Title: Inflammatory CD16+ CD163+ Monocytes localize to sites of inflammation in Necrotizing Enterocolitis

O. O. Olaloye¹, P. Liu², J. M. Toothaker³, B. T. McCourt¹, C. C. McCourt⁴, K. Chen¹⁴, G. Tseng², L. Konnikova¹,³,⁷,¹⁶,¹⁷

¹ Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
² Department of Biostatistics, and
³ Department of Immunology, University of Pittsburgh, PA 15213, USA
⁴ Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, PA 15224, USA
⁵ Department of Biology, University of Pittsburgh, PA 15213, USA
⁶ Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
⁷ Division of Newborn Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, PA 15224, USA
⁸ Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital Sheba Medical Center Ramat Gan 5262100, Israel
⁹ Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
¹⁰ Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
¹¹ Department of Medicine, Boston Children’s Hospital, Boston, MA, 02115, USA
¹² Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
¹³ Department of Pathology, Boston Children’s Hospital, Boston, MA, 02115, USA
¹⁴ Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, PA 15213
¹⁵ Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
¹⁶ Division of Reproductive Sciences and,
¹⁷ Program in Human and Translational Immunology Yale University, New Haven, CT 06520, USA

Background: Necrotizing enterocolitis (NEC) is a devastating complication of prematurity. Advances in diagnosis and treatment have been limited and current therapy is non-specific. We hypothesized that in-depth single cell analysis of small intestine can identify differentiating phenotypes of NEC and specific therapeutic targets.

Methods: Small intestine (SI) from initial surgery for NEC (sNEC, n=12, gestational age (GA) 23-39 weeks, wks) were compared to neonates with non-immune congenital anomalies (Neonatal n=4, GA 31-33 wks) and discarded fetal intestinal tissue (n=3, GA 16-20 wks). Single cell RNA sequencing (scRNAseq) coupled with suspension (CyTOF) and imaging (IMC) mass cytometry was performed on SI. CyTOF analysis was performed on immune cells isolated from peripheral blood obtained from infants with medical NEC (mNEC, n= 15, GA 24-41 wks), and surgical (sNEC, n=3, GA 28-39 wks) and healthy age-matched neonates (n= 24-41 wks).

Results: We identified a population of NEC enriched monocytes/Mf co-expressing CD16+ CD163+ markers. These monocytes/Mf were abundant in the NEC tissue, found adjacent to blood vessels in the intestinal mucosa, and present in the peripheral blood of infants with sNEC, suggesting that they likely translocate from the periphery. scRNA-seq analysis established CD16+CD163+ monocytes/Mf to be highly inflammatory, transcribing genes including TREM1,
IL1a and IL1b, IL8 and calprotectin. Gene set enrichment analysis identified pathways involved in chemotaxis, migration, phagocytosis, toll-like receptor activation, reactive oxygen species and cytokine signaling to be upregulated in these monocytes.

Conclusions: We have identified a novel subtype of inflammatory monocyte/Mf present in blood and mucosa of patients with NEC that has pathogenic potential and can serve as a putative biomarker and therapeutic target in NEC.

Word Count: 265