2025
Dietary oleic acid drives obesogenic adipogenesis via modulation of LXRα signaling
Wing A, Jeffery E, Church C, Goodell J, Saavedra-Peña R, Saha M, Holtrup B, Voisin M, Alavi N, Floody M, Wang Z, Zapadka T, Garabedian M, Varshney R, Rudolph M, Rodeheffer M. Dietary oleic acid drives obesogenic adipogenesis via modulation of LXRα signaling. Cell Reports 2025, 44: 115527. PMID: 40208790, PMCID: PMC12073628, DOI: 10.1016/j.celrep.2025.115527.Peer-Reviewed Original ResearchAdipocyte precursor cellsDietary fatPlasma monounsaturated fatty acidsAssociated with human obesityHuman adipocyte precursor cellsMonounsaturated fatty acidsDietary fat compositionDietary screeningFatty acidsDietary fatty acidsHuman obesityAdipose expansionMetabolic healthObesity epidemicAkt2 signalingLXR activationPrecursor cellsAdipose biologyOleic acidHyperplasiaObesityAdipocyte hyperplasiaDietary oleic acidPhysiological regulationAdipogenesis
2023
Estradiol cycling drives female obesogenic adipocyte hyperplasia
del M. Saavedra-Peña R, Taylor N, Flannery C, Rodeheffer M. Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Reports 2023, 42: 112390. PMID: 37053070, PMCID: PMC10567995, DOI: 10.1016/j.celrep.2023.112390.Peer-Reviewed Original ResearchConceptsAdipocyte precursor cellsHigh-fat dietAdipocyte hyperplasiaHFD feedingVisceral WATDifferential fat distributionAdipose tissue distributionEstrogen receptor αWAT distributionFat distributionOvariectomized femalesHyperplasiaMice showEstrous cycleReceptor αTissue distributionPrecursor cellsObesityAPC proliferationTissue microenvironmentProliferationFemalesSexOnsetFeeding
2020
Regulated in Development and DNA Damage Responses 1 Prevents Dermal Adipocyte Differentiation and Is Required for Hair Cycle–Dependent Dermal Adipose Expansion
Rivera-Gonzalez GC, Klopot A, Sabin K, Baida G, Horsley V, Budunova I. Regulated in Development and DNA Damage Responses 1 Prevents Dermal Adipocyte Differentiation and Is Required for Hair Cycle–Dependent Dermal Adipose Expansion. Journal Of Investigative Dermatology 2020, 140: 1698-1705.e1. PMID: 32032578, PMCID: PMC7398827, DOI: 10.1016/j.jid.2019.12.033.Peer-Reviewed Original ResearchConceptsWhite adipose tissueAdipocyte precursor cellsAdipose tissueProtein kinase B signalingDNA damage response 1Loss of REDD1Precursor cellsProtein kinase BAdipogenic marker expressionKinase B signalingHigher lipid accumulationInguinal subcutaneous white adipose tissueGonadal white adipose tissueInterscapular brown adipose tissueSubcutaneous white adipose tissueWhite adipose tissue expansionNegative regulatorPostnatal day 18Wild-type miceAdipose tissue expansionKinase BRegulated developmentBrown adipose tissueHair growth cycleResponse 1
2018
A context-specific circadian clock in adipocyte precursor cells modulates adipogenesis
Jung Y, Feldman B. A context-specific circadian clock in adipocyte precursor cells modulates adipogenesis. Adipocyte 2018, 7: 273-276. PMID: 30153756, PMCID: PMC6768266, DOI: 10.1080/21623945.2018.1516099.Peer-Reviewed Original ResearchConceptsAdipocyte precursor cellsCircadian clockKruppel-like factor 15Tissue-specific signalsAdipose tissue biologyFeeding/fasting cyclesRobust clockPeripheral circadian clocksDay/night cycleCentral circadian clockMolecular networksCentral pacemakerTissue biologyAdipocytesMetabolismAdipogenesisPathwayOutput pathwaysPrecursor cellsPER3Therapeutic strategiesAdipose tissueCellsFeeding/fasting
2017
The Circadian Clock Regulates Adipogenesis by a Per3 Crosstalk Pathway to Klf15
Aggarwal A, Costa M, Rivero-Gutiérrez B, Ji L, Morgan S, Feldman B. The Circadian Clock Regulates Adipogenesis by a Per3 Crosstalk Pathway to Klf15. Cell Reports 2017, 21: 2367-2375. PMID: 29186676, PMCID: PMC5728416, DOI: 10.1016/j.celrep.2017.11.004.Peer-Reviewed Original ResearchConceptsAdipocyte precursor cellsCircadian clockClock output pathwaysProcess of cell differentiationRegulate adipogenesisCrosstalk pathwaysInfluence adipogenesisPeripheral circadian clocksPrecursor cellsCell differentiationKLF15 expressionAdipogenesisSystemic metabolismPER3PathwayOutput pathwaysExpressionCellsDeletionKLF15BMAL1Adamts1 responds to systemic cues and gates adipogenesis
Wong J, Feldman B. Adamts1 responds to systemic cues and gates adipogenesis. Adipocyte 2017, 6: 293-297. PMID: 28700319, PMCID: PMC5736246, DOI: 10.1080/21623945.2017.1322746.Peer-Reviewed Original ResearchConceptsAdipocyte precursor cellsAdipose tissue expansionDifferentiation of adipocyte precursor cellsHigh-fat diet in vivoResponse regulatorTranscription factorsRelay systemAdipogenesis programDiet in vivoSystemic cuesResponse to changesTissue expansionAdipogenesisExcess caloric intakeAdipocytesEx vivo studiesPrecursor cellsAdipose tissueAPC activityADAMTS1Differentiation
2016
A glucocorticoid- and diet-responsive pathway toggles adipocyte precursor cell activity in vivo
Wong J, Krueger K, Costa M, Aggarwal A, Du H, McLaughlin T, Feldman B. A glucocorticoid- and diet-responsive pathway toggles adipocyte precursor cell activity in vivo. Science Signaling 2016, 9: ra103. PMID: 27811141, PMCID: PMC8087215, DOI: 10.1126/scisignal.aag0487.Peer-Reviewed Original ResearchConceptsDifferentiation of adipocyte precursor cellsAdipocyte precursor cellsCell activity in vivoAdipose depotsADAMTS1 expressionDiet-induced weight gainAdipose tissueInguinal adipose depotsAdipocyte differentiation programExcess caloric intakeExtracellular protease ADAMTS1Pathogenesis of obesityAdipose tissue hyperplasiaExposure in vitroExpansion of adipose tissueWnt target genesWnt/b-catenin pathwayAdipose tissue homeostasisExpression of ADAMTS1High-fat dietSubcutaneous adipose tissueMouse subcutaneous adipose tissueSubcutaneous adipose depotsCaloric intakeTranscription factors
2015
Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity
Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nature Cell Biology 2015, 17: 376-385. PMID: 25730471, PMCID: PMC4380653, DOI: 10.1038/ncb3122.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytes, WhiteAdipogenesisAdipose Tissue, WhiteAndrostadienesAnimalsCell ProliferationDiet, High-FatEatingMaleMiceMice, Inbred C57BLMice, KnockoutObesityPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsProto-Oncogene Proteins c-aktRandom AllocationTamoxifenWortmanninConceptsWhite adipose tissueAdipocyte precursorsMolecular mechanismsWAT growthNew adipocytesHigh-fat diet feedingCharacteristics of obesityOnset of obesityDistinct molecular mechanismsActivation of adipogenesisAdipocyte precursor cellsWAT massVisceral depotsDiet feedingMale miceAdipose tissueObesityAkt2 pathwayMature adipocytesPrecursor cellsAdipogenesisAdipocytesExcessive accumulationMiceActivation
2014
Characterization of Cre Recombinase Activity for In Vivo Targeting of Adipocyte Precursor Cells
Krueger K, Costa M, Du H, Feldman B. Characterization of Cre Recombinase Activity for In Vivo Targeting of Adipocyte Precursor Cells. Stem Cell Reports 2014, 3: 1147-1158. PMID: 25458893, PMCID: PMC4264060, DOI: 10.1016/j.stemcr.2014.10.009.Peer-Reviewed Original ResearchMeSH KeywordsAdipocytesAdipogenesisAnimalsEnzyme ActivationFatty Acid-Binding ProteinsFemaleGene ExpressionGene TargetingHomeodomain ProteinsHomologous RecombinationImmunophenotypingIntegrasesMaleMiceOrgan SpecificityPhenotypePromoter Regions, GeneticReceptor, Platelet-Derived Growth Factor alphaStem CellsConceptsAdipose precursor cellsFabp4-CreModulate gene expressionPrx1-CreDiscovery of cell-surface markersAdipose tissue developmentAdipocyte precursor cellsCre-mediated recombinationGene expressionPrecursor cellsRecombinase activityTissue developmentCells in vivoCre recombinase activityMature tissuesAdipose expressionAdipose depotsMetabolic diseasesMouse linesIn vivoCellsCell surface markersRecombinationTransgenic mouse linesAdipose tissueCharacterization of Cre recombinase models for the study of adipose tissue
Jeffery E, Berry R, Church CD, Yu S, Shook BA, Horsley V, Rosen ED, Rodeheffer MS. Characterization of Cre recombinase models for the study of adipose tissue. Adipocyte 2014, 3: 206-211. PMID: 25068087, PMCID: PMC4110097, DOI: 10.4161/adip.29674.Peer-Reviewed Original ResearchAdipose tissueAdipocyte precursor cellsAdipose depotsMajor adipose tissue depotsPrecursor cellsWhite adipose depotsAdipose tissue depotsMajor adipose depotsGenetic mouse modelsCre recombinase activityMouse modelTissue depotsCre linesMultiple cell populationsAdipocytesCell populationsDual fluorescent reporterTissue
2013
Weighing in on Adipocyte Precursors
Berry R, Jeffery E, Rodeheffer MS. Weighing in on Adipocyte Precursors. Cell Metabolism 2013, 19: 8-20. PMID: 24239569, PMCID: PMC3947170, DOI: 10.1016/j.cmet.2013.10.003.Peer-Reviewed Original ResearchIntradermal adipocytes mediate fibroblast recruitment during skin wound healing
Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 2013, 140: 1517-1527. PMID: 23482487, PMCID: PMC3596993, DOI: 10.1242/dev.087593.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply