2024
Frequency modulation increases the specificity of time-resolved connectivity: A resting-state fMRI study
Faghiri A, Yang K, Faria A, Ishizuka K, Sawa A, Adali T, Calhoun V. Frequency modulation increases the specificity of time-resolved connectivity: A resting-state fMRI study. Network Neuroscience 2024, 8: 734-761. PMID: 39355435, PMCID: PMC11349031, DOI: 10.1162/netn_a_00372.Peer-Reviewed Original ResearchSliding window Pearson correlationTime-resolved networksSingle sideband modulationTime-resolved connectivityResting-state fMRI studiesSideband modulationFunctional magnetic resonance imagingFunctional network connectivityResting-state functional magnetic resonance imagingActivity time seriesTypical controlsFrequency modulationLow-frequency informationStateEpisode of psychosisNetwork connectivityHuman brainSub-corticalSuperior performanceFMRI studyCortical regionsLocal-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia
Xing Y, Pearlson G, Kochunov P, Calhoun V, Du Y. Local-structure-preservation and redundancy-removal-based feature selection method and its application to the identification of biomarkers for schizophrenia. NeuroImage 2024, 299: 120839. PMID: 39251116, PMCID: PMC11491165, DOI: 10.1016/j.neuroimage.2024.120839.Peer-Reviewed Original ResearchConceptsSelection methodClassification accuracy gainsGraph-based regularizationHigh-dimensional dataFeature selection methodLocal structural informationSparse regularizationAblation studiesFeature subsetPublic datasetsFeature selectionClassification accuracyExperimental evaluationAccuracy gainsSelection techniquesNetwork connectivityData transformationSuperior performanceDatasetConvergence analysisStructural informationClassificationRegularizationFeaturesDisorder prediction4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia
Pusuluri K, Fu Z, Miller R, Pearlson G, Kochunov P, Van Erp T, Iraji A, Calhoun V. 4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia. Human Brain Mapping 2024, 45: e26773. PMID: 39045900, PMCID: PMC11267451, DOI: 10.1002/hbm.26773.Peer-Reviewed Original ResearchConceptsBrain networksFunctional magnetic resonance imagingAssociated with cognitive performanceDynamics of functional brain networksAssociated with cognitionFunctional brain networksVoxel-wise changesVolumetric couplingDynamical variablesCognitive performanceTypical controlsSchizophreniaCognitive impairmentNetwork pairsMagnetic resonance imagingPair of networksCognitionAtypical variabilityResonance imagingCouplingNetwork connectivityNetwork growthImpairmentBrainStatic networksEstimation of complete mutual information exploiting nonlinear magnitude-phase dependence: Application to spatial FNC for complex-valued fMRI data
Li W, Lin Q, Zhang C, Han Y, Li H, Calhoun V. Estimation of complete mutual information exploiting nonlinear magnitude-phase dependence: Application to spatial FNC for complex-valued fMRI data. Journal Of Neuroscience Methods 2024, 409: 110207. PMID: 38944128, DOI: 10.1016/j.jneumeth.2024.110207.Peer-Reviewed Original ResearchConceptsComplex-valued fMRI dataMutual informationJoint entropyNetwork connectivityComplex-valued signalsFunctional network connectivityMagnitude-phase dependenceDensity estimation methodMI estimationHistogram-basedKernel density estimation methodFMRI dataEstimation accuracyProbability density functionJoint probability density functionSimulated signalsChain rulePhase dependenceEstimation methodHigh-orderDensity functionControl networkInaccurate estimationNonlinear dependenceDependenceGray matters: ViT-GAN framework for identifying schizophrenia biomarkers linking structural MRI and functional network connectivity
Bi Y, Abrol A, Jia S, Sui J, Calhoun V. Gray matters: ViT-GAN framework for identifying schizophrenia biomarkers linking structural MRI and functional network connectivity. NeuroImage 2024, 297: 120674. PMID: 38851549, DOI: 10.1016/j.neuroimage.2024.120674.Peer-Reviewed Original ResearchFunctional network connectivityMedial prefrontal cortexBrain structuresFunctional network connectivity matricesPrefrontal cortexStructural MRINetwork connectivityGray matterSelf-attention mechanismGenerative adversarial networkDeep learning architectureBrain disordersDorsolateral prefrontal cortexResearch of schizophreniaNeural signal processingIdentified functional connectivityCross-domain analysisAttention mapsStructural biomarkersAdversarial networkLearning architectureDL-PFCICA algorithmSchizophrenia patientsHigh-dimensional fMRI dataPrivacy-Preserving Visualization of Brain Functional Network Connectivity
Tao Y, Sarwate A, Panta S, Plis S, Calhoun V. Privacy-Preserving Visualization of Brain Functional Network Connectivity. 2024, 00: 1-5. DOI: 10.1109/isbi56570.2024.10635222.Peer-Reviewed Original ResearchDifferential privacyProtecting sensitive informationNon-private counterpartsPre-and post-processingPrivacy-preservingPrivacy guaranteesSensitive informationPrivacy costData visualizationPrivacyBiomedical dataInvestigate several approachesNetwork connectivityPost-processingSeveral approachesVisualizationWorkflowGuaranteesCorrelation valuesTradeoffDataConnectogramsInformationA confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity
Hassanzadeh R, Abrol A, Pearlson G, Turner J, Calhoun V. A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity. PLOS ONE 2024, 19: e0293053. PMID: 38768123, PMCID: PMC11104643, DOI: 10.1371/journal.pone.0293053.Peer-Reviewed Original ResearchConceptsResting-state functional network connectivityFunctional network connectivityResting-state functional magnetic resonance imagingFunctional magnetic resonance imagingAlzheimer's diseaseClassification of schizophreniaNetwork pairsPatients to healthy controlsSchizophrenia patientsNeurobiological mechanismsSZ patientsSubcortical networksCerebellum networkSchizophreniaRs-fMRIDisorder developmentMotor networkCompare patient groupsSubcortical domainSZ disorderHealthy controlsMagnetic resonance imagingDisordersNetwork connectivityFunctional abnormalitiesThe overlap across psychotic disorders: A functional network connectivity analysis
Dini H, Bruni L, Ramsøy T, Calhoun V, Sendi M. The overlap across psychotic disorders: A functional network connectivity analysis. International Journal Of Psychophysiology 2024, 201: 112354. PMID: 38670348, PMCID: PMC11163820, DOI: 10.1016/j.ijpsycho.2024.112354.Peer-Reviewed Original ResearchConceptsFunctional network connectivitySchizoaffective disorderPsychotic disordersHealthy controlsBipolar-Schizophrenia NetworkFunctional network connectivity analysisStatic functional network connectivityResting-state fMRINetwork connectivity analysisPatterns of activityPsychiatric disordersDisorder groupSchizophreniaConnectivity analysisHC groupBipolarConnectivity patternsDisordersPatient groupSymptom scoresGroup of patientsPANSSSchizoaffectiveFMRINetwork connectivityCross-Modal Synthesis of Structural MRI and Functional Connectivity Networks via Conditional ViT-GANs
Bi Y, Abrol A, Sui J, Calhoun V. Cross-Modal Synthesis of Structural MRI and Functional Connectivity Networks via Conditional ViT-GANs. 2024, 00: 1756-1760. DOI: 10.1109/icassp48485.2024.10446450.Peer-Reviewed Original ResearchFunctional network connectivityStructural magnetic resonance imagingCross-modality synthesisFunctional network connectivity matricesGenerative adversarial networkFunctional connectivity networksAdversarial networkSubcortical brain regionsMedical imagesNetwork connectivityFusion of MRIConnectivity networksA Method to Estimate Longitudinal Change Patterns in Functional Network Connectivity of the Developing Brain Relevant to Psychiatric Problems, Cognition, and Age
Saha R, Saha D, Rahaman A, Fu Z, Liu J, Calhoun V. A Method to Estimate Longitudinal Change Patterns in Functional Network Connectivity of the Developing Brain Relevant to Psychiatric Problems, Cognition, and Age. Brain Connectivity 2024, 14: 130-140. PMID: 38308475, PMCID: PMC10954605, DOI: 10.1089/brain.2023.0040.Peer-Reviewed Original ResearchFunctional network connectivityFunctional connectivityPsychiatric problemsFunctional network connectivity matricesNetwork connectivityMultivariate patternsWhole-brain functional networksIntrinsic functional connectivityPattern of functional changesBrain functional connectivityIntrinsic functional relationshipLongitudinal changesAdolescent brainAge-related changesBrain networksStudy developmental changesScanning sessionBrain functionAssociated with longitudinal changesCognitive scoresDevelopmental changesBrain developmentFunctional changesCognitionLongitudinal change patternsExplainable fuzzy clustering framework reveals divergent default mode network connectivity dynamics in schizophrenia
Ellis C, Miller R, Calhoun V. Explainable fuzzy clustering framework reveals divergent default mode network connectivity dynamics in schizophrenia. Frontiers In Psychiatry 2024, 15: 1165424. PMID: 38495909, PMCID: PMC10941842, DOI: 10.3389/fpsyt.2024.1165424.Peer-Reviewed Original ResearchHard clusteringNetwork dynamicsDynamic functional network connectivityFuzzy clustering frameworkExtract several featuresFuzzy clusteringC-meansExplainability approachesExplainability metricsData spaceClustering frameworkK-meansDynamic functional network connectivity stateNetwork connectivityModerate anticorrelationImage dataNetworkState dynamicsAnalysis frameworkConnectivity dynamicsFunctional network connectivityAnticorrelationCentroidFunctional magnetic resonance imaging dataFrameworkA deep learning approach for mental health quality prediction using functional network connectivity and assessment data
Ajith M, Aycock D, Tone E, Liu J, Misiura M, Ellis R, Plis S, King T, Dotson V, Calhoun V. A deep learning approach for mental health quality prediction using functional network connectivity and assessment data. Brain Imaging And Behavior 2024, 18: 630-645. PMID: 38340285, DOI: 10.1007/s11682-024-00857-y.Peer-Reviewed Original ResearchStatic functional network connectivityMental health qualityFunctional network connectivityMental health categoriesRs-fMRIMental healthPatterns of abnormal connectivityHealth categoriesHealth qualityDevelopment of personalized interventionsManagement of mental healthResting-state fMRIMeasure mental healthUK Biobank datasetNeural patternsBrain healthVisual domainAbnormal connectionPersonalized interventionsBiobank datasetTreatment responseHealthNetwork connectivityBehavioral aspectsAssessment dataIntra-Atlas Node Size Effects on Graph Metrics in fMRI Data: Implications for Alzheimer’s Disease and Cognitive Impairment
Kolla S, Falakshahi H, Abrol A, Fu Z, Calhoun V. Intra-Atlas Node Size Effects on Graph Metrics in fMRI Data: Implications for Alzheimer’s Disease and Cognitive Impairment. Sensors 2024, 24: 814. PMID: 38339531, PMCID: PMC10857295, DOI: 10.3390/s24030814.Peer-Reviewed Original ResearchConceptsGraph metricsFunctional network connectivityIndependent component analysisResting state fMRI dataData-driven methodologyNetwork connectivityNovel metricFunctional nodesNode sizeNodesLocal graph metricsMetricsNode dimensionsGraphAlzheimer's diseaseMild cognitive impairmentNetwork neuroscienceNeuroimaging researchNeuroimaging investigations
2023
Dynamic functional network connectivity based on spatial source phase maps of complex-valued fMRI data: Application to schizophrenia
Li W, Lin Q, Zhao B, Kuang L, Zhang C, Han Y, Calhoun V. Dynamic functional network connectivity based on spatial source phase maps of complex-valued fMRI data: Application to schizophrenia. Journal Of Neuroscience Methods 2023, 403: 110049. PMID: 38151187, DOI: 10.1016/j.jneumeth.2023.110049.Peer-Reviewed Original ResearchConceptsSchizophrenia patientsFMRI dataFunctional network connectivityHealthy controlsDynamic functional network connectivityPsychotic diagnosesMental disordersSchizophreniaComplex-valued fMRI dataPotential imaging biomarkersDetect functional alterationsFMRIState transitionsNetwork connectivityPhase informationFunctional alterationsComplex valuesBrain informationMutual informationDynamicsPhaseFunctional and Structural Longitudinal Change Patterns in Adolescent Brain
Saha R, Saha D, Fu Z, Silva R, Calhoun V. Functional and Structural Longitudinal Change Patterns in Adolescent Brain. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2023, 00: 1-4. PMID: 38082649, DOI: 10.1109/embc40787.2023.10340079.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagingStructural magnetic resonance imagingFunctional network connectivityWhole-brainGray matterBrain functional magnetic resonance imagingMagnetic resonance imagingAdolescent brainFunctional connectivityResonance imagingMultivariate patternsLongitudinal change patternsUnivariate changesAdolescentsLongitudinal changesBrainIncreasing ageFunctional changesComplementary techniquesNetwork connectivityNetwork Differential in Gaussian Graphical Models from Multimodal Neuroimaging Data*
Falakshahi H, Rokham H, Miller R, Liu J, Calhoun V. Network Differential in Gaussian Graphical Models from Multimodal Neuroimaging Data*. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2023, 00: 1-6. PMID: 38083176, DOI: 10.1109/embc40787.2023.10340856.Peer-Reviewed Original ResearchConceptsStatic functional network connectivityGaussian graphical modelsBrain disordersBrain graphsModel of schizophreniaMiddle temporal gyrusMechanisms of brain disordersFunctional network connectivityGray matter featuresBrain network analysisTemporal gyrusGroup graphPath-based analysisCerebellar regionsGraph theory approachSchizophreniaMultimodal studiesGraphical modelsNetwork connectivityNetwork differentiationGray matterGraphical metricsControl graphPairwise edgesBrainNew Interpretable Patterns and Discriminative Features from Brain Functional Network Connectivity using Dictionary Learning
Ghayem F, Yang H, Kantar F, Kim S, Calhoun V, Adali T. New Interpretable Patterns and Discriminative Features from Brain Functional Network Connectivity using Dictionary Learning. 2023, 00: 1-5. DOI: 10.1109/icassp49357.2023.10096473.Peer-Reviewed Original ResearchDictionary learningIndependent component analysisLearned atomsDiscovery of hidden informationNetwork connectivityMulti-subject functional magnetic resonance imagingFunctional magnetic resonance imagingFunctional network connectivityDiscriminative featuresFeature vectorHidden informationEffective classificationSZ groupHealthy controlsResting-state fMRI dataExperimental resultsICA resultsDictionaryBrain functional network connectivityBrain networksMental disordersFMRI dataLearningRepresentationMental diseasesIdentifying Neuropsychiatric Disorder Subtypes and Subtype-Dependent Variation in Diagnostic Deep Learning Classifier Performance
Ellis C, Miller R, Calhoun V. Identifying Neuropsychiatric Disorder Subtypes and Subtype-Dependent Variation in Diagnostic Deep Learning Classifier Performance. 2023, 00: 1-4. DOI: 10.1109/isbi53787.2023.10230384.Peer-Reviewed Original ResearchClinical decision support systemsDynamic functional network connectivityDeep learning classifier’s performanceDisorder subtypesDeep learning classifierDecision support systemClassifier performanceLearning classifiersNetwork connectivityClassifierFunctional network connectivitySupport systemSchizophrenia subtypesStudy disordersPerformanceDisordersSchizophreniaSubtypesNeuropsychiatricSystemNeuroimagingSubtype-dependentCapabilityFunctional Network Connectivity Based Mental Health Category Prediction from Rest-fMRI Data
Ajith M, Calhoun V. Functional Network Connectivity Based Mental Health Category Prediction from Rest-fMRI Data. 2023, 00: 1-5. DOI: 10.1109/isbi53787.2023.10230721.Peer-Reviewed Original ResearchFunctional network connectivityMental healthResting fMRIStatic functional network connectivityMental health classesMental health categoriesBrain networksMental health scoresBehavioral changesBehavior modificationSignificant health issueBrainHealthy habitsHealth scoresHealth categoriesHealth classesHealth issuesIndividual levelFMRICategory predictionNetwork connectivityNeuroimagingHealth