2025
Effect of empiric antibiotics against Pseudomonas aeruginosa on mortality in hospitalized patients: a systematic review and meta-analysis—authors’ response
Hunter C, Marhoffer E, Holleck J, Alshaeba S, Grimshaw A, Chou A, Carey G, Gunderson C. Effect of empiric antibiotics against Pseudomonas aeruginosa on mortality in hospitalized patients: a systematic review and meta-analysis—authors’ response. Journal Of Antimicrobial Chemotherapy 2025, 80: 1162-1162. PMID: 39976564, DOI: 10.1093/jac/dkaf047.Peer-Reviewed Original Research
2024
Effect of empiric antibiotics against Pseudomonas aeruginosa on mortality in hospitalized patients: a systematic review and meta-analysis
Hunter C, Marhoffer E, Holleck J, Alshaeba S, Grimshaw A, Chou A, Carey G, Gunderson C. Effect of empiric antibiotics against Pseudomonas aeruginosa on mortality in hospitalized patients: a systematic review and meta-analysis. Journal Of Antimicrobial Chemotherapy 2024, 80: 322-333. PMID: 39656468, DOI: 10.1093/jac/dkae422.Peer-Reviewed Original ResearchPrevalence of P. aeruginosaEffects of empiric antibioticsEmpirical antibioticsUrinary tract infectionSoft tissue infectionsCommunity-acquired pneumoniaTract infectionsTissue infectionsP. aeruginosaMortality benefitHospitalized patientsPseudomonas aeruginosaPooled adjusted ORP. aeruginosa infectionType of infectionStudy of patientsAbsolute mortality benefitIntensive care settingSystematic literature searchNosocomial pneumoniaSeptic shockMeaningful benefitAdjusted ORWeb of ScienceCompare mortality ratesPilY1 regulates the dynamic architecture of the type IV pilus machine in Pseudomonas aeruginosa
Guo S, Chang Y, Brun Y, Howell P, Burrows L, Liu J. PilY1 regulates the dynamic architecture of the type IV pilus machine in Pseudomonas aeruginosa. Nature Communications 2024, 15: 9382. PMID: 39477930, PMCID: PMC11525922, DOI: 10.1038/s41467-024-53638-y.Peer-Reviewed Original ResearchConceptsPilus extensionCell envelopeType IV piliPathogen Pseudomonas aeruginosaBacterial cell envelopeP. aeruginosa cellsCryo-electron tomographyPilus dynamicsPilin subunitSecretin channelSurface motilityPriming complexOuter membraneBiofilm formationT4PPilY1P. aeruginosaPseudomonas aeruginosaCentral poreMolecular mechanismsSubtomogram averagingPotential therapeutic targetDynamic assemblyTherapeutic targetMolecular frameworkCCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and cystic fibrosis mice
Öz H, Braga C, Gudneppanavar R, Di Pietro C, Huang P, Zhang P, Krause D, Egan M, Murray T, Bruscia E. CCR2+ monocytes are dispensable to resolve acute pulmonary Pseudomonas aeruginosa infections in WT and cystic fibrosis mice. Journal Of Leukocyte Biology 2024, 117: qiae218. PMID: 39365279, PMCID: PMC11953069, DOI: 10.1093/jleuko/qiae218.Peer-Reviewed Original ResearchLung tissue damageCystic fibrosisTissue damageMonocyte recruitmentImmune responsePulmonary Pseudomonas aeruginosa infectionHyper-inflammatory immune responseCystic fibrosis micePropagate tissue damagePseudomonas aeruginosaLungs of patientsChronic neutrophilic inflammationImmunological response to infectionHost immune responseMonocyte-derived macrophagesTarget monocyte recruitmentSite of injuryResponse to infectionCFTR modulatorsPA infectionChronic inflammatory disease conditionsReduced bactericidal activityAdjunctive therapyClinical outcomesEradicate infectionBacterial cell surface characterization by phage display coupled to high-throughput sequencing
Grun C, Jain R, Schniederberend M, Shoemaker C, Nelson B, Kazmierczak B. Bacterial cell surface characterization by phage display coupled to high-throughput sequencing. Nature Communications 2024, 15: 7502. PMID: 39209859, PMCID: PMC11362561, DOI: 10.1038/s41467-024-51912-7.Peer-Reviewed Original ResearchConceptsBacterial cell surfaceCell surfacePhage displayP. aeruginosa virulence factorsHigh-throughput DNA sequencingHigh-throughput sequencingPhage display panningCapacity of bacteriaCamelid single-domain antibodiesVirulence factorsDNA sequencesBacterial genotypesPhageSingle-domain antibodiesPseudomonas aeruginosaHost defenseBiological informationAntimicrobial resistanceLiving cellsSequenceChronic infectionCell surface characterizationAdaptive changesCellsBacteriaDual function of LapB (YciM) in regulating Escherichia coli lipopolysaccharide synthesis
Shu S, Tsutsui Y, Nathawat R, Mi W. Dual function of LapB (YciM) in regulating Escherichia coli lipopolysaccharide synthesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2321510121. PMID: 38635633, PMCID: PMC11046580, DOI: 10.1073/pnas.2321510121.Peer-Reviewed Original ResearchConceptsLPS synthesisTetratricopeptide repeatCytoplasmic domainLevels of lipopolysaccharideCryo-EM structureGram-negative bacteriaLipopolysaccharide synthesisProtease FtsHRubredoxin domainLpxC activityTransmembrane helicesIn vivo analysisLpxCPseudomonas aeruginosaEnzymatic activityLapBFtsHAllosteric effectsYciMDual functionIn vitroTetratricopeptideAdaptorMotifDeacetylaseOptimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University
Würstle S, Lee A, Kortright K, Winzig F, An W, Stanley G, Rajagopalan G, Harris Z, Sun Y, Hu B, Blazanin M, Hajfathalian M, Bollyky P, Turner P, Koff J, Chan B. Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University. Scientific Reports 2024, 14: 2657. PMID: 38302552, PMCID: PMC10834462, DOI: 10.1038/s41598-024-52192-3.Peer-Reviewed Original ResearchConceptsEvolutionary selection pressurePhage characterizationPhage therapyPersistent bacterial infectionsBacteriophage therapyPhageSelection pressurePseudomonas aeruginosaInvestigational new drug applicationBacterial infectionsNew Drug ApplicationTherapyDrug applicationClinical applicationAutographiviridaeBacteriaPotential strategy
2023
Identification of Efflux Substrates Using a Riboswitch-Based Reporter in Pseudomonas aeruginosa
Urdaneta-Páez V, Hamchand R, Anthony K, Crawford J, Sutherland A, Kazmierczak B. Identification of Efflux Substrates Using a Riboswitch-Based Reporter in Pseudomonas aeruginosa. MSphere 2023, 8: e00069-23. PMID: 36946743, PMCID: PMC10117056, DOI: 10.1128/msphere.00069-23.Peer-Reviewed Original ResearchConceptsLiquid chromatography-mass spectrometryCompound uptakeHigh-resolution liquid chromatography-mass spectrometryChromatography-mass spectrometryNovel antibioticsHigh-throughput screeningRational designMore rational designChemical librariesDiverse compoundsInitial hitsSelect compoundsPermeable compoundsDrug candidatesCompoundsStructural propertiesBacterial cellsPowerful methodAntifolate drugsSubstrateSpectrometrySynthesisPseudomonas aeruginosaClasses of antibioticsMembrane
2022
Recruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis
Di Pietro C, Öz HH, Zhang PX, Cheng EC, Martis V, Bonfield TL, Kelley TJ, Jubin R, Abuchowski A, Krause DS, Egan ME, Murray TS, Bruscia EM. Recruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis. Experimental & Molecular Medicine 2022, 54: 639-652. PMID: 35581352, PMCID: PMC9166813, DOI: 10.1038/s12276-022-00770-8.Peer-Reviewed Original ResearchConceptsHeme oxygenase-1Cystic fibrosisOxygenase-1Myeloid differentiation factor 88Neutrophilic pulmonary inflammationChronic airway infectionDifferentiation factor 88HO-1 levelsDisease mouse modelPseudomonas aeruginosaRecruitment of monocytesResolution of inflammationMonocytes/macrophagesTreatment of CFConditional knockout miceMechanism of actionLung neutrophiliaNeutrophilic inflammationLung inflammationAirway infectionPulmonary diseasePulmonary inflammationFactor 88Lung damageProinflammatory cytokines
2021
Congenital iRHOM2 deficiency causes ADAM17 dysfunction and environmentally directed immunodysregulatory disease
Kubo S, Fritz J, Raquer-McKay H, Kataria R, Vujkovic-Cvijin I, Al-Shaibi A, Yao Y, Zheng L, Zou J, Waldman A, Jing X, Farley T, Park A, Oler A, Charles A, Makhlouf M, AbouMoussa E, Hasnah R, Saraiva L, Ganesan S, Al-Subaiey A, Matthews H, Flano E, Lee H, Freeman A, Sefer A, Sayar E, Çakır E, Karakoc-Aydiner E, Baris S, Belkaid Y, Ozen A, Lo B, Lenardo M. Congenital iRHOM2 deficiency causes ADAM17 dysfunction and environmentally directed immunodysregulatory disease. Nature Immunology 2021, 23: 75-85. PMID: 34937930, PMCID: PMC11060421, DOI: 10.1038/s41590-021-01093-y.Peer-Reviewed Original ResearchMeSH KeywordsA549 CellsADAM17 ProteinAnimalsCarrier ProteinsChildChild, PreschoolCitrobacter rodentiumColitisCytokinesEnterobacteriaceae InfectionsFemaleHEK293 CellsHumansInfant, NewbornMacrophagesMaleMiceMice, Inbred C57BLMutationPrimary Immunodeficiency DiseasesPseudomonas aeruginosaPseudomonas InfectionsSignal TransductionConceptsIRhom2 deficiencyLoss-of-function mutationsLocal microbial environmentLoss of iRhom2Diverse clinical phenotypesRecurrent respiratory infectionsWild-type miceRelease of cytokinesTumor necrosis factorHemorrhagic colitisCitrobacter rodentiumADAM17 metalloproteinaseFecal microbiotaSuperfamily membersRecurrent infectionsRecurrent pneumoniaTumor necrosisLung involvementColonic involvementHuman immunodeficiencyInflammatory colitisMicrobial environmentOral speciesPseudomonas aeruginosaColitis patientsLingaoamide, a cyclic heptapeptide from a Chinese freshwater cyanobacterium Oscillatoria sp.
Iwasaki A, Kurisawa N, Wang T, Li X, Luo H, Zhu C, Patial G, Yan X, He S, Luzzatto-Knaan T, Tian F, Naman C, Suenaga K. Lingaoamide, a cyclic heptapeptide from a Chinese freshwater cyanobacterium Oscillatoria sp. Tetrahedron Letters 2021, 75: 153214. DOI: 10.1016/j.tetlet.2021.153214.Peer-Reviewed Original ResearchRice blast fungusCyanobacterium Oscillatoria spChemical degradation studiesConventional mass spectrometryBlast fungusModel organismsPlant growthMagnaporthe griseaGram-negative Pseudomonas aeruginosaOscillatoria spNMR spectroscopyBacillus pumilusNatural productsMass spectrometryCyclic heptapeptideDegradation studiesOrganismsMelanin pigmentPseudomonas aeruginosaArabidopsisBiogenesisCyanobacteriumGriseaFungiPumilusA Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa
Lin CK, Lee DSW, McKeithen-Mead S, Emonet T, Kazmierczak B. A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa. MBio 2021, 12: 10.1128/mbio.00831-21. PMID: 34154400, PMCID: PMC8262847, DOI: 10.1128/mbio.00831-21.Peer-Reviewed Original ResearchConceptsType 3 secretion systemSecretion systemT3SS expressionVirulence traitsSpecific virulence traitsHuman disease severityComplex nanomachinesT3SS genesP. aeruginosa cellsReproductive fitnessIsogenic cellsHeterogeneous expressionCell envelopeT3SS effectorsMotility organellesReservoir of cellsCritical virulence traitsGene expressionRegulatory mechanismsSubpopulation of cellsGram-negative pathogensFluorescent reportersDivision timeP. aeruginosaPseudomonas aeruginosaBacteriophage therapy for infections in CF
Chan BK, Stanley G, Modak M, Koff JL, Turner PE. Bacteriophage therapy for infections in CF. Pediatric Pulmonology 2021, 56: s4-s9. PMID: 33434411, DOI: 10.1002/ppul.25190.Peer-Reviewed Original ResearchConceptsCystic fibrosisPhage therapyBacteriophage therapyBacterial pathogensAntibiotic-resistant bacterial infectionsPulmonary complicationsClinical benefitCase reportLung infectionClinical trialsDisease progressionTarget bacterial pathogensTherapyBacterial infectionsNovel management strategiesPatient treatmentPatient dataInfectionStaphylococcus aureusTrialsPseudomonas aeruginosaPotential usefulnessPathogensLytic phagesComplications
2020
584. Ventricular assist device infections with Pseudomonas aeruginosa
Roberts S, Nam H, Kumar R, Zembower T, Qi C, Malczynski M, Rich J, Pawale A, Harap R, Stosor V. 584. Ventricular assist device infections with Pseudomonas aeruginosa. Open Forum Infectious Diseases 2020, 7: s356-s356. PMCID: PMC7776381, DOI: 10.1093/ofid/ofaa439.778.Peer-Reviewed Original ResearchDriveline exit siteVAD-specific infectionsVAD infectionsPA infectionVentricular assist device infectionVentricular assist device recipientsPseudomonas aeruginosaSuccessful heart transplantationInfection prevention strategiesNorthwestern Memorial HospitalMultiple antibiotic classesWarrants further studyAntibiotic coursesFQ monotherapyISHLT guidelinesProlonged antibioticsHeart transplantationSurgical debridementVAD implantationCerebrovascular accidentInitial diagnosisMedian timeDevice implantationDevice recipientsAntibiotic treatmentPseudomonas aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation
Riquelme SA, Liimatta K, Wong Fok Lung T, Fields B, Ahn D, Chen D, Lozano C, Sáenz Y, Uhlemann AC, Kahl BC, Britto CJ, DiMango E, Prince A. Pseudomonas aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation. Cell Metabolism 2020, 31: 1091-1106.e6. PMID: 32428444, PMCID: PMC7272298, DOI: 10.1016/j.cmet.2020.04.017.Peer-Reviewed Original ResearchConceptsHost immune responseImmune responseDownregulation of lipopolysaccharidesIntractable pneumoniaPseudomonas aeruginosaInfected lungsChronic infectionImmune clearanceHuman airwaysImmunostimulatory propertiesMyeloid cellsHigh mortalityAirwayInfectionOpportunistic bacteriaLipopolysaccharideAeruginosaBiofilm formationResponsePneumoniaLungTherapyMortalityClearanceUpregulation
2019
Architecture and Assembly of Periplasmic Flagellum
Chang Y, Liu J. Architecture and Assembly of Periplasmic Flagellum. 2019, 189-199. DOI: 10.1128/9781683670285.ch16.Peer-Reviewed Original ResearchPeriplasmic flagellaVirulence of bacterial pathogensMotility of spirochetesAssociated with virulenceBacteria encounterAssemble flagellaPeritrichous flagellaFlagellar numberSalmonella entericaFlagellar structureCell polesVibrio sppPeriplasmic spaceOuter membraneBacterial pathogensBacterial speciesEscherichia coliFlagellaPseudomonas aeruginosaBacteriaMotilitySpeciesSpirochetesAssemblySalmonella
2018
Gastrointestinal Microbiota Disruption and Risk of Colonization With Carbapenem-resistant Pseudomonas aeruginosa in Intensive Care Unit Patients
Pettigrew MM, Gent JF, Kong Y, Halpin AL, Pineles L, Harris AD, Johnson JK. Gastrointestinal Microbiota Disruption and Risk of Colonization With Carbapenem-resistant Pseudomonas aeruginosa in Intensive Care Unit Patients. Clinical Infectious Diseases 2018, 69: 604-613. PMID: 30383203, PMCID: PMC6669284, DOI: 10.1093/cid/ciy936.Peer-Reviewed Original ResearchConceptsCarbapenem-resistant Pseudomonas aeruginosaIntensive care unit patientsCare unit patientsPiperacillin-tazobactamUnit patientsICU patientsMarker of riskMaryland Medical CenterRisk of colonizationRibosomal RNA gene sequencingRNA gene sequencingAdmission swabCRPA infectionPseudomonas aeruginosaICU admissionPatient characteristicsMicrobiota disruptionMedical CenterGastrointestinal tractAdditional swabsAntimicrobial exposureLower riskEvaluated associationsPatientsProtective roleHost suppression of quorum sensing during catheter-associated urinary tract infections
Cole SJ, Hall CL, Schniederberend M, Farrow III JM, Goodson JR, Pesci EC, Kazmierczak BI, Lee VT. Host suppression of quorum sensing during catheter-associated urinary tract infections. Nature Communications 2018, 9: 4436. PMID: 30361690, PMCID: PMC6202348, DOI: 10.1038/s41467-018-06882-y.Peer-Reviewed Original ResearchConceptsCatheter-associated urinary tract infectionsUrinary tract infectionTract infectionsChronic bacterial infectionP. aeruginosaAntibiotic therapyUrinary tractDevice-associated biofilmsMurine modelHost immunityClinical isolatesBacterial infectionsInfectionPseudomonas aeruginosaUrineAeruginosaTherapyRegulated genesImmunityTractOzone disinfection of home nebulizers effectively kills common cystic fibrosis bacterial pathogens
Towle D, Baker V, Schramm C, O'Brien M, Collins MS, Feinn R, Murray TS. Ozone disinfection of home nebulizers effectively kills common cystic fibrosis bacterial pathogens. Pediatric Pulmonology 2018, 53: 599-604. PMID: 29542874, DOI: 10.1002/ppul.23990.Peer-Reviewed Original ResearchConceptsHome respiratory equipmentCystic Fibrosis FoundationNebulizer outputRespiratory equipmentBacterial pathogensCommon bacterial pathogensOzone exposureHome nebulizersNebulizer functionInfusion timeNebulizer equipmentJet nebulizerMin infusion timeHome careStaphylococcus aureusBacterial recoveryPseudomonas aeruginosaExposureHeavy burdenGross changesNebulizerPathogensSeparate experimentsPhage treatment of an aortic graft infected with Pseudomonas aeruginosa
Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evolution Medicine And Public Health 2018, 2018: 60-66. PMID: 29588855, PMCID: PMC5842392, DOI: 10.1093/emph/eoy005.Peer-Reviewed Original ResearchProsthetic vascular graft infectionVascular graft infectionSigns of recurrenceAortic Dacron graftGraft infectionAntibiotic therapyAortic graftDacron graftAntibiotic resistance/toleranceCase reportAntibiotic sensitivityInfectionPhage treatmentGraftWildtype bacteriaPseudomonas aeruginosaTherapeutic applicationsFistulaRecurrenceChronicCeftazidimeTherapyPoor abilityClinicians
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply