1990
Prevention of HIV-1 glycoprotein transport by soluble CD4 retained in the endoplasmic reticulum
Buonocore L, Rose J. Prevention of HIV-1 glycoprotein transport by soluble CD4 retained in the endoplasmic reticulum. Nature 1990, 345: 625-628. PMID: 2190096, DOI: 10.1038/345625a0.Peer-Reviewed Original ResearchConceptsCD4 moleculeHIV glycoproteinSoluble CD4 moleculesHuman immunodeficiency virusCellular CD4 receptorWild-type CD4Human T cellsInfectious HIVCD4 cellsImmunodeficiency virusSoluble CD4T cellsTherapeutic strategiesCD4 receptorImmunization procedureEnvelope glycoproteinVirus entrySurface expressionCD4HIVIdeal targetEndoplasmic reticulumVirusExpressionCells
1989
Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant
Whitt M, Chong L, Rose J. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant. Journal Of Virology 1989, 63: 3569-3578. PMID: 2547986, PMCID: PMC250946, DOI: 10.1128/jvi.63.9.3569-3578.1989.Peer-Reviewed Original ResearchConceptsCytoplasmic domainG proteinsAmino acidsWild-type G proteinNormal cytoplasmic domainG protein mutantsCytoplasmic domain sequencesVesicular stomatitis virus glycoproteinVSV G proteinTemperature-sensitive mutantViral G proteinSurface expressionG protein expressionProtein mutantsTransient expressionVirus buddingNonpermissive temperatureDomain sequencesMutantsCell surfaceGlycoprotein mutantsProteinImmunogold labelingSucrose gradientsEfficient assembly
1985
A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface.
Machamer C, Florkiewicz R, Rose J. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Molecular And Cellular Biology 1985, 5: 3074-3083. PMID: 3018499, PMCID: PMC369121, DOI: 10.1128/mcb.5.11.3074.Peer-Reviewed Original ResearchConceptsCell surface expressionG proteinsGlycosylation sitesVesicular stomatitis virus G proteinCell surfaceWild-type proteinVesicular stomatitis virus glycoproteinRole of glycosylationSurface expressionSite-directed mutagenesisVirus G proteinAsparagine-linked glycansIndirect immunofluorescence microscopyIntracellular transportImmunofluorescence microscopyOligosaccharide processingProteinProteolytic breakdownVirus glycoproteinExpressionPalmitic acidCellsMutagenesisOligosaccharidesCDNAA Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface
Machamer C, Florkiewicz R, Rose J. A Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface. Molecular And Cellular Biology 1985, 5: 3074-3083. DOI: 10.1128/mcb.5.11.3074-3083.1985.Peer-Reviewed Original ResearchCell surface expressionG proteinsGlycosylation sitesVesicular stomatitis virus G proteinCell surfaceWild-type proteinVesicular stomatitis virus glycoproteinRole of glycosylationSurface expressionSite-directed mutagenesisVirus G proteinAsparagine-linked glycansIndirect immunofluorescence microscopyIntracellular transportImmunofluorescence microscopyOligosaccharide processingProteinProteolytic breakdownVirus glycoproteinExpressionPalmitic acidCellsMutagenesisOligosaccharidesCDNAA Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface
Machamer C, Florkiewicz R, Rose J. A Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface. Molecular And Cellular Biology 1985, 5: 3074-3083. DOI: 10.1128/mcb.5.11.3074-3083.1985.Peer-Reviewed Original ResearchG-proteinCell surface expressionTransport of vesicular stomatitis virus G proteinGlycosylation sitesCell surfaceNonglycosylated G proteinGolgi-like regionWild-type proteinAsparagine-linked glycansVesicular stomatitis virus G proteinSite-directed mutagenesisVesicular stomatitis virus glycoproteinIndirect immunofluorescence microscopyCloned cDNACoding sequenceIntracellular transportOligosaccharide processingSurface expressionTransfected cellsProteolytic breakdownExpression of G-proteinsImmunofluorescence microscopyGlycosylationVirus glycoproteinModified with palmitic acid