2025
Comparison of 5 BMPs for their chondrogenic potentials and microfracture-mediated cartilage repair using heparin/PEAD coacervate sustained release polymer
Gao X, Wright N, Huard M, Tan J, Ruzbarsky J, Lu A, Chubb L, Tuan R, Philippon M, Wang Y, Huard J. Comparison of 5 BMPs for their chondrogenic potentials and microfracture-mediated cartilage repair using heparin/PEAD coacervate sustained release polymer. Bioactive Materials 2025, 52: 588-603. DOI: 10.1016/j.bioactmat.2025.06.031.Peer-Reviewed Original ResearchChondrogenic differentiation of human bone marrow mesenchymal stem cellsTreatment of cartilage defectsCartilage defect repairFibrocartilage repairCartilage repairChondrogenic potentialCartilage defectsSustained release polymerChondrogenic differentiationHuman bone marrow mesenchymal stem cellsDifferentiation of human bone marrow mesenchymal stem cellsRelease polymersBone marrow mesenchymal stem cellsMarrow mesenchymal stem cellsSurgical proceduresClinical challengeMesenchymal stem cellsDefect repairStem cellsMorphogenetic proteinsOsteoarthritis treatmentRepairTreatmentPolymerMicrofractureEvidence of secondary Notch signaling within the rat small intestine.
Zagoren E, Dias N, Santos A, Smith Z, Ameen N, Sumigray K. Evidence of secondary Notch signaling within the rat small intestine. Development 2025, 152 PMID: 40371707, PMCID: PMC12188240, DOI: 10.1242/dev.204277.Peer-Reviewed Original ResearchConceptsSecretory lineageRegulate luminal pHSecretory cellsNotch signalingSecretory cell typesSmall intestinal epithelial cellsRNA sequencing dataIntestinal epithelial cellsIntestinal stem cellsSmall intestineFate in vivoFibrosis pathophysiologyRat small intestineCrypt progenitorsTranscription factorsEpithelial cellsRat jejunumStem cellsPseudotime trajectory analysisRare populationLuminal pHRatsHigher expressionIntestinal functionIn vitroFrom genes to geometry: Controlling embryo models by programming genomic activation
McNamara H, Sozen B. From genes to geometry: Controlling embryo models by programming genomic activation. Cell Stem Cell 2025, 32: 857-858. PMID: 40480203, DOI: 10.1016/j.stem.2025.04.013.Peer-Reviewed Original ResearchFrom Single Stem Cells to an In Vitro Model of the Post-implantation Human Embryo: A Step-by-Step Guide
Gassaloglu S, Pedroza M, Sozen B. From Single Stem Cells to an In Vitro Model of the Post-implantation Human Embryo: A Step-by-Step Guide. Methods In Molecular Biology 2025, 1-16. PMID: 40397281, DOI: 10.1007/7651_2025_647.Peer-Reviewed Original ResearchStem cells and female reproduction: endometrial physiology, disease and therapy
Cevik E, Mamillapalli R, Taylor H. Stem cells and female reproduction: endometrial physiology, disease and therapy. Stem Cells 2025, 43: sxaf016. PMID: 40317260, DOI: 10.1093/stmcls/sxaf016.Peer-Reviewed Original ResearchConceptsBone marrow-derived mesenchymal stem cellsStem cellsKnowledge of stem cell biologyStem cell-based therapiesEngraftment of stem cellsRecurrent pregnancy lossImprove pregnancy outcomesEndometrial progenitor cellsMinimally invasive techniquesProgenitor stem cellsCell-based therapiesStem cell biologyAsherman's syndromeCells to areasPotential therapeutic avenuePregnancy outcomesThin endometriumHuman endometriumMarrow-derived mesenchymal stem cellsTargeted therapyEndometrial repairEndometrial regenerationPregnancy lossImplant failureInvasive techniquesTherapeutic Efficacy of Mesenchymal Stem Cells in Modulating Oxidative Stress in Puromycin-Induced Nephropathy
Iizuka Y, Sasaki M, Terada K, Sakai T, Nagaoka Y, Fukumura S, Kocsis J, Tsugawa T, Honmou O. Therapeutic Efficacy of Mesenchymal Stem Cells in Modulating Oxidative Stress in Puromycin-Induced Nephropathy. Pathophysiology 2025, 32: 19. PMID: 40407599, PMCID: PMC12101160, DOI: 10.3390/pathophysiology32020019.Peer-Reviewed Original ResearchMesenchymal stem cellsQuantitative real-time reverse-transcription PCRMSC infusionNephrotic syndromePAN injectionModulating oxidative stressIntravenously infused mesenchymal stem cellsIntravenous infusion of mesenchymal stem cellsInfusion of mesenchymal stem cellsStem cellsInfused mesenchymal stem cellsOxidative stressEfficacy of mesenchymal stem cellsPodocyte structureSprague-Dawley ratsGFP-labeled mesenchymal stem cellsTherapeutic efficacy of mesenchymal stem cellsOxidative stress modulationPotential therapeutic approachReal-time reverse-transcription PCRCreatinine levelsReduce proteinuriaIntravenous infusionUrinary albuminTherapeutic efficacyHow Delayed Cord Clamping Saves Newborn Lives
Mercer J, Saether E, King T, Maul H, Kennedy H, Erickson-Owens D, Andersson O, Rabe H. How Delayed Cord Clamping Saves Newborn Lives. Children 2025, 12: 585. PMID: 40426764, PMCID: PMC12110096, DOI: 10.3390/children12050585.Peer-Reviewed Original ResearchDelayed cord clampingCord clampingPlacental transfusionPreterm infantsMortality of preterm infantsEarly cord clampingUmbilical cord clampingEnhanced blood volumeTerm newbornsCord circulationVolume of bloodBlood transfusionLung capillary bedImproved survivalRed blood cellsExtra bloodOver-transfusionBlood volumeEvidence of harmCardiovascular stabilityTransfusionImmune systemReduce mortalityStem cellsBlood cellsIntravenous infusion of mesenchymal stem cells increased axonal signal intensity in the rubrospinal tract in spinal cord injury
Hirota R, Sasaki M, Teramoto A, Yamashita T, Kocsis J, Honmou O. Intravenous infusion of mesenchymal stem cells increased axonal signal intensity in the rubrospinal tract in spinal cord injury. Molecular Brain 2025, 18: 35. PMID: 40241097, PMCID: PMC12004759, DOI: 10.1186/s13041-025-01210-0.Peer-Reviewed Original ResearchConceptsIntravenous infusion of mesenchymal stem cellsInfusion of mesenchymal stem cellsSpinal cord injuryIntravenous infusionMesenchymal stem cellsRubrospinal tractCircuit reorganizationInfused mesenchymal stem cellsCord injuryNeural circuit reorganizationNeuronal tracing techniquesSignal intensityInjury siteFunctional improvementSpontaneous recoveryStem cellsDescending tractsAxonal connectionsInjuryAxonal growthTractAxonal networkTSC-mTORC1 Pathway in Postnatal V-SVZ Neurodevelopment
Feliciano D, Bordey A. TSC-mTORC1 Pathway in Postnatal V-SVZ Neurodevelopment. Biomolecules 2025, 15: 573. PMID: 40305300, PMCID: PMC12024678, DOI: 10.3390/biom15040573.Peer-Reviewed Original ResearchConceptsMTOR pathwayNeural stem cellsVentricular-subventricular zoneTranscriptional programsMTOR pathway signalingPathway signalingSignaling pathwayNutrient sufficiencyPathwayOlfactory bulb circuitryMTORNeurodevelopmental disordersFunctional cellsGrowth factorNeurogenesisCellsRodent brainStem cellsNarrative reviewPluripotent cell states and fates in human embryo models.
Sozen B, Tam P, Pera M. Pluripotent cell states and fates in human embryo models. Development 2025, 152 PMID: 40171916, PMCID: PMC11993252, DOI: 10.1242/dev.204565.Peer-Reviewed Original ResearchConceptsHuman embryo modelsStem cell-based modelsPluripotent stateEmbryo modelEpiblast cellsHuman embryonic developmentPost-implantation mammalian embryosCultured pluripotent cellsMammalian embryosEpiblast in vivoPluripotent cellsPluripotent statusStem cellsPluripotent cell stateEmbryonic lineagesModels of pre-Pluripotent epiblastPrimate developmentExtra-embryonicPluripotencyModeling SMAD2 Mutations in Induced Pluripotent Stem Cells Provides Insights Into Cardiovascular Disease Pathogenesis
Ward T, Morton S, Venturini G, Tai W, Jang M, Gorham J, Delaughter D, Wasson L, Khazal Z, Homsy J, Gelb B, Chung W, Bruneau B, Brueckner M, Tristani-Firouzi M, DePalma S, Seidman C, Seidman J. Modeling SMAD2 Mutations in Induced Pluripotent Stem Cells Provides Insights Into Cardiovascular Disease Pathogenesis. Journal Of The American Heart Association 2025, 14: e036860. PMID: 40028843, PMCID: PMC12184555, DOI: 10.1161/jaha.124.036860.Peer-Reviewed Original ResearchConceptsLoss-of-functionCongenital heart diseaseChromatin accessibilityMissense variantsCHD probandsPluripotent stem cellsHomozygous loss-of-functionCHD-associated genesHeterozygous loss-of-functionTranscription factor bindingMutant induced pluripotent stem cellsChromatin immunoprecipitation dataChromatin peaksStem cellsChromatin interactionsInduced pluripotent stem cellsFactor bindingTranscription factor NanogExome sequencingImmunoprecipitation dataTranscription factorsRNA sequencingChromatinMissenseMolecular consequencesOuter radial glia promotes white matter regeneration after neonatal brain injury
Jinnou H, Rosko L, Yamashita S, Henmi S, Prasad J, Lam V, Agaronyan A, Tu T, Imamura Y, Kuboyama K, Sawamoto K, Hashimoto-Torii K, Ishibashi N, Gallo V. Outer radial glia promotes white matter regeneration after neonatal brain injury. Cell Reports Medicine 2025, 6: 101986. PMID: 40023165, PMCID: PMC11970391, DOI: 10.1016/j.xcrm.2025.101986.Peer-Reviewed Original ResearchConceptsOuter radial gliaActivating transcription factor 5Oligodendrocyte precursor cellsTreating white matter injuryNeonatal brain injuryWhite matter injuryPeriventricular white matterWhite matter regenerationImprove functional recoveryPopulation of neural stem cellsNeural stem cellsBrain injuryOuter subventricular zoneSubventricular zoneProliferative capacityPostnatal developmentVentricular zoneFunctional recoveryPrecursor cellsStem cellsWhite matterRadial gliaTherapeutic targetNeonatal pigletsInjurySymposia Report of The Annual Biological Sciences Section Meeting of the Gerontological Society of America 2023, Tampa, Florida
Rogina B, Anderson R, LeBrasseur N, Curran S, Yousefzadeh M, Ghosh B, Duque G, Howlett S, Austad S, Demuth I, Gerstorf D, Korfhage J, Lombard D, Abadir P, Christensen K, Carey J, Alberts S, Campos F, Palavicini J, Palmer A, Bell J, Basisty N, de Cabo R, Gomes A, Dixit V, Sen P, Baur J, Imai S, Li X, Valdez G, Orr M, Pletcher S, Andersen J, Jones L, Castillo-Azofeida D, Bonaguidi M, Suh Y, Duncan F, Murray A, Wang M, Burkewitz K, Henne M, Zhou K, Bouhrara M, Benjamini D, Kolind S, Walker K, Reiter D, Dean D, Gorbunova V, Gladyshev V, Palovics R, Niedernhofer L, Fan R, Bueckle A, Hurley J, Esser K, Kapahi P, Sato S, Jiang N, Ashiqueali S, Diaz J, Mishra S, Raimundo N, Banarjee R, Allsopp R, Reynolds L, Zhang B, Sebastiani P, Monti S, Schork N, Rappaport N. Symposia Report of The Annual Biological Sciences Section Meeting of the Gerontological Society of America 2023, Tampa, Florida. The Journals Of Gerontology Series A 2025, 80: glaf026. PMID: 39932386, PMCID: PMC12046124, DOI: 10.1093/gerona/glaf026.Peer-Reviewed Original ResearchInter-organelle crosstalkNon-genetic interventionComparative transcriptomicsAging researchSymposia reportsClinical trialsOrganismal levelReproductive ageCircadian clockStem cellsEpigenetic clocksProgressive deteriorationPhysiological functionsSociety of AmericaPromote human healthAgeTranslation studiesInternational expertsMetabolomicsInterventionInflammagingSignificance of birth in the maintenance of quiescent neural stem cells
Kawase K, Nakamura Y, Wolbeck L, Takemura S, Zaitsu K, Ando T, Jinnou H, Sawada M, Nakajima C, Rydbirk R, Gokenya S, Ito A, Fujiyama H, Saito A, Iguchi A, Kratimenos P, Ishibashi N, Gallo V, Iwata O, Saitoh S, Khodosevich K, Sawamoto K. Significance of birth in the maintenance of quiescent neural stem cells. Science Advances 2025, 11: eadn6377. PMID: 39841848, PMCID: PMC11753423, DOI: 10.1126/sciadv.adn6377.Peer-Reviewed Original ResearchConceptsNeural stem cellsQuiescent neural stem cellsStem cellsRadial gliaNeural stem cell poolAcquisition of quiescenceEmbryonic neural stem cellsPreterm birthPostnatal neural stem cellsCellular processesPostnatal neurogenesisGlutamine metabolismPostnatal brainLong-term maintenanceDevelopmental processesBirthNeurogenesisPretermCellsMetabolic rewiring in skin epidermis drives tolerance to oncogenic mutations
Hemalatha A, Li Z, Gonzalez D, Matte-Martone C, Tai K, Lathrop E, Gil D, Ganesan S, Gonzalez L, Skala M, Perry R, Greco V. Metabolic rewiring in skin epidermis drives tolerance to oncogenic mutations. Nature Cell Biology 2025, 27: 218-231. PMID: 39762578, PMCID: PMC11821535, DOI: 10.1038/s41556-024-01574-w.Peer-Reviewed Original ResearchConceptsWild-type cellsOxidative tricarboxylic acid cycleOncogenic mutationsTricarboxylic acid cycleSingle-cell resolutionMutant phenotypeMutant cellsMutant epidermisCell competitionMetabolic rewiringAcid cycleCellular redoxStem cellsMutant modelsSkin epithelial stem cellsEpidermal stem cellsContribution of glucoseEpithelial stem cellsCytosolic redoxRedox ratioMetabolic stateMutationsHrasG12VSkin epidermisCellsMETTL3 modulates colonic epithelium integrity via maintaining the self-renewal and differentiation of Lgr5+ stem cell
Ding C, Yang X, Liu H, Roulis M, Chen H, Chen Y, Xu H, Gao Y, Zhong J, Li H, Ye Y, Cai W, Hu W, Wang Z. METTL3 modulates colonic epithelium integrity via maintaining the self-renewal and differentiation of Lgr5+ stem cell. Journal Of Molecular Cell Biology 2025, mjae060. PMID: 39762134, DOI: 10.1093/jmcb/mjae060.Peer-Reviewed Original ResearchSelf-renewalStem cellsMaturation of goblet cellsDifferentiation of Lgr5Ulcerative colitisHomeostasis of intestinal epitheliumColonic stem cellsGoblet cellsSpontaneous inflammationIntestinal dysplasiaColonic mucosaUC treatmentLgr5Epithelium integrityDepletion of METTL3Intestinal epitheliumTherapeutic targetInflammationDifferentiation capacityMETTL3 expressionUC samplesMETTL3 levelsExpression levelsM6A methylationCellsApplication of Stem Cells to Understanding Psychiatric Disorders
Birtele M, Quadrato G, Brennand K. Application of Stem Cells to Understanding Psychiatric Disorders. 2025, 53-64. DOI: 10.1093/med/9780197640654.003.0005.Peer-Reviewed Original ResearchPsychiatric disordersHuman induced pluripotent stem cellsAnimal models of autism spectrum disorderModel of autism spectrum disorderNeuroimaging studies of patientsModel psychiatric disordersAutism spectrum disorderStem cellsBipolar disorderDerivation of human induced pluripotent stem cellsNeuroimaging studiesApplication of stem cellsNeural processesSpectrum disorderStudy of patientsMental illnessPluripotent stem cellsDisordersComplex genetic risk factorsGenetic risk factorsTherapeutic approachesAnimal modelsNeural pathologyRisk factorsDisease predisposition
2024
Vascular endothelial cells derived from transgene-free pig induced pluripotent stem cells for vascular tissue engineering
Batty L, Park J, Qin L, Riaz M, Lin Y, Xu Z, Gao X, Li X, Lopez C, Zhang W, Hoareau M, Fallon M, Huang Y, Luo H, Luo J, Ménoret S, Li P, Jiang Z, Smith P, Sachs D, Tellides G, Anegon I, Pober J, Liu P, Qyang Y. Vascular endothelial cells derived from transgene-free pig induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia 2024, 193: 171-184. PMID: 39681154, PMCID: PMC12212065, DOI: 10.1016/j.actbio.2024.12.033.Peer-Reviewed Original ResearchThis study created transgene-free pig induced pluripotent stem cells for engineered blood vessels that prevent clots, opening new possibilities for modeling improved cardiovascular treatments.The dynamics of hematopoiesis over the human lifespan
Li H, Côté P, Kuoch M, Ezike J, Frenis K, Afanassiev A, Greenstreet L, Tanaka-Yano M, Tarantino G, Zhang S, Whangbo J, Butty V, Moiso E, Falchetti M, Lu K, Connelly G, Morris V, Wang D, Chen A, Bianchi G, Daley G, Garg S, Liu D, Chou S, Regev A, Lummertz da Rocha E, Schiebinger G, Rowe R. The dynamics of hematopoiesis over the human lifespan. Nature Methods 2024, 22: 422-434. PMID: 39639169, PMCID: PMC11908799, DOI: 10.1038/s41592-024-02495-0.Peer-Reviewed Original ResearchConceptsHematopoietic stem cellsHematopoietic stemProgenitor cellsClassification of acute myeloid leukemiaDifferentiation of hematopoietic stem cellsAssociated with poor prognosisAcute myeloid leukemiaHuman hematopoietic stemWave of hematopoiesisGene expression networksMyeloid leukemiaPoor prognosisLineage outputMultilineage capacityDynamics of hematopoiesisCell ontogenyStem cellsLineage primingFate decisionsModel organismsTranscriptomic statesExpression networksHuman lifespanTranscriptional programsHematopoiesisUterine teratoma and the role of short-tandem repeat genotyping in understanding origins
AlAshqar A, Maruthi V, Abi-Raad R, Greenman M, Hui P, Ratner E, Altwerger G, Santin A, Andikyan V. Uterine teratoma and the role of short-tandem repeat genotyping in understanding origins. Gynecologic Oncology Reports 2024, 56: 101652. PMID: 39698441, PMCID: PMC11652878, DOI: 10.1016/j.gore.2024.101652.Peer-Reviewed Case Reports and Technical NotesUterine teratomaPluripotent stem cellsMolecular testingRare tumorLimitations of diagnostic imagingHistory of vaginal bleedingShort tandem repeat genotypingStem cellsAdvanced molecular testingRepeat genotypingFallopian tube tissueGerm cell layersLoss of heterozygosityFour-week historyVaginal bleedingSurgical resectionOvarian counterpartRare entityUterine massPrimiparous womenEndometrial samplesFetal tissuesTeratomaPresence of tissueDiploid karyotype
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply