2025
A force-sensitive adhesion GPCR is required for equilibrioception
Yang Z, Zhou S, Zhang Q, Song Z, Liu W, Sun Y, Wang M, Fu X, Zhu K, Guan Y, Qi J, Wang X, Sun Y, Lu Y, Ping Y, Xi Y, Teng Z, Xu L, Xiao P, Xu Z, Xiong W, Qin W, Yang W, Yi F, Chai R, Yu X, Sun J. A force-sensitive adhesion GPCR is required for equilibrioception. Cell Research 2025, 35: 243-264. PMID: 39966628, PMCID: PMC11958651, DOI: 10.1038/s41422-025-01075-x.Peer-Reviewed Original ResearchTransmembrane channel-like protein 1G protein-coupled receptorsUtricular hair cellsHair cellsIncreased open probabilityAdhesion GPCRsVestibular hair cellsGlutamate releaseOpen probabilityApical membraneMET responsesVestibular functionCalcium signalingApical surfaceProtein 1Lphn2Heterologous systemsMechanosensitive G-protein-coupled receptorsMetSMiceFunctional analysisCellsPhysiologic mechanisms underlying polycystic kidney disease
Boletta A, Caplan M. Physiologic mechanisms underlying polycystic kidney disease. Physiological Reviews 2025, 105: 1553-1607. PMID: 39938884, PMCID: PMC12174308, DOI: 10.1152/physrev.00018.2024.Peer-Reviewed Original ResearchPrimary ciliaPolycystic kidney diseaseTrafficking of proteinsHuman ciliopathiesExtracellular signalsMultiple genesKidney diseaseProtein productionMolecular basisCell biologyMonogenic disordersCyst formationGenesRenal epithelial cellsProteinCiliaBiochemical informationApical surfaceEpithelial cellsFunctional expressionPhysiological propertiesWealth of informationPhysiological mechanismsCellsFibrocystin
2023
CFAP45, a heterotaxy and congenital heart disease gene, affects cilia stability
Deniz E, Pasha M, Guerra M, Viviano S, Ji W, Konstantino M, Jeffries L, Lakhani S, Medne L, Skraban C, Krantz I, Khokha M. CFAP45, a heterotaxy and congenital heart disease gene, affects cilia stability. Developmental Biology 2023, 499: 75-88. PMID: 37172641, PMCID: PMC10373286, DOI: 10.1016/j.ydbio.2023.04.006.Peer-Reviewed Original ResearchConceptsLeft-right organizerCilia stabilityLeft-right patterningCongenital heart disease genesApical surfaceCell apical surfaceLive confocal imagingLeftward fluid flowHeart disease genesRecessive missense mutationLethal birth defectMotile monociliaProtein familyEarly embryogenesisMulticiliated cellsCiliary axonemeDisease genesFrog embryosGenetic underpinningsWhole-exome sequencingMissense mutationsConfocal imagingEmbryosCiliaCongenital heart disease
2021
Calcium levels in the Golgi complex regulate clustering and apical sorting of GPI-APs in polarized epithelial cells
Lebreton S, Paladino S, Liu D, Nitti M, von Blume J, Pinton P, Zurzolo C. Calcium levels in the Golgi complex regulate clustering and apical sorting of GPI-APs in polarized epithelial cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2014709118. PMID: 34389665, PMCID: PMC8379914, DOI: 10.1073/pnas.2014709118.Peer-Reviewed Original ResearchConceptsApical sortingGPI-APsCholesterol-dependent clusteringGolgi-resident proteinsPlasma membrane organizationPolarized epithelial cellsEpithelial cellsDiverse vital functionsResident proteinsMolecular machinerySecretory cargoMembrane organizationGolgi eventUnexpected roleGolgi complexSpecific machineryGolgiBasolateral surfaceApical surfaceCab45SPCA1Vital functionsMachinerySortingProtein
2020
Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration
Meyer K, Morales‐Navarrete H, Seifert S, Wilsch‐Braeuninger M, Dahmen U, Tanaka E, Brusch L, Kalaidzidis Y, Zerial M. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration. Molecular Systems Biology 2020, 16: msb198985. PMID: 32090478, PMCID: PMC7036714, DOI: 10.15252/msb.20198985.Peer-Reviewed Original ResearchConceptsActin cytoskeletonActive YAPMechanisms of organ size controlF-actin-rich regionsTranscriptional co-activator YAPSurface of hepatocytesOrgan size controlCo-activator YAPApical surface of hepatocytesApical surfaceF-actinAcid fluctuationsHippo signalingTissue homeostasisBile acidsMouse liver regenerationBile acid overloadYAPMechano-sensory systemsCytoskeletonAcid overloadActinBile canalicular networkLevels of bile acidsCanalicular network
2017
Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease
Ma M, Gallagher AR, Somlo S. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease. Cold Spring Harbor Perspectives In Biology 2017, 9: a028209. PMID: 28320755, PMCID: PMC5666631, DOI: 10.1101/cshperspect.a028209.Peer-Reviewed Original ResearchConceptsPolycystin-2Autosomal dominant polycystic kidney diseaseCalcium-mediated signalsRole of ciliaDisruption of ciliaPolycystic kidney diseaseCellular processesCausal genesTransmembrane proteinTissue homeostasisCilia functionPrimary ciliaPolycystinsGenetic studiesHomeostatic maintenanceSignal integrationUnknown mechanismApical surfaceNephron structuresCiliaKidney tubule cellsIntact ciliaPrivileged compartmentActive remodelingTubule structure
2015
TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment EpitheliumTRP Channels of Human Fetal RPE
Zhao PY, Gan G, Peng S, Wang SB, Chen B, Adelman RA, Rizzolo LJ. TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment EpitheliumTRP Channels of Human Fetal RPE. Investigative Ophthalmology & Visual Science 2015, 56: 1916-1923. PMID: 25736794, PMCID: PMC4364639, DOI: 10.1167/iovs.14-15738.Peer-Reviewed Original ResearchConceptsHuman fetal RPETRP channelsApical membraneFetal RPEApical plasma membraneCell-cell contactTransepithelial electrical resistanceTransient receptor potential channelsTight junctionsSubcellular localizationInhibitor of calpainPrimary ciliaRT-PCRPlasma membraneBasal channel activityQuantitative RT-PCRApical tight junctionsExpression of TRPC4Ion channelsBasolateral surfaceApical microvilliApical surfaceChannel activityConfocal microscopyTRPM3
2010
PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer
VanHouten J, Sullivan C, Bazinet C, Ryoo T, Camp R, Rimm DL, Chung G, Wysolmerski J. PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 11405-11410. PMID: 20534448, PMCID: PMC2895115, DOI: 10.1073/pnas.0911186107.Peer-Reviewed Original ResearchConceptsPMCA2 expressionBreast cancerT47D breast cancer cellsIntracellular calcium levelsBreast cancer progressionBreast cancer cellsEpithelial cell apoptosisPoor outcomeIntracellular calciumCalcium levelsMammary gland involutionCancer progressionCell apoptosisCancer cellsMammary involutionApoptosisGland involutionCancerMammary epithelial cell apoptosisOutcomesPMCA2Triggers apoptosisApical surfaceExpressionOverexpressionFunctional diversification between two related Plasmodium falciparum merozoite invasion ligands is determined by changes in the cytoplasmic domain
Dvorin JD, Bei AK, Coleman BI, Duraisingh MT. Functional diversification between two related Plasmodium falciparum merozoite invasion ligands is determined by changes in the cytoplasmic domain. Molecular Microbiology 2010, 75: 990-1006. PMID: 20487292, PMCID: PMC3627358, DOI: 10.1111/j.1365-2958.2009.07040.x.Peer-Reviewed Original ResearchConceptsCytoplasmic domainFunctional diversificationInvasion pathwaysMulti-gene familyDifferent erythrocyte receptorsAmino acid regionAlternative invasion pathwaysN-terminal amino acidsGenomic regionsProtein homologueTransmembrane domainTransmembrane regionPfRh proteinsErythrocyte receptorEfficient invasionAcid regionInvasive merozoitesHost erythrocytePfRh2bAmino acidsPfRh2aPathway utilizationApical surfaceInvasion ligandsEctodomainApical Surface Expression of Aspartic Protease Plasmepsin 4, a Potential Transmission-blocking Target of the Plasmodium Ookinete*
Li F, Patra KP, Yowell CA, Dame JB, Chin K, Vinetz JM. Apical Surface Expression of Aspartic Protease Plasmepsin 4, a Potential Transmission-blocking Target of the Plasmodium Ookinete*. Journal Of Biological Chemistry 2010, 285: 8076-8083. PMID: 20056606, PMCID: PMC2832958, DOI: 10.1074/jbc.m109.063388.Peer-Reviewed Original ResearchConceptsPlasmepsin 4Midgut invasionAspartic proteasesDigestive vacuoleMidgut peritrophic matrixApical surface expressionChitin-binding proteinsMass spectrometry sequencingMalaria parasitesPeritrophic matrixPlasmodium invasionAspartic protease inhibitorsPlasmodium ookinetesParasite infectivityApical surfaceDefinitive hostsMechanistic roleAffinity columnBlood-stage PlasmodiumSurface expressionCalpain inhibitorsMidgut basal laminaProteinVaccine targetsVacuoles
2008
A PDZ‐Binding Motif Controls Basolateral Targeting of Syndecan‐1 Along the Biosynthetic Pathway in Polarized Epithelial Cells
Maday S, Anderson E, Chang HC, Shorter J, Satoh A, Sfakianos J, Fölsch H, Anderson JM, Walther Z, Mellman I. A PDZ‐Binding Motif Controls Basolateral Targeting of Syndecan‐1 Along the Biosynthetic Pathway in Polarized Epithelial Cells. Traffic 2008, 9: 1915-1924. PMID: 18764819, PMCID: PMC2820280, DOI: 10.1111/j.1600-0854.2008.00805.x.Peer-Reviewed Original ResearchConceptsPolarized epithelial cellsBiosynthetic pathwayPDZ domain-containing proteinsType II PDZDomain-containing proteinsPDZ-Binding MotifSyndecan-1Cell surface proteoglycansEpithelial cellsBasolateral targetingNormal epithelial morphologyBasolateral domainMotif leadPlasma membranePDZBasolateral localizationSurface proteoglycansBasolateral surfaceApical surfaceEpithelial morphologyMotifPotential rolePathwayCellsMislocalizationChapter 4 Protein Trafficking in Polarized Cells
Duffield A, Caplan MJ, Muth TR. Chapter 4 Protein Trafficking in Polarized Cells. International Review Of Cytology 2008, 270: 145-179. PMID: 19081536, DOI: 10.1016/s1937-6448(08)01404-4.Peer-Reviewed Original ResearchConceptsEpithelial cellsProtein traffickingBasolateral membrane surfaceLipid traffickingPolarized cellsDynamic regulationSpecific lipidsAdjacent epithelial cellsCell typesBasolateral surfaceApical surfaceCertain cellsMembrane surfaceTraffickingProtein contentCellsSortingNumber of sortingsImmune systemRecent advancesMechanismProteinRegulationEpitheliumLipids
2007
Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells
Sfakianos J, Togawa A, Maday S, Hull M, Pypaert M, Cantley L, Toomre D, Mellman I. Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells. Journal Of Cell Biology 2007, 179: 1133-1140. PMID: 18070914, PMCID: PMC2140027, DOI: 10.1083/jcb.200709111.Peer-Reviewed Original ResearchConceptsPrimary ciliaAtypical protein kinase CIntraflagellar transport particlesBasolateral membrane domainsMicrotubule-dependent transportProtein kinase CEpithelial cellsMembrane biogenesisPDZ proteinsMembrane domainsMembrane proteinsPar complexMicrotubule motorsCiliary membraneVectorial movementPar3 functionsKinesin-2Kinase CPar3Additional roleJunctional complexesCrumbs3Apical surfaceBiogenesisCiliaDevelopment and Role of Tight Junctions in the Retinal Pigment Epithelium
Rizzolo LJ. Development and Role of Tight Junctions in the Retinal Pigment Epithelium. International Review Of Cytology 2007, 258: 195-234. PMID: 17338922, DOI: 10.1016/s0074-7696(07)58004-6.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumPigment epitheliumNeural retinaTight junctionsOuter blood-retinal barrierBlood-retinal barrierSlower time courseEpitheliumCell proliferationTissue-specific propertiesTransepithelial diffusionTime courseRetinaParacellular diffusionPhysiological roleEpithelial monolayersSolid tissuesParacellular spaceApical surfaceCulture system
2006
Vectorial insertion of apical and basolateral membrane proteins in polarized epithelial cells revealed by quantitative 3D live cell imaging
Hua W, Sheff D, Toomre D, Mellman I. Vectorial insertion of apical and basolateral membrane proteins in polarized epithelial cells revealed by quantitative 3D live cell imaging. Journal Of Cell Biology 2006, 172: 1035-1044. PMID: 16567501, PMCID: PMC2063761, DOI: 10.1083/jcb.200512012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacterial ProteinsCell LineCell MembraneCell PolarityDogsEndocytosisEpithelial CellsGlycoproteinsGlycosylphosphatidylinositolsGreen Fluorescent ProteinsKineticsLaser Scanning CytometryLuminescent ProteinsMembrane GlycoproteinsMembrane ProteinsNeural Cell Adhesion MoleculesProtein TransportRecombinant Fusion ProteinsTemperatureTransfectiontrans-Golgi NetworkTransport VesiclesViral Envelope ProteinsConceptsBasolateral membrane proteinsLive-cell imagingMembrane proteinsThree-dimensional live cell imagingGlycosylphosphatidylinositol-anchored proteinsVesicular stomatitis virus glycoproteinApical surfaceMadin-Darby canine kidney cellsCell imagingFilter-grown Madin-Darby canine kidney (MDCK) cellsEpithelial cellsBasolateral proteinsCanine kidney cellsTransport intermediatesVesicle dockingSecretory pathwayPlasma membraneVectorial insertionMembrane componentsJunctional complexesProteinRespective membranesKidney cellsVirus glycoproteinPathwayAn update on acid secretion
Geibel JP, Wagner C. An update on acid secretion. Reviews Of Physiology, Biochemistry And Pharmacology 2006, 156: 45-60. PMID: 16634146, DOI: 10.1007/s10254-005-0003-0.Peer-Reviewed Original ResearchConceptsApical proteinsSecretory pathwayRegulatory mechanismsTransporter proteinsCalcium-sensing receptor activationParietal cellsApical surfaceCalcium-sensing receptorComplex processParietal cell canaliculiAcid productionProteinApical channelsReceptor activationInsertion of pumpsPathwayCellsActivationRecent candidateSecretion of acidSecretionReceptorsAcid secretionCatalytic cycleATPase
2002
MYO1A (Brush Border Myosin I) Dynamics in the Brush Border of LLC-PK1-CL4 Cells
Tyska M, Mooseker M. MYO1A (Brush Border Myosin I) Dynamics in the Brush Border of LLC-PK1-CL4 Cells. Biophysical Journal 2002, 82: 1869-1883. PMID: 11916846, PMCID: PMC1301984, DOI: 10.1016/s0006-3495(02)75537-9.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsBiophysical PhenomenaBiophysicsCloning, MolecularCytoskeletonElectrophoresis, Polyacrylamide GelGreen Fluorescent ProteinsHumansKidneyKineticsLLC-PK1 CellsLuminescent ProteinsMicroscopy, ConfocalMicroscopy, FluorescenceMicrovilliMyosin Type IPrecipitin TestsProtein Structure, TertiaryRecombinant Fusion ProteinsSubcellular FractionsSwineTime FactorsTransfectionConceptsTail domainLLC-PK1Actin core bundleKidney epithelial cell lineApical targetingActin dynamicsBrush borderActin turnoverGFP-actinBB populationsEpithelial cell lineActin domainsFluorescence recoveryCl4 cellsRapid turnoverApical surfaceMotor domainCore bundleATP depletionCell linesActinTurnoverCellsDomain
2000
Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing
Smith A, Skaug J, Choate K, Nayir A, Bakkaloglu A, Ozen S, Hulton S, Sanjad S, Al-Sabban E, Lifton R, Scherer S, Karet F. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nature Genetics 2000, 26: 71-75. PMID: 10973252, DOI: 10.1038/79208.Peer-Reviewed Original ResearchMeSH KeywordsAcidosis, Renal TubularAdenosine TriphosphatasesAdolescentAdultAmino Acid SequenceAudiometryBlotting, NorthernBrainChildChild, PreschoolChromosomes, Human, Pair 7Contig MappingDNA, ComplementaryExonsFemaleGene DeletionGenes, RecessiveGenetic LinkageGenetic MarkersHearingHomozygoteHumansKidneyKidney CortexMaleMicroscopy, FluorescenceMitochondrial Proton-Translocating ATPasesModels, GeneticMolecular Sequence DataMutationPedigreePhysical Chromosome MappingPolymorphism, GeneticPolymorphism, Single-Stranded ConformationalPregnancy ProteinsProtein BiosynthesisProtein IsoformsProton PumpsProton-Translocating ATPasesRecombination, GeneticRNA SplicingSequence Homology, Amino AcidSuppressor Factors, ImmunologicTissue DistributionVacuolar Proton-Translocating ATPasesConceptsDistal renal tubular acidosesDistal nephronDistal renal tubular acidosisRecessive distal renal tubular acidosisRenal tubular acidosisGroup of disordersHuman kidney cortexRenal tubular acidosesNormal audiometryMetabolic acidosisTubular acidosisDifferent homozygous mutationsKidney-specific isoformKidney cortexPotassium balanceApical surfaceBone physiologyHomozygous mutationImmunofluorescence studiesMain organsProton-secreting cellsATPase pumpNorthern blot analysisAcidosisCalcium solubility
1999
Nongastric H+,K+-ATPase: cell biologic and functional properties.
Grishin AV, Reinhard J, Dunbar LA, Courtois-Coutry N, Wang T, Giebisch G, Caplan MJ. Nongastric H+,K+-ATPase: cell biologic and functional properties. Seminars In Nephrology 1999, 19: 421-30. PMID: 10511382.Peer-Reviewed Original ResearchConceptsATPase isoformsP-type ATPasesEndocytic regulationEndocytosis signalATPase familyCell machineryCytoplasmic tailK resorptionATPasesIon pumpsATPase isoform expressionApical surfaceIsoformsCell biologicIsoform expressionPhysiological studiesTubule epithelial cellsATPaseEpithelial cellsTransgenic miceCation transportK transportFunctional propertiesRenal K transportEndocytosisCFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo
Ameen N, Martensson B, Bourguinon L, Marino C, Isenberg J, McLaughlin G. CFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo. Journal Of Cell Science 1999, 112: 887-894. PMID: 10036238, DOI: 10.1242/jcs.112.6.887.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulator (CFTR) channelVillus epithelial cellsApical surfaceApical plasma membraneAnti-CFTR antibodiesQuantitative confocal microscopyNew protein synthesisApical membrane insertionIntestinal villus epithelial cellsEpithelial cellsMembrane CFTRMembrane insertionApical cytoskeletonNormal CFTRCHE cellsPlasma membraneAbsence of cycloheximideSubcellular redistributionCFTR channelsC-terminusCAMP stimulationIntracellular cAMP levelsProtein synthesisChannel insertionCFTR function
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply