2025
ETS emerges to heat up adipose
Rodeheffer M. ETS emerges to heat up adipose. Genes & Development 2025 PMID: 40389324, DOI: 10.1101/gad.352966.125.Peer-Reviewed Original ResearchTranscription factor bindingE26 transformation-specific (ETS) transcription factorsPromoter chromatin accessibilityChromatin accessibilityFactor bindingTranscription factorsHistone acetylationAdipose biologyGene expressionETV4HistoneTranscriptionGenesUCP1AcetylationE26AdipogenesisBindingBiologyThermogenesisExpressionAdiposeDietary oleic acid drives obesogenic adipogenesis via modulation of LXRα signaling
Wing A, Jeffery E, Church C, Goodell J, Saavedra-Peña R, Saha M, Holtrup B, Voisin M, Alavi N, Floody M, Wang Z, Zapadka T, Garabedian M, Varshney R, Rudolph M, Rodeheffer M. Dietary oleic acid drives obesogenic adipogenesis via modulation of LXRα signaling. Cell Reports 2025, 44: 115527. PMID: 40208790, PMCID: PMC12073628, DOI: 10.1016/j.celrep.2025.115527.Peer-Reviewed Original ResearchAdipocyte precursor cellsDietary fatPlasma monounsaturated fatty acidsAssociated with human obesityHuman adipocyte precursor cellsMonounsaturated fatty acidsDietary fat compositionDietary screeningFatty acidsDietary fatty acidsHuman obesityAdipose expansionMetabolic healthObesity epidemicAkt2 signalingLXR activationPrecursor cellsAdipose biologyOleic acidHyperplasiaObesityAdipocyte hyperplasiaDietary oleic acidPhysiological regulationAdipogenesis
2024
Facile adipocyte uptake and liver/adipose tissue delivery of conjugated linoleic acid-loaded tocol nanocarriers for a synergistic anti-adipogenesis effect
Hsu C, Liao C, Lin Z, Alalaiwe A, Hwang E, Lin T, Fang J. Facile adipocyte uptake and liver/adipose tissue delivery of conjugated linoleic acid-loaded tocol nanocarriers for a synergistic anti-adipogenesis effect. Journal Of Nanobiotechnology 2024, 22: 50. PMID: 38317220, PMCID: PMC10845550, DOI: 10.1186/s12951-024-02316-8.Peer-Reviewed Original ResearchConceptsAcetyl-CoA carboxylaseFatty acid synthaseAnti-adipogenesis effectConjugated linoleic acidLipogenic enzymes acetyl-CoA carboxylaseEnzyme acetyl-CoA carboxylaseNanostructured lipid carriersIn vitro adipocyte modelsAnti-adipogenic activityAcid synthaseAdipogenesis inhibitionAdipocyte modelInhibit adipogenesisAdipose tissueAdipocytesAdipogenesisAdipocyte hypertrophyIn vivo rat modelLipid-based nanocarriersA-tocopherolReduced body weightObese ratsRat modelTotal cholesterolFat accumulation
2023
Glucocorticoid signaling and the impact of high-fat diet on adipogenesis in vivo
Babel N, Feldman B. Glucocorticoid signaling and the impact of high-fat diet on adipogenesis in vivo. Steroids 2023, 201: 109336. PMID: 37944652, PMCID: PMC11005958, DOI: 10.1016/j.steroids.2023.109336.Peer-Reviewed Original Research
2020
Bone Marrow and Adipose Tissue Adenosine Receptors Effect on Osteogenesis and Adipogenesis
Eisenstein A, Chitalia S, Ravid K. Bone Marrow and Adipose Tissue Adenosine Receptors Effect on Osteogenesis and Adipogenesis. International Journal Of Molecular Sciences 2020, 21: 7470. PMID: 33050467, PMCID: PMC7589187, DOI: 10.3390/ijms21207470.Peer-Reviewed Original ResearchConceptsBone healthBone marrowPotential therapeutic targetInhibitory receptorsMetabolic disturbancesReceptor effectsTherapeutic implicationsTherapeutic targetMetabolic diseasesEndogenous ligandDichotomous effectsReceptorsMarrowAdenosineAdipogenesisExpression profilesCellular stressHealthOsteogenesisCurrent understandingDifferent tissuesObesityInflammationDiseaseSAT-585 Autoregulation of Adipose Tissue Development
Feldman B, Sayeed M, Nakuluri K. SAT-585 Autoregulation of Adipose Tissue Development. Journal Of The Endocrine Society 2020, 4: sat-585. PMCID: PMC7209260, DOI: 10.1210/jendso/bvaa046.389.Peer-Reviewed Original ResearchWhite adipose tissueABSTRACT White adipose tissueMature adipocytesProgenitor cellsModulate systemic metabolismPostnatal lifeAdipose depotsAdipogenesis in vivoTissue formation in vivoExtracellular inputsAdipose tissueHormone signalingEnergy storageEarly postnatal lifeDifferentiation of progenitor cellsUnrecognized signalFormation in vivoSystemic metabolismAdipocytesHomeostatic levelsAdipogenesisCellsAdiposeDepot formation
2019
Human chromatin remodeler cofactor, RNA interactor, eraser and writer sperm RNAs responding to obesity
Swanson GM, Estill M, Diamond MP, Legro RS, Coutifaris C, Barnhart KT, Huang H, Hansen KR, Trussell JC, Coward RM, Zhang H, Goodrich R, Krawetz SA. Human chromatin remodeler cofactor, RNA interactor, eraser and writer sperm RNAs responding to obesity. Epigenetics 2019, 15: 32-46. PMID: 31354029, PMCID: PMC6961666, DOI: 10.1080/15592294.2019.1644880.Peer-Reviewed Original ResearchConceptsSperm RNASperm DNA methylationChromosome organizationCoregulatory networkGene OntologyDNA methylationResponse pathwaysCellular stressRNA elementsRNAInteractorsErasersCofactorOvarian stimulation (AMIGOS) trialMethylationObesity-related inflammationTranscriptsMeasures of obesityAdipogenesisPathwayMultiple gestationsStimulation trialsAnimal modelsBMIHuman studies
2018
A context-specific circadian clock in adipocyte precursor cells modulates adipogenesis
Jung Y, Feldman B. A context-specific circadian clock in adipocyte precursor cells modulates adipogenesis. Adipocyte 2018, 7: 273-276. PMID: 30153756, PMCID: PMC6768266, DOI: 10.1080/21623945.2018.1516099.Peer-Reviewed Original ResearchConceptsAdipocyte precursor cellsCircadian clockKruppel-like factor 15Tissue-specific signalsAdipose tissue biologyFeeding/fasting cyclesRobust clockPeripheral circadian clocksDay/night cycleCentral circadian clockMolecular networksCentral pacemakerTissue biologyAdipocytesMetabolismAdipogenesisPathwayOutput pathwaysPrecursor cellsPER3Therapeutic strategiesAdipose tissueCellsFeeding/fastingFat and Bone: PGC-1α Regulates Mesenchymal Cell Fate during Aging and Osteoporosis
Horowitz MC, Tommasini SM. Fat and Bone: PGC-1α Regulates Mesenchymal Cell Fate during Aging and Osteoporosis. Cell Stem Cell 2018, 23: 151-153. PMID: 30075123, DOI: 10.1016/j.stem.2018.07.010.Peer-Reviewed Original Research
2017
The Circadian Clock Regulates Adipogenesis by a Per3 Crosstalk Pathway to Klf15
Aggarwal A, Costa M, Rivero-Gutiérrez B, Ji L, Morgan S, Feldman B. The Circadian Clock Regulates Adipogenesis by a Per3 Crosstalk Pathway to Klf15. Cell Reports 2017, 21: 2367-2375. PMID: 29186676, PMCID: PMC5728416, DOI: 10.1016/j.celrep.2017.11.004.Peer-Reviewed Original ResearchConceptsAdipocyte precursor cellsCircadian clockClock output pathwaysProcess of cell differentiationRegulate adipogenesisCrosstalk pathwaysInfluence adipogenesisPeripheral circadian clocksPrecursor cellsCell differentiationKLF15 expressionAdipogenesisSystemic metabolismPER3PathwayOutput pathwaysExpressionCellsDeletionKLF15BMAL1PDGFA regulation of dermal adipocyte stem cells
Rivera-Gonzalez GC, Shook BA, Horsley V. PDGFA regulation of dermal adipocyte stem cells. Stem Cell Investigation 2017, 4: 72-72. PMID: 29057244, PMCID: PMC5639037, DOI: 10.21037/sci.2017.08.03.Peer-Reviewed Original ResearchAdipocyte stem cellsBMP moleculesAdipocyte precursorsHair follicle neogenesisDermal white adipose tissueGrowth activationAntibacterial peptidesStem cellsMature adipocytesExtracellular matrix depositionFollicle neogenesisAdipose tissueFibroblast recruitmentTissue repairCentral roleMatrix depositionWhite adipose tissueSystemic metabolismSkin functionWound healingTissueObesity-related diseasesAdipogenesisRegulationAdipocytesAdamts1 responds to systemic cues and gates adipogenesis
Wong J, Feldman B. Adamts1 responds to systemic cues and gates adipogenesis. Adipocyte 2017, 6: 293-297. PMID: 28700319, PMCID: PMC5736246, DOI: 10.1080/21623945.2017.1322746.Peer-Reviewed Original ResearchConceptsAdipocyte precursor cellsAdipose tissue expansionDifferentiation of adipocyte precursor cellsHigh-fat diet in vivoResponse regulatorTranscription factorsRelay systemAdipogenesis programDiet in vivoSystemic cuesResponse to changesTissue expansionAdipogenesisExcess caloric intakeAdipocytesEx vivo studiesPrecursor cellsAdipose tissueAPC activityADAMTS1Differentiation
2016
The Adipose Tissue Microenvironment Regulates Depot-Specific Adipogenesis in Obesity
Jeffery E, Wing A, Holtrup B, Sebo Z, Kaplan JL, Saavedra-Peña R, Church CD, Colman L, Berry R, Rodeheffer MS. The Adipose Tissue Microenvironment Regulates Depot-Specific Adipogenesis in Obesity. Cell Metabolism 2016, 24: 142-150. PMID: 27320063, PMCID: PMC4945385, DOI: 10.1016/j.cmet.2016.05.012.Peer-Reviewed Original ResearchConceptsVisceral white adipose tissueHigh-fat dietAdipose tissueAdipocyte precursorsAdipocyte hyperplasiaDepot-specific adipogenesisDifferential fat distributionObesity-associated pathologiesWhite adipose tissueAdipose tissue microenvironmentSubcutaneous adipose tissueAdipose tissue growthCell-intrinsic mechanismsMetabolic healthFat distributionMale miceHormone-dependent mannerDimorphic distributionObesityHyperplasiaAdipogenesisTissue microenvironmentTissueMicroenvironmentPlastic cells
2015
MicroRNA‐455 regulates brown adipogenesis via a novel HIF1an‐AMPK‐PGC1α signaling network
Zhang H, Guan M, Townsend K, Huang T, An D, Yan X, Xue R, Schulz T, Winnay J, Mori M, Hirshman M, Kristiansen K, Tsang J, White A, Cypess A, Goodyear L, Tseng Y. MicroRNA‐455 regulates brown adipogenesis via a novel HIF1an‐AMPK‐PGC1α signaling network. EMBO Reports 2015, 16: 1378-1393. PMID: 26303948, PMCID: PMC4766451, DOI: 10.15252/embr.201540837.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytes, BrownAdipogenesisAdipose Tissue, WhiteAMP-Activated Protein KinasesAnimalsCell DifferentiationCells, CulturedCold TemperatureHumansMiceMice, TransgenicMicroRNAsMixed Function OxygenasesNerve Tissue ProteinsNuclear ProteinsOrganelle BiogenesisPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaRepressor ProteinsSignal TransductionThermogenesisTranscription FactorsConceptsBrown adipose tissueBrown adipogenesisMiR-455Potential therapeutic targetSubcutaneous white fatTransgenic mice displayBrown adipocyte differentiationMRNA microarray profilingHuman metabolic disordersMicroRNA-455Metabolic disordersWhite fatTherapeutic targetAdipose tissueMice displayCold exposureAdipocyte differentiationAdipogenic differentiationAdipogenic programMicroarray profilingAdipogenesisMitochondrial biogenesisFunction studiesKey regulatorNew regulatorRapid depot-specific activation of adipocyte precursor cells at the onset of obesity
Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nature Cell Biology 2015, 17: 376-385. PMID: 25730471, PMCID: PMC4380653, DOI: 10.1038/ncb3122.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytes, WhiteAdipogenesisAdipose Tissue, WhiteAndrostadienesAnimalsCell ProliferationDiet, High-FatEatingMaleMiceMice, Inbred C57BLMice, KnockoutObesityPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsProto-Oncogene Proteins c-aktRandom AllocationTamoxifenWortmanninConceptsWhite adipose tissueAdipocyte precursorsMolecular mechanismsWAT growthNew adipocytesHigh-fat diet feedingCharacteristics of obesityOnset of obesityDistinct molecular mechanismsActivation of adipogenesisAdipocyte precursor cellsWAT massVisceral depotsDiet feedingMale miceAdipose tissueObesityAkt2 pathwayMature adipocytesPrecursor cellsAdipogenesisAdipocytesExcessive accumulationMiceActivation
2014
Wnt signaling, de novo lipogenesis, adipogenesis and ectopic fat
Song K, Wang S, Mani M, Mani A. Wnt signaling, de novo lipogenesis, adipogenesis and ectopic fat. Oncotarget 2014, 5: 11000-11003. PMID: 25526027, PMCID: PMC4294374, DOI: 10.18632/oncotarget.2769.Peer-Reviewed Original ResearchConceptsNon-alcoholic fatty liver diseaseFatty liver diseaseDe novo lipogenesisEctopic fatLiver diseaseNovo lipogenesisMesenchymal stem cellsElevated plasma lipidsHigher plasma triglyceridesMetabolic syndromePlasma lipidsCoronary arteryInsulin resistancePlasma triglyceridesLoss of functionWnt coreceptor LRP6Diverse congenitalPertinent findingsFunction mutationsAdipogenesisCoreceptor LRP6DiseaseStem cellsLipogenesisMajor regulator
2013
G Protein‐Coupled Receptors and Adipogenesis: A Focus on Adenosine Receptors
Eisenstein A, Ravid K. G Protein‐Coupled Receptors and Adipogenesis: A Focus on Adenosine Receptors. Journal Of Cellular Physiology 2013, 229: 414-421. PMID: 24114647, PMCID: PMC4362544, DOI: 10.1002/jcp.24473.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsAdenosine receptorsExtracellular signalsAdenosine signalingObesity epidemicMetabolic consequencesDevelopment of therapeuticsBlood flowDownstream messengersReceptorsTranscriptional eventsAdipose tissueMature adipocytesAdipocyte differentiationCellular differentiationMetabolic homeostasisAdenosineCoupled receptorsAdipocytesPhysiological outcomesDifferentiation processExcess nutrientsRegulation functionAdipogenesisDifferentiation
2006
Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects
Feldman B, Streeper R, Farese R, Yamamoto K. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 15675-15680. PMID: 17030820, PMCID: PMC1592529, DOI: 10.1073/pnas.0607501103.Peer-Reviewed Original ResearchConceptsInsulin sensitivityFavorable metabolic effectsResistant to diet-induced obesityDiet-induced obesityExpression of myostatinTGF-beta family membersStages of adipogenesisSystemic insulin sensitivityTreat metabolic diseasesTransgenic miceTGF-betaMetabolic effectsExpression markersDexamethasoneMetabolic diseasesMyostatinAdipocytesImmature adipocytesMiceCell culturesAdipogenesisDifferentiation conditions
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply