2005
Kv1.3 potassium channel blockade as an approach to insulin resistance
Desir GV. Kv1.3 potassium channel blockade as an approach to insulin resistance. Expert Opinion On Therapeutic Targets 2005, 9: 571-579. PMID: 15948674, DOI: 10.1517/14728222.9.3.571.Peer-Reviewed Original ResearchConceptsInsulin resistanceInsulin sensitivityKv1.3 channel inhibitionPotassium channel blockadePeripheral insulin sensitivityPotential therapeutic targetDevastating metabolic diseaseType II diabetesVoltage-gated potassium channelsAbnormal glucoseDiabetes mellitusInsulin deficiencyDevelopment of drugsInflammatory cytokinesChannel blockadeGlucose metabolismTherapeutic targetCardinal featuresMetabolic diseasesChannel inhibitionII diabetesLipid metabolismHealthcare expendituresPotassium channelsPromising target
2004
The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity
Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y, Koni PA, Flavell RA, Desir GV. The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 3112-3117. PMID: 14981264, PMCID: PMC365752, DOI: 10.1073/pnas.0308450100.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBiological TransportFastingGlucoseInsulinInterleukin-6JNK Mitogen-Activated Protein KinasesKineticsKv1.3 Potassium ChannelMaleMiceMice, Inbred C57BLMice, KnockoutMice, ObeseMitogen-Activated Protein KinasesModels, BiologicalMuscle, SkeletalPotassium ChannelsPotassium Channels, Voltage-GatedTumor Necrosis Factor-alphaConceptsKv1.3-/- micePeripheral glucose homeostasisPeripheral insulin sensitivityPlasma membraneGene inactivationInsulin sensitivityAmount of GLUT4Skeletal muscleTerminal kinase (JNK) activityGlucose homeostasisAdipose tissueLower blood insulin levelsVoltage-gated potassium channelsInsulin-stimulated glucose uptakeVoltage-gated potassium channel Kv1.3Tumor necrosis factor productionExperimental autoimmune encephalitisBlood insulin levelsHigh-fat dietPotassium channel Kv1.3Tumor necrosis factor secretionPeripheral T lymphocytesKinase activityNecrosis factor productionNumber of tissues
2003
International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels
Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O'Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS. International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels. Pharmacological Reviews 2003, 55: 583-586. PMID: 14657415, DOI: 10.1124/pr.55.4.9.Peer-Reviewed Original ResearchThe voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight
Xu J, Koni PA, Wang P, Li G, Kaczmarek L, Wu Y, Li Y, Flavell RA, Desir GV. The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Human Molecular Genetics 2003, 12: 551-559. PMID: 12588802, DOI: 10.1093/hmg/ddg049.Peer-Reviewed Original ResearchConceptsBody weightBasal metabolic rateKv1.3 channelsDiet-induced obesityHigh-fat dietBody weight regulationT cell activationVoltage-gated potassium channel Kv1.3Voltage-gated potassium channelsPotassium channel Kv1.3Control littermatesFood intakeLittermate controlsKnockout miceWeight regulationIndirect calorimetryMetabolic rateChannel inhibitionCell activationEnergy homeostasisKnockout animalsPotassium channelsCell membrane potentialMiceChannel Kv1.3
2000
Close Association of the N Terminus of Kv1.3 with the Pore Region*
Yao X, Liu W, Tian S, Rafi H, Segal A, Desir G. Close Association of the N Terminus of Kv1.3 with the Pore Region*. Journal Of Biological Chemistry 2000, 275: 10859-10863. PMID: 10753881, DOI: 10.1074/jbc.275.15.10859.Peer-Reviewed Original ResearchConceptsN-terminusPore regionSteady-state protein levelsLarge single-channel conductanceVoltage-gated potassium channelsWild-type channelsShaker proteinCertain amino acidsChannel assemblyWild typeChannel proteinsChannel functionAmino acidsSingle-channel conductancePore blockersSpeed of inactivationTerminusProtein levelsDomain leadPore selectivityPotassium channelsProteinType channelsKinetic propertiesChannel conductance
1999
The T0 Domain of Rabbit KV1.3 Regulates Steady State Channel Protein Level
Segal A, Yao X, Desir G. The T0 Domain of Rabbit KV1.3 Regulates Steady State Channel Protein Level. Biochemical And Biophysical Research Communications 1999, 254: 54-64. PMID: 9920732, DOI: 10.1006/bbrc.1998.9801.Peer-Reviewed Original ResearchConceptsN-terminal regulatory regionVoltage-gated potassium channelsWild-type channelsRegulatory regionsPlasma membraneAmino terminusChannel assemblyChannel proteinsRecognition domainSingle-channel conductanceKv channelsChannel protein levelsProtein levelsProtein densityPotassium channelsOpen probabilityType channelsChannel conductanceKv1.3Fast inactivationDomainMembraneTerminusProteinInactivation
1996
Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney.
Yao X, Chang AY, Boulpaep EL, Segal AS, Desir GV. Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney. Journal Of Clinical Investigation 1996, 97: 2525-2533. PMID: 8647945, PMCID: PMC507338, DOI: 10.1172/jci118700.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBrainCloning, MolecularDNA PrimersFemaleGenetic VariationGenomic LibraryGlyburideHumansKidney MedullaKv1.3 Potassium ChannelMiceModels, BiologicalMolecular Sequence DataOocytesPancreatitis-Associated ProteinsPhylogenyPolymerase Chain ReactionPotassium ChannelsPotassium Channels, Voltage-GatedRabbitsRecombinant ProteinsSequence Homology, Amino AcidXenopus laevisConceptsVoltage-gated potassium channelsMolecular cloningFunctional expressionShaker-like potassium channelsPotassium channelsShaker geneGRB-PAP1Novel memberAmino terminusMolecular evidenceShaker channelsAmino acidsXenopus oocytesRabbit kidneyRenal potassium transportCloningGenesPotassium transportChannel clonesFirst reportRabbit brainPotassium conductanceFamilyExpressionKidney
1992
Isolation of putative voltage-gated epithelial K-channel isoforms from rabbit kidney and LLC-PK1 cells
Desir GV, Hamlin HA, Puente E, Reilly RF, Hildebrandt F, Igarashi P. Isolation of putative voltage-gated epithelial K-channel isoforms from rabbit kidney and LLC-PK1 cells. American Journal Of Physiology 1992, 262: f151-f157. PMID: 1733291, DOI: 10.1152/ajprenal.1992.262.1.f151.Peer-Reviewed Original ResearchConceptsDeduced amino acid sequenceAmino acid sequenceAcid sequenceVoltage-gated K channelsRabbit genomic DNAPutative transmembrane segmentsShaker-like genesPutative voltage sensorShaker gene familyVoltage-gated potassium channelsGene familyShaker proteinRenal epithelial cellsTransmembrane segmentsSequence similarityRabbit cDNAEpithelial cell lineSouthern analysisProtein sequencesLLC-PK1 cellsDifferent genesGenomic DNAKidney cDNACDNAS4 segment