305-7.Peer-Reviewed Original Research
2023
Five questions on how biochemistry can combat climate change
Chen K, Guo Y, How K, Acosta A, Documet D, Liang C, Arul D, Wood S, Moon K, Oliver L, Fajardo E, Kopyto M, Shine M, Neugebauer K. Five questions on how biochemistry can combat climate change. BBA Advances 2023, 4: 100111. PMID: 38075469, PMCID: PMC10709155, DOI: 10.1016/j.bbadva.2023.100111.Peer-Reviewed Original ResearchClimate changeCell biologyGreater ecosystemMolecular biophysicsEnvironmental changesEnvironmental conditionsOrganismsBiochemistryMolecular pointNew diseaseHuman activitiesDispersalMicrobesGeneticsBiologyEcosystemsPlantsGlobal warmingPathwayHigh levelsSalt concentrationBiophysicsCellsAccumulationWeather patternsExploiting a rodent cell block for intrinsic resistance to HIV-1 gene expression in human T cells
Behrens R, Rajashekar J, Bruce J, Evans E, Hansen A, Salazar-Quiroz N, Simons L, Ahlquist P, Hultquist J, Kumar P, Sherer N. Exploiting a rodent cell block for intrinsic resistance to HIV-1 gene expression in human T cells. MBio 2023, 14: e00420-23. PMID: 37676006, PMCID: PMC10653828, DOI: 10.1128/mbio.00420-23.Peer-Reviewed Original ResearchConceptsCyclin T1Species-specific differencesViral gene expressionGene expressionHost proteinsIntron-containing viral RNAsBroad-spectrum resistanceHost cell biologyCRISPR/Cas9 geneLatency reversal agentsIsogenic cell linesHuman T cellsEfficient HIV-1 transcriptionHIV-1 gene expressionCell linesViral RNA transcriptionT cellsSpecies-specific regionsCell-intrinsic defectHIV-1 virion productionHousekeeping proteinsNuclear exportRNA transcriptionCell biologyCas9 geneProduction and Purification of Cysteine-Rich Leptospiral Virulence-Modifying Proteins with or Without mCherry Fusion
Chaurasia R, Liang C, How K, Vieira D, Vinetz J. Production and Purification of Cysteine-Rich Leptospiral Virulence-Modifying Proteins with or Without mCherry Fusion. The Protein Journal 2023, 42: 792-801. PMID: 37653175, DOI: 10.1007/s10930-023-10152-2.Peer-Reviewed Original ResearchMCherry fusion proteinsFusion proteinMCherry tagGene familyMCherry fusionsProtein productionFluorescent fusion proteinsRecombinant protein expressionRecombinant protein productionVM proteinsSuch proteinsFunctional proteinsCell biologyLike domainFast protein liquid chromatographyLeptospiral virulenceSoluble proteinUnique memberPink coloniesProtein scienceStructural predictionsProtein liquid chromatographyRicin BFunctional studiesProtein
2022
Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes
Wang H, Keepers B, Qian Y, Xie Y, Colon M, Liu J, Qian L. Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes. Cell Stem Cell 2022, 29: 1491-1504.e9. PMID: 36206732, PMCID: PMC9557912, DOI: 10.1016/j.stem.2022.09.006.Peer-Reviewed Original ResearchConceptsTranscription factorsLineage-specific featuresRegulatory transcription factorsAltering cell fateChIP-seqRNA-seqEpigenome remodelingCell fateTranscriptional activityASCL1 bindingNeuronal genesStem cell biologyReprogramming cellsCell biologyReprogrammingAscl1Cardiac genesField of stem cell biologyTranscriptionGenesDirect reprogrammingMEF2CReprogramming approachCardiomyocyte phenotypeCardiac reprogrammingMultiparameter analysis of timelapse imaging reveals kinetics of megakaryocytic erythroid progenitor clonal expansion and differentiation
Scanlon VM, Thompson EN, Lawton BR, Kochugaeva M, Ta K, Mayday MY, Xavier-Ferrucio J, Kang E, Eskow NM, Lu YC, Kwon N, Laumas A, Cenci M, Lawrence K, Barden K, Larsuel ST, Reed FE, Peña-Carmona G, Ubbelohde A, Lee JP, Boobalan S, Oppong Y, Anderson R, Maynard C, Sahirul K, Lajeune C, Ivathraya V, Addy T, Sanchez P, Holbrook C, Van Ho AT, Duncan JS, Blau HM, Levchenko A, Krause DS. Multiparameter analysis of timelapse imaging reveals kinetics of megakaryocytic erythroid progenitor clonal expansion and differentiation. Scientific Reports 2022, 12: 16218. PMID: 36171423, PMCID: PMC9519589, DOI: 10.1038/s41598-022-19013-x.Peer-Reviewed Original ResearchConceptsMegakaryocytic-erythroid progenitorsFate specificationLineage commitmentUnderstanding of hematopoiesisProgenitor cell biologyPrimary human hematopoietic progenitorsSingle-cell trackingSingle-cell assaysSingle-cell levelHuman hematopoietic progenitorsProgenitor cell dynamicsLineage specificationCell fateColony-forming unit assaysTimelapse imagingSitu fluorescence stainingCell biologyLineage tracingDivision rateCytokine thrombopoietinHematopoietic progenitorsProgenitorsFluorescence stainingCell dynamicsUnit assaysRNA m6A demethylase ALKBH5 regulates the development of γδ T cells
Ding C, Xu H, Yu Z, Roulis M, Qu R, Zhou J, Oh J, Crawford J, Gao Y, Jackson R, Sefik E, Li S, Wei Z, Skadow M, Yin Z, Ouyang X, Wang L, Zou Q, Su B, Hu W, Flavell RA, Li HB. RNA m6A demethylase ALKBH5 regulates the development of γδ T cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2203318119. PMID: 35939687, PMCID: PMC9388086, DOI: 10.1073/pnas.2203318119.Peer-Reviewed Original ResearchConceptsDemethylase ALKBH5Messenger RNAΓδ T cellsΓδ T cell biologyCommon posttranscriptional modificationΓδ T cell developmentT cell biologyT cell developmentCell precursorsT cell precursorsMammalian cellsRNA modificationsPosttranscriptional modificationsTissue homeostasisCell biologyT cellsTarget genesCheckpoint roleCell developmentM6A demethylase ALKBH5ALKBH5Γδ T-cell originΓδ T cell repertoireCell populationsEarly development
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply