2025
Dysregulation of mTOR signalling is a converging mechanism in lissencephaly
Zhang C, Liang D, Ercan-Sencicek A, Bulut A, Cortes J, Cheng I, Henegariu O, Nishimura S, Wang X, Peksen A, Takeo Y, Caglar C, Lam T, Koroglu M, Narayanan A, Lopez-Giraldez F, Miyagishima D, Mishra-Gorur K, Barak T, Yasuno K, Erson-Omay E, Yalcinkaya C, Wang G, Mane S, Kaymakcalan H, Guzel A, Caglayan A, Tuysuz B, Sestan N, Gunel M, Louvi A, Bilguvar K. Dysregulation of mTOR signalling is a converging mechanism in lissencephaly. Nature 2025, 638: 172-181. PMID: 39743596, PMCID: PMC11798849, DOI: 10.1038/s41586-024-08341-9.Peer-Reviewed Original ResearchP53-induced death domain protein 1Miller-Dieker lissencephaly syndromeMolecular mechanismsDysregulation of protein translationDysregulation of mTOR signalingDomain protein 1Activity of mTOR complexesMTOR pathwayRelevant molecular mechanismsProtein translationHuman lissencephalyClinically relevant molecular mechanismsRecessive mutationsRare mutationsMiller-DiekerGene expressionCerebral cortex developmentMTOR complexesSpectrum disorderMolecular defectsMTOR signalingCongenital brain malformationsProtein 1GeneticsAssociated with epilepsy
2024
Exploring Molecular and Phenotypic Characteristics of NAGLU Arg234Gly and Asp312Asn Variants
Celebiler H, Barak T, K. D, Kaya I, Erbilgin S, Uytun M, Oztop D, Gumus H, Per H, Ceylaner S, Bozkurt I, Kontaridis M, Bilguvar K, Akhun N, Kilincaslan A, Caglayan A, Erson-Omay E, Gunel M, Ercan-Sencicek A. Exploring Molecular and Phenotypic Characteristics of NAGLU Arg234Gly and Asp312Asn Variants. Molecular Syndromology 2024, 1-12. DOI: 10.1159/000542367.Peer-Reviewed Original ResearchWhole-exome sequencingStandard Sanger sequencingMucopolysaccharidosis type IIIBExome sequencingProgressive neurodegenerative disorderConsanguineous familySanger sequencingNAGLU genePhenotypic characteristicsMagnetic resonance imagingEnzymatic assayNeurodegenerative disordersAffected individualsLoss of activityNeurodegenerative symptomsAutosomal recessive lysosomal disorderCellular mechanismsVariantsLysosomal disorderEnzymeNormal MRI findingsSequenceMPS IIIBMRI findingsType IIIB
2023
Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas
Youngblood M, Erson-Omay Z, Li C, Najem H, Coșkun S, Tyrtova E, Montejo J, Miyagishima D, Barak T, Nishimura S, Harmancı A, Clark V, Duran D, Huttner A, Avşar T, Bayri Y, Schramm J, Boetto J, Peyre M, Riche M, Goldbrunner R, Amankulor N, Louvi A, Bilgüvar K, Pamir M, Özduman K, Kilic T, Knight J, Simon M, Horbinski C, Kalamarides M, Timmer M, Heimberger A, Mishra-Gorur K, Moliterno J, Yasuno K, Günel M. Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas. Nature Communications 2023, 14: 6279. PMID: 37805627, PMCID: PMC10560290, DOI: 10.1038/s41467-023-41926-y.Peer-Reviewed Original Research
2022
Mutation spectrum of congenital heart disease in a consanguineous Turkish population
Dong W, Kaymakcalan H, Jin SC, Diab NS, Tanıdır C, Yalcin ASY, Ercan‐Sencicek A, Mane S, Gunel M, Lifton RP, Bilguvar K, Brueckner M. Mutation spectrum of congenital heart disease in a consanguineous Turkish population. Molecular Genetics & Genomic Medicine 2022, 10: e1944. PMID: 35481623, PMCID: PMC9184665, DOI: 10.1002/mgg3.1944.Peer-Reviewed Original ResearchConceptsWhole-exome sequencingLaterality defectsUnique genetic architectureCongenital heart diseaseConsanguineous familyGenetic architectureCausal genesCHD genesGenome analysisHomozygous variantGenetic landscapeGenetic lesionsGenomic alterationsHeart diseaseConsanguineous populationFunction variantsRecessive variantsCHD probandsGenesType of CHDMutation spectrumStructural congenital heart diseaseVariantsCHD subjectsAdditional patients
2021
PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans
Barak T, Ristori E, Ercan-Sencicek AG, Miyagishima DF, Nelson-Williams C, Dong W, Jin SC, Prendergast A, Armero W, Henegariu O, Erson-Omay EZ, Harmancı AS, Guy M, Gültekin B, Kilic D, Rai DK, Goc N, Aguilera SM, Gülez B, Altinok S, Ozcan K, Yarman Y, Coskun S, Sempou E, Deniz E, Hintzen J, Cox A, Fomchenko E, Jung SW, Ozturk AK, Louvi A, Bilgüvar K, Connolly ES, Khokha MK, Kahle KT, Yasuno K, Lifton RP, Mishra-Gorur K, Nicoli S, Günel M. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nature Medicine 2021, 27: 2165-2175. PMID: 34887573, PMCID: PMC8768030, DOI: 10.1038/s41591-021-01572-7.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesPeptidyl-prolyl cis-transPathogenesis of IAContribution of variantsCommon genetic variantsVertebrate modelDeleterious mutationsWnt activatorAssociation studiesWhole-exome sequencingSignificant enrichmentGenetic variantsWntAngiogenesis regulatorsMutationsGene mutationsBrain angiogenesisIntracranial aneurysm ruptureJMJD6AngiogenesisCerebrovascular morphologyCerebrovascular integrityIntracerebral hemorrhageAneurysm ruptureVariantsThe genetic structure of the Turkish population reveals high levels of variation and admixture
Kars ME, Başak AN, Onat OE, Bilguvar K, Choi J, Itan Y, Çağlar C, Palvadeau R, Casanova JL, Cooper DN, Stenson PD, Yavuz A, Buluş H, Günel M, Friedman JM, Özçelik T. The genetic structure of the Turkish population reveals high levels of variation and admixture. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2026076118. PMID: 34426522, PMCID: PMC8433500, DOI: 10.1073/pnas.2026076118.Peer-Reviewed Original ResearchConceptsGenetic structureTR populationGenome-wide association studiesRuns of homozygosityGenomes Project populationsHigh inbreeding coefficientsDisease gene discoveryHigh-quality haplotypesPotential medical relevanceGene discoveryExtensive admixturePhenotypic consequencesWhole genomeGenetic basisInbreeding coefficientSpecific genesRare rangeGenome variantsAssociation studiesGenetic relationshipsFunctional consequencesWhole exomeSpecific phenotypesGenotype imputationMedical relevanceNeuroinvasion of SARS-CoV-2 in human and mouse brain
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal Of Experimental Medicine 2021, 218: e20202135. PMID: 33433624, PMCID: PMC7808299, DOI: 10.1084/jem.20202135.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Central nervous systemSARS-CoV-2 neuroinvasionImmune cell infiltratesCOVID-19 patientsType I interferon responseMultiple organ systemsCOVID-19I interferon responseHuman brain organoidsNeuroinvasive capacityCNS infectionsCell infiltrateNeuronal infectionPathological featuresCortical neuronsRespiratory diseaseDirect infectionCerebrospinal fluidNervous systemMouse brainInterferon responseOrgan systemsHuman ACE2Infection
2020
Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nature Medicine 2020, 26: 1754-1765. PMID: 33077954, PMCID: PMC7871900, DOI: 10.1038/s41591-020-1090-2.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusPoor neurodevelopmental outcomesPost-surgical patientsCerebrospinal fluid accumulationNeural stem cell biologyGenetic disruptionWhole-exome sequencingPrimary pathomechanismEarly brain developmentNeurodevelopmental outcomesHigh morbidityCSF diversionMutation burdenFluid accumulationBrain ventriclesCH casesBrain developmentDe novo mutationsPatientsExome sequencingCSF dynamicsDisease mechanismsHydrocephalusNovo mutationsCell typesAssociations of meningioma molecular subgroup and tumor recurrence
Youngblood MW, Miyagishima DF, Jin L, Gupte T, Li C, Duran D, Montejo JD, Zhao A, Sheth A, Tyrtova E, Özduman K, Iacoangeli F, Peyre M, Boetto J, Pease M, Avşar T, Huttner A, Bilguvar K, Kilic T, Pamir MN, Amankulor N, Kalamarides M, Erson-Omay EZ, Günel M, Moliterno J. Associations of meningioma molecular subgroup and tumor recurrence. Neuro-Oncology 2020, 23: 783-794. PMID: 33068421, PMCID: PMC8099468, DOI: 10.1093/neuonc/noaa226.Peer-Reviewed Original ResearchConceptsDivergent clinical coursesMolecular subgroupsClinical courseClinical outcomesProgression-free survivalExtent of resectionKaplan-Meier analysisLong-term outcomesLow-grade tumorsCox proportional hazardsDistinct clinical outcomesPostoperative radiationIndependent predictorsMale sexRecurrence rateSurveillance imagingTumor recurrencePrevious recurrencesClinical prognosticationKi-67Outcome dataAggressive subgroupRecurrenceElevated recurrenceProportional hazards
2019
Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis
Timberlake AT, Jin SC, Nelson-Williams C, Wu R, Furey CG, Islam B, Haider S, Loring E, Galm A, Steinbacher D, Larysz D, Staffenberg D, Flores R, Rodriguez E, Boggon T, Persing J, Lifton R, Lifton RP, Gunel M, Mane S, Bilguvar K, Gerstein M, Loring E, Nelson-Williams C, Lopez F, Knight J. Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 15116-15121. PMID: 31292255, PMCID: PMC6660739, DOI: 10.1073/pnas.1902041116.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentalpha CateninChildChild, PreschoolCraniosynostosesExomeExome SequencingFemaleGene ExpressionGlypicansHistone AcetyltransferasesHumansMaleMutationNuclear ProteinsPedigreeRisk AssessmentSignal TransductionSkullSOXC Transcription FactorsTranscription Factor AP-2Zinc Finger Protein Gli2ConceptsRare damaging mutationsSyndromic craniosynostosisCongenital anomaliesDamaging mutationsSyndromic casesExome sequencingAdditional congenital anomaliesFrequent congenital anomaliesDamaging de novo mutationsNeural crest cell migrationDamaging de novoCrest cell migrationCS patientsMutation burdenChromatin modifiersSubsequent childrenTranscription factorsDe novo mutationsCS casesCS geneHedgehog pathwayDisease locusPremature fusionFunction mutationsCraniosynostosis
2018
Mutations in Chromatin Modifier and Ephrin Signaling Genes in Vein of Galen Malformation
Duran D, Zeng X, Jin SC, Choi J, Nelson-Williams C, Yatsula B, Gaillard J, Furey CG, Lu Q, Timberlake AT, Dong W, Sorscher MA, Loring E, Klein J, Allocco A, Hunt A, Conine S, Karimy JK, Youngblood MW, Zhang J, DiLuna ML, Matouk CC, Mane S, Tikhonova IR, Castaldi C, López-Giráldez F, Knight J, Haider S, Soban M, Alper SL, Komiyama M, Ducruet AF, Zabramski JM, Dardik A, Walcott BP, Stapleton CJ, Aagaard-Kienitz B, Rodesch G, Jackson E, Smith ER, Orbach DB, Berenstein A, Bilguvar K, Vikkula M, Gunel M, Lifton RP, Kahle KT. Mutations in Chromatin Modifier and Ephrin Signaling Genes in Vein of Galen Malformation. Neuron 2018, 101: 429-443.e4. PMID: 30578106, PMCID: PMC10292091, DOI: 10.1016/j.neuron.2018.11.041.Peer-Reviewed Original ResearchConceptsChromatin modifiersVascular developmentSpecification of arteriesDeep venous systemNormal vascular developmentParent-offspring triosSignaling GenesGalen malformationDamaging mutationsGenesMutationsEssential roleArterio-venous malformationsCutaneous vascular abnormalitiesNovo mutationsExome sequencingDisease biologyIncomplete penetranceVariable expressivityVascular abnormalitiesVenous systemMutation carriersArterial bloodMutation burdenClinical implicationsLoss of Protocadherin‐12 Leads to Diencephalic‐Mesencephalic Junction Dysplasia Syndrome
Guemez‐Gamboa A, Çağlayan AO, Stanley V, Gregor A, Zaki M, Saleem SN, Musaev D, McEvoy‐Venneri J, Belandres D, Akizu N, Silhavy JL, Schroth J, Rosti RO, Copeland B, Lewis SM, Fang R, Issa MY, Per H, Gumus H, Bayram AK, Kumandas S, Akgumus GT, Erson‐Omay E, Yasuno K, Bilguvar K, Heimer G, Pillar N, Shomron N, Weissglas‐Volkov D, Porat Y, Einhorn Y, Gabriel S, Ben‐Zeev B, Gunel M, Gleeson JG. Loss of Protocadherin‐12 Leads to Diencephalic‐Mesencephalic Junction Dysplasia Syndrome. Annals Of Neurology 2018, 84: 638-647. PMID: 30178464, PMCID: PMC6510237, DOI: 10.1002/ana.25327.Peer-Reviewed Original ResearchConceptsBrainstem malformationDysplasia syndromeEndothelial cellsBiallelic mutationsAutosomal recessive malformationSuch pathogenic variantsCharacteristic clinical presentationPatient-derived induced pluripotent stem cellsWhite matter tractsAnn NeurolAppendicular spasticityBrain calcificationClinical presentationPoor outcomeAxial hypotoniaPsychomotor disabilityProgressive microcephalyTract defectsPathogenic variantsPhenotypic spectrumPatientsCraniofacial dysmorphismBrain imagingNeural precursorsProtein expressionBiallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration
Schaffer AE, Breuss MW, Caglayan AO, Al-Sanaa N, Al-Abdulwahed HY, Kaymakçalan H, Yılmaz C, Zaki MS, Rosti RO, Copeland B, Baek ST, Musaev D, Scott EC, Ben-Omran T, Kariminejad A, Kayserili H, Mojahedi F, Kara M, Cai N, Silhavy JL, Elsharif S, Fenercioglu E, Barshop BA, Kara B, Wang R, Stanley V, James KN, Nachnani R, Kalur A, Megahed H, Incecik F, Danda S, Alanay Y, Faqeih E, Melikishvili G, Mansour L, Miller I, Sukhudyan B, Chelly J, Dobyns WB, Bilguvar K, Jamra RA, Gunel M, Gleeson JG. Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nature Genetics 2018, 50: 1093-1101. PMID: 30013181, PMCID: PMC6072555, DOI: 10.1038/s41588-018-0166-0.Peer-Reviewed Original ResearchConceptsNeuronal migrationHuman cerebral cortexCortical neuronal migrationΒ-catenin signalingCerebral cortexPotential disease mechanismsDevelopmental brain defectsBiallelic truncating mutationsNeuronal phenotypeBiallelic lossBrain defectsBiallelic mutationsTruncating mutationsDisease mechanismsΒ-cateninPachygyriaRecessive formNeurite stabilityNeuronsFamily membersCTNNA2OveractivityPatientsDe Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus
Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, Mansuri MS, Lu Q, Duran D, Panchagnula S, Allocco A, Karimy JK, Khanna A, Gaillard JR, DeSpenza T, Antwi P, Loring E, Butler WE, Smith ER, Warf BC, Strahle JM, Limbrick DD, Storm PB, Heuer G, Jackson EM, Iskandar BJ, Johnston JM, Tikhonova I, Castaldi C, López-Giráldez F, Bjornson RD, Knight JR, Bilguvar K, Mane S, Alper SL, Haider S, Guclu B, Bayri Y, Sahin Y, Apuzzo MLJ, Duncan CC, DiLuna ML, Günel M, Lifton RP, Kahle KT. De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 2018, 99: 302-314.e4. PMID: 29983323, PMCID: PMC7839075, DOI: 10.1016/j.neuron.2018.06.019.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusNeural stem cell fateHuman congenital hydrocephalusDamaging de novoCerebrospinal fluid homeostasisSubstantial morbidityCH patientsTherapeutic ramificationsSignificant burdenBrain ventriclesCH pathogenesisNeural tube developmentFluid homeostasisDe novo mutationsExome sequencingAdditional probandsHydrocephalusPathogenesisNovo mutationsNovo duplicationProbandsDe novoCell fateMorbidityPatients
2017
AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma
Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S, Renauer P, Bilguvar K, Gunel M, Sharp PA, Zhang F, Platt RJ, Chen S. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature Neuroscience 2017, 20: 1329-1341. PMID: 28805815, PMCID: PMC5614841, DOI: 10.1038/nn.4620.Peer-Reviewed Original ResearchIntegrated genomic analyses of de novo pathways underlying atypical meningiomas
Harmancı AS, Youngblood MW, Clark VE, Coşkun S, Henegariu O, Duran D, Erson-Omay EZ, Kaulen LD, Lee TI, Abraham BJ, Simon M, Krischek B, Timmer M, Goldbrunner R, Omay SB, Baranoski J, Baran B, Carrión-Grant G, Bai H, Mishra-Gorur K, Schramm J, Moliterno J, Vortmeyer AO, Bilgüvar K, Yasuno K, Young RA, Günel M. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature Communications 2017, 8: 14433. PMID: 28195122, PMCID: PMC5316884, DOI: 10.1038/ncomms14433.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesBrain NeoplasmsCell Transformation, NeoplasticChromosomal InstabilityCluster AnalysisDNA MethylationE2F2 Transcription FactorEnhancer of Zeste Homolog 2 ProteinEpigenomicsExomeForkhead Box Protein M1Gene Expression ProfilingGene Expression Regulation, NeoplasticGene Regulatory NetworksGene SilencingGenes, Neurofibromatosis 2GenomeGenomicsGenotyping TechniquesHuman Embryonic Stem CellsHumansJumonji Domain-Containing Histone DemethylasesMeningeal NeoplasmsMeningiomaMolecular Probe TechniquesMutationPhenotypePolycomb Repressive Complex 2Promoter Regions, GeneticRNA, MessengerSequence AnalysisSignal TransductionSMARCB1 ProteinTranscriptomeConceptsPolycomb repressive complex 2Human embryonic stem cellsRepressive complex 2Integrated genomic analysisEmbryonic stem cellsDe novo pathwayH3K27me3 signalsTranscriptional networksPRC2 complexEpigenomic analysisCellular statesCatalytic subunitGenomic analysisGenomic instabilityHypermethylated phenotypeGenomic landscapeNovo pathwayDisplay lossStem cellsPotential therapeutic targetExhibit upregulationPromoter mutationsTherapeutic targetMutationsComplexes 2Longitudinal analysis of treatment-induced genomic alterations in gliomas
Erson-Omay EZ, Henegariu O, Omay SB, Harmancı AS, Youngblood MW, Mishra-Gorur K, Li J, Özduman K, Carrión-Grant G, Clark VE, Çağlar C, Bakırcıoğlu M, Pamir MN, Tabar V, Vortmeyer AO, Bilguvar K, Yasuno K, DeAngelis LM, Baehring JM, Moliterno J, Günel M. Longitudinal analysis of treatment-induced genomic alterations in gliomas. Genome Medicine 2017, 9: 12. PMID: 28153049, PMCID: PMC5290635, DOI: 10.1186/s13073-017-0401-9.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsChromosome AberrationsCombined Modality TherapyDisease ProgressionDNA Mismatch RepairDNA Mutational AnalysisDNA, NeoplasmExomeFemaleGeneral SurgeryGenome, HumanGenomicsGlioblastomaHumansImmunotherapyLongitudinal StudiesMiddle AgedMutationNeoplasm Recurrence, LocalPrecision MedicineRadiotherapyTreatment OutcomeConceptsWhole-exome sequencingMismatch repair deficiencyImmune checkpoint inhibitionMalignant brain tumorsMolecular changesLongitudinal analysisMedian survivalCheckpoint inhibitionSubsequent recurrenceMaximal resectionStandard treatmentBackgroundGlioblastoma multiformeBrain tumorsTumor-normal pairsFavorable responsePrimary GBMIndividual tumorsConclusionsOur studyPrecision therapyPersonalized treatmentGenomic profilingRepair deficiencyGenomic alterationsGenomic profilesTherapyBiallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing
Lardelli RM, Schaffer AE, Eggens VR, Zaki MS, Grainger S, Sathe S, Van Nostrand EL, Schlachetzki Z, Rosti B, Akizu N, Scott E, Silhavy JL, Heckman LD, Rosti RO, Dikoglu E, Gregor A, Guemez-Gamboa A, Musaev D, Mande R, Widjaja A, Shaw TL, Markmiller S, Marin-Valencia I, Davies JH, de Meirleir L, Kayserili H, Altunoglu U, Freckmann ML, Warwick L, Chitayat D, Blaser S, Çağlayan AO, Bilguvar K, Per H, Fagerberg C, Christesen HT, Kibaek M, Aldinger KA, Manchester D, Matsumoto N, Muramatsu K, Saitsu H, Shiina M, Ogata K, Foulds N, Dobyns WB, Chi NC, Traver D, Spaccini L, Bova SM, Gabriel SB, Gunel M, Valente EM, Nassogne MC, Bennett EJ, Yeo GW, Baas F, Lykke-Andersen J, Gleeson JG. Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nature Genetics 2017, 49: 457-464. PMID: 28092684, PMCID: PMC5325768, DOI: 10.1038/ng.3762.Peer-Reviewed Original Research
2016
Digenic mutations of human OCRL paralogs in Dent’s disease type 2 associated with Chiari I malformation
Duran D, Jin SC, DeSpenza T, Nelson-Williams C, Cogal AG, Abrash EW, Harris PC, Lieske JC, Shimshak SJ, Mane S, Bilguvar K, DiLuna ML, Günel M, Lifton RP, Kahle KT. Digenic mutations of human OCRL paralogs in Dent’s disease type 2 associated with Chiari I malformation. Human Genome Variation 2016, 3: 16042. PMID: 28018608, PMCID: PMC5143364, DOI: 10.1038/hgv.2016.42.Peer-Reviewed Original ResearchDigenic mutationsPH domainPrimary ciliaDamaging missense mutationsGenetic supportINPP5BSilico analysisMutation impactOCRL1Amino acidsMissense mutationsParalogsBp deletionMutationsCiliogenesisExon 3Novel associationsAbove-average IQVariable presencePhosphatidylinositolPolyPhen2MetaSVMSequencingDeletionCiliaImpaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder
Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M, Morelli E, Sonmez FM, Bilguvar K, Ohgaki R, Kanai Y, Johansen A, Esharif S, Ben-Omran T, Topcu M, Schlessinger A, Indiveri C, Duncan KE, Caglayan AO, Gunel M, Gleeson JG, Novarino G. Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder. Cell 2016, 167: 1481-1494.e18. PMID: 27912058, PMCID: PMC5554935, DOI: 10.1016/j.cell.2016.11.013.Peer-Reviewed Original ResearchConceptsBlood-brain barrierBrain barrierBrain amino acid profilesLarge neutral amino acid transporterAutism spectrum disorderAdult mutant miceBranched-chain amino acid (BCAA) catabolic pathwaySevere neurological abnormalitiesNeutral amino acid transporterIntracerebroventricular administrationNeurological syndromeNeurological abnormalitiesNeurological conditionsSpectrum disorderSLC7A5 geneMotor delayAmino acid transportAmino acid transportersMutant miceNormal levelsBrain functionHuman brain functionEndothelial cellsHomozygous mutationCauses of ASD
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply