WEBVTT

- 1 00:00:00.360 --> 00:00:04.410 <v Host>Welcome to the first seminar of our seminar series</v>
- $2\ 00:00:04.410 \longrightarrow 00:00:06.480$ in Climate, Air, and Health.
- $3\ 00:00:06.480 \longrightarrow 00:00:09.013$ We have some online audiences joining us today,
- 4 00:00:09.013 --> 00:00:12.310 and before we get started, just wanted to let you know that
- $5\ 00:00:12.310 --> 00:00:15.393$ this seminar is recorded, and later on,
- $6~00:00:15.393 \dashrightarrow 00:00:19.470$ the recording will be posted on our center's website.
- $7\ 00:00:19.470 \longrightarrow 00:00:20.490$ On the monitor today,
- 8 00:00:20.490 \rightarrow 00:00:22.050 I have chosen assistant professor
- $9\ 00:00:22.050 \longrightarrow 00:00:24.085$ at Yale School of Public Health,
- $10\ 00{:}00{:}24.085 \longrightarrow 00{:}00{:}25.177$ and also the director of research
- 11 00:00:25.177 --> 00:00:27.060 at Yale School of Public Health.
- 12 00:00:27.060 --> 00:00:29.550 So, it's my great pleasure today
- $13~00:00:29.550 \dashrightarrow 00:00:34.143$ to introduce our very first speaker, Dr. Drew Gentner.
- $14\ 00{:}00{:}35.100 \dashrightarrow 00{:}00{:}39.480$ Dr. Gentner is the associate professor in the department
- $15\ 00:00:39.480 \longrightarrow 00:00:41.670$ of chemical and environmental engineering.
- $16\ 00{:}00{:}41.670 \dashrightarrow 00{:}00{:}44.427$ Also, the department of the School of the Environment.
- $17\ 00:00:44.427 --> 00:00:48.442$ He got his master and the PhD from UC Berkeley,
- $18\ 00{:}00{:}48.442 \dashrightarrow 00{:}00{:}52.110$ and also he has been at the Department of Chemical
- $19\ 00:00:52.110 \longrightarrow 00:00:56.100$ and Environmental Engineering since 2014,
- 20 00:00:56.100 --> 00:00:58.050 where his research group focuses on
- 21 00:00:58.050 --> 00:01:02.910 air quality, pollution, emissions, and chemistry.
- 22 00:01:02.910 --> 00:01:05.740 His application in books and [Indistinct].
- $23\ 00:01:06.848 --> 00:01:10.300$ And today we are very fortunate to have both Dr Gentner,
- $24\ 00:01:11.511 \longrightarrow 00:01:15.150$ and also Professor Gillingham joining us online.

- $25\ 00:01:15.150 \longrightarrow 00:01:20.150$ Today the main topic will be focusing on their recent paper,
- 26 00:01:21.150 --> 00:01:23.128 the Climate and Health Benefits
- 27 00:01:23.128 --> 00:01:26.013 from Intensive Building Energy Efficiency.
- $28\ 00:01:26.970 \longrightarrow 00:01:29.280$ So without further ado, please.
- $29\ 00:01:29.280 --> 00:01:31.110 < v$ Dr. Gentner>Thank you so much.</v>
- $30~00:01:31.110 \longrightarrow 00:01:34.260$ And my one request of the virtual audience
- $31\ 00:01:34.260 \longrightarrow 00:01:37.050$ is let me know if you can't hear me clearly.
- 32 00:01:37.050 --> 00:01:40.320 I will try to speak loudly and through a mask,
- 33 00:01:40.320 --> 00:01:43.230 but just chime in if you're having trouble
- $34\ 00:01:43.230 \longrightarrow 00:01:45.733$ and I'll stay closer to my computer.
- $35\ 00{:}01{:}45.733 \dashrightarrow 00{:}01{:}50.733$ Alright so, you have both and Ken and I here today,
- $36\ 00:01:51.720 --> 00:01:54.270$ and I wish he could have been here in person,
- $37\ 00{:}01{:}54.270 \dashrightarrow 00{:}01{:}57.820$ but I get to present this paper that we worked on along with
- $38\ 00{:}01{:}58.950 \dashrightarrow 00{:}02{:}02{:}02{:}340$ Professor Jordan Peccia in Environmental Engineering,
- 39 00:02:02.340 --> 00:02:04.380 a PhD student of mine, Colby Buehler,
- 40 00:02:04.380 --> 00:02:06.720 and former postdoc of Ken's
- $41\ 00:02:06.720 --> 00:02:08.460$ from the School of the Environment.
- $42\ 00:02:08.460 \longrightarrow 00:02:10.560$ So, this was a cool project
- $43\ 00:02:10.560 --> 00:02:12.240$ that we were really excited about because
- 44 00:02:12.240 --> 00:02:14.970 it was a true interdisciplinary science
- 45~00:02:14.970 --> 00:02:18.090 where I was excited to work with Ken
- $46\ 00{:}02{:}18.090 \dashrightarrow 00{:}02{:}20.340$ to do some energy modeling, and then bring that
- 47 00:02:20.340 --> 00:02:23.820 into looking at outdoor and indoor air quality
- $48\ 00:02:23.820 \longrightarrow 00:02:25.830$ across the building envelope.
- 49 00:02:25.830 --> 00:02:27.662 And so, this brought in some expertise
- $50~00:02:27.662 \dashrightarrow 00:02:31.890$ from Professor Peccia and I to look at air pollution,
- $51\ 00:02:31.890 \longrightarrow 00:02:34.290$ and then extend it to the health effects.

- 52 00:02:34.290 --> 00:02:38.193 This fell under the purview of, our,
- $53\ 00:02:39.510 \longrightarrow 00:02:41.730$ hopefully I can click here.
- 54 00:02:41.730 --> 00:02:45.450 Alright, of our search center,
- $55\ 00:02:45.450 --> 00:02:48.570$ which I, Michelle Bell has been the director
- 56 00:02:48.570 --> 00:02:51.240 of up at the School of the Environment,
- $57\ 00:02:51.240 --> 00:02:54.687$ and we're in our last year at the center now.
- $58~00:02:54.687 \dashrightarrow 00:02:57.090$ But the overall objectives of this were to look at energy
- $59\ 00:02:57.090 --> 00:02:59.460$ transitions and look at the the wide range
- 60 00:02:59.460 --> 00:03:02.520 of sources related to energy production use,
- $61\ 00:03:02.520 \longrightarrow 00:03:04.170$ in the context of other sources
- 62 00:03:04.170 --> 00:03:07.530 that attract urban air quality and health.
- 63 00:03:07.530 --> 00:03:09.570 And then, we paid key attention to both
- $64\ 00:03:09.570 \longrightarrow 00:03:11.730$ transitions and key modifiable factors.
- $65\ 00:03:11.730 \longrightarrow 00:03:13.110$ So which things can we change,
- 66 00:03:13.110 --> 00:03:15.152 either through policy or personal choices,
- $67\ 00:03:15.152 --> 00:03:17.130$ so that we can make smarter decisions
- 68 00:03:17.130 --> 00:03:19.500 related to transportation, land use,
- $69\ 00{:}03{:}19.500 \dashrightarrow 00{:}03{:}23.040$ our power generation, and distribution networks.
- $70\ 00:03:23.040 \longrightarrow 00:03:24.510$ So, this had a number of different
- 71 00:03:24.510 --> 00:03:27.690 projects involved with it.
- $72\ 00:03:27.690$ --> 00:03:31.860 Ken's project was number one and mine was number two.
- $73\ 00:03:31.860 --> 00:03:34.950$ We were doing this in collaboration with Johns Hopkins,
- $74~00{:}03{:}34.950 \dashrightarrow 00{:}03{:}36.660$ and we had a couple other projects.
- 75 00:03:36.660 --> 00:03:38.280 And so these things,
- $76~00:03:38.280 \longrightarrow 00:03:43.280$ we're focused on distinctly different areas of air quality
- $77\ 00:03:44.520$ --> 00:03:47.520 where I was focused more on source characterization

- $78~00:03:47.520 \dashrightarrow 00:03:50.250$ and measurements in project two and Ken was doing
- $79\ 00:03:50.250 \longrightarrow 00:03:52.440$ a lot of modeling on energy and emissions.
- $80\ 00:03:52.440 \longrightarrow 00:03:55.620$ So this project represented, and this paper,
- 81 00:03:55.620 --> 00:03:59.130 one of a couple things that we were doing has inter-center
- $82\ 00:03:59.130 --> 00:04:03.630$ collaboration within a much larger center structure.
- 83 00:04:03.630 --> 00:04:05.100 <v -> And you can check it out online < /v>
- $84\ 00:04:05.100 --> 00:04:07.170$ and see a lot of the other great work
- 85 00:04:07.170 --> 00:04:08.880 coming out of Michelle Bell's group
- 86 00:04:08.880 --> 00:04:11.250 and others at Yale, Johns Hopkins,
- $87\ 00{:}04{:}11.250 \dashrightarrow 00{:}04{:}13.353$ and our partner institutions.
- $88\ 00:04:14.460 \longrightarrow 00:04:19.127$ Which span some co-PIs at Johns Hopkins, and other PI's,
- $89\ 00:04:20.268$ --> 00:04:24.813 and Dan Esty, at the School of the Environment.
- 90 00:04:25.920 \rightarrow 00:04:30.150 So, onto this paper. So, now it's like dive in and focus.
- 91 $00:04:30.150 \longrightarrow 00:04:33.180$ This started, I can actually remember the workshop
- 92 00:04:33.180 --> 00:04:35.760 that Ken and I were at when we were talking
- 93 00:04:35.760 --> 00:04:38.220 about this research question.
- 94 00:04:38.220 --> 00:04:40.930 Thinking about how the climate and health
- $95\ 00:04:40.930 \longrightarrow 00:04:44.040$ benefits intersect when we look at
- 96 00:04:44.040 --> 00:04:46.320 building energy efficiency measures.
- 97 00:04:46.320 --> 00:04:48.900 'Cause Ken's group was thinking about
- 98 $00:04:48.900 \longrightarrow 00:04:51.270$ building energy efficiency scenarios,
- $99\ 00{:}04{:}51.270 {\:{\mbox{--}}\!>} 00{:}04{:}55.590$ how we reduce energy use in the building sector to reduce
- $100\ 00{:}04{:}55.590 \dashrightarrow 00{:}05{:}00.590$ C02 emissions and affect change for climate mitigation.
- $101\ 00:05:01.260 --> 00:05:03.570$ And I started asking, well Ken,
- $102\ 00:05:03.570 \longrightarrow 00:05:06.090$ what about the indoor air quality on that?

- $103\ 00{:}05{:}06.090 \dashrightarrow 00{:}05{:}08.520$ You know, we're gonna drop emissions of pollution
- 104 00:05:08.520 --> 00:05:10.890 outdoors from reduced energy production,
- $105\ 00:05:10.890 \longrightarrow 00:05:12.630$ but what happens with the
- 106 00:05:12.630 --> 00:05:14.037 building energy efficiency measures?
- $107\ 00:05:14.037$ --> 00:05:18.933 And so, thus this project and this paper was born.
- $108\ 00:05:20.970 \longrightarrow 00:05:24.030$ As a brief overview of where we're going with this today,
- $109\ 00:05:24.030 \longrightarrow 00:05:25.920$ we start with the fact that buildings
- $110\ 00:05:25.920 \longrightarrow 00:05:28.023$ account for 40% of energy usage,
- 111 00:05:29.130 --> 00:05:32.910 a lot of our energy command nationally.
- $112\ 00{:}05{:}32.910 {\:{\circ}{\circ}{\circ}}>00{:}05{:}36.450$ So, it makes it a really prime target for
- $113\ 00:05:36.450 \longrightarrow 00:05:39.754$ climate change mitigation and producing
- $114\ 00:05:39.754 \longrightarrow 00:05:43.650$ both energy use and associated emissions.
- $115\ 00:05:43.650 \longrightarrow 00:05:46.380$ These are emissions of not only climate pollutants,
- $116\ 00:05:46.380 \dashrightarrow 00:05:49.136$ but also air pollutants, slight particulate
- $117\ 00:05:49.136$ --> 00:05:53.640 matter sulfur dioxide, carbon dioxide, nitrogen oxide.
- $118\ 00:05:53.640 \longrightarrow 00:05:58.080$ So, with these scenarios that I'll show you in a moment,
- $119\ 00{:}05{:}58.080 {\: -->\:} 00{:}06{:}00.930$ we looked at reductions in energy related emissions
- $120\ 00:06:00.930 \longrightarrow 00:06:03.723$ that would be occurring outdoors from power generation,
- $121\ 00:06:04.590 \longrightarrow 00:06:07.110$ and then translated that to its
- $122\ 00:06:07.110 --> 00:06:08.790$ effects on indoor air quality.
- $123\ 00{:}06{:}08.790 \dashrightarrow 00{:}06{:}12.393$ And, I'll talk about that feedback loop in a moment.
- $124\ 00:06:13.320$ --> 00:06:18.320 But, the approach here is to use the Yale-NEMS model,
- $125\ 00{:}06{:}19.260 \dashrightarrow 00{:}06{:}23.040$ which Ken runs up at school of the environment.

- 126 00:06:23.040 --> 00:06:25.050 to look at energy efficiency scenarios
- $127\ 00:06:25.050 \longrightarrow 00:06:27.060$ across the entire US housing stock.
- 128 00:06:27.060 --> 00:06:29.550 So we're not just studying one building,
- $129\ 00:06:29.550 \longrightarrow 00:06:32.511$ we model all the homes of the US and their changes
- $130\ 00:06:32.511 \longrightarrow 00:06:36.207$ over time with a lot of simulations
- $131\ 00:06:36.207 \longrightarrow 00:06:39.873$ and a couple models that were interconnected.
- $132\ 00:06:39.873 \longrightarrow 00:06:41.400$ Then we evaluated the outdoor
- 133 00:06:41.400 --> 00:06:42.930 indoor air quality implications.
- $134\ 00:06:42.930 \longrightarrow 00:06:46.080$ So how do the changes in emissions
- 135 00:06:46.080 --> 00:06:50.160 affect exposure and human health,
- $136\ 00:06:50.160 \longrightarrow 00:06:52.320$ both for outdoor and indoor exposure pathways,
- $137\ 00:06:52.320 \longrightarrow 00:06:53.370$ and look at the bad effects
- $138\ 00:06:53.370 \longrightarrow 00:06:56.013$ on human health, all of these together.
- 139 00:06:57.000 --> 00:07:00.930 So, I'll walk through this in a bit more detail,
- $140\ 00:07:00.930 \longrightarrow 00:07:02.880$ but we start from something where
- $141\ 00:07:02.880 \longrightarrow 00:07:05.610$ we take a reference scenario,
- 142 00:07:05.610 --> 00:07:07.230 an intermediate energy efficiency
- $143\ 00:07:07.230 \longrightarrow 00:07:08.940$ scenario just for buildings.
- $144\ 00{:}07{:}08.940 \dashrightarrow 00{:}07{:}12.151$ An optimistic energy efficiency scenario for buildings
- $145\ 00:07:12.151 \longrightarrow 00:07:15.480$ and look at the changes in energy consumption
- $146\ 00:07:15.480 --> 00:07:17.910$ and then test the carbon pricing scenario
- $147\ 00:07:17.910 \longrightarrow 00:07:21.060$ for those to see how that affects it.
- 148 00:07:21.060 --> 00:07:22.890 And we'll walk through this before,
- $149\ 00:07:22.890 \longrightarrow 00:07:24.450$ but if you fast forward all the way,
- $150\ 00:07:24.450 \longrightarrow 00:07:26.670$ you can see how we will then be able
- 151 00:07:26.670 --> 00:07:29.610 to look at projections in particular manner,
- $152\ 00:07:29.610 --> 00:07:33.213$ emissions from that reduced energy use.
- $153\ 00:07:34.380 \longrightarrow 00:07:38.700$ So, the scenarios, without going into them in great detail,

- $154\ 00:07:38.700 \longrightarrow 00:07:40.710$ although there's a lot of information in the paper
- $155\ 00:07:40.710 \longrightarrow 00:07:43.500$ and tech would be happy to answer questions,
- $156\ 00{:}07{:}43.500 \dashrightarrow 00{:}07{:}46.440$ looks at changes in both appliances and equipment
- $157\ 00:07:46.440 \longrightarrow 00:07:48.030$ and in the building shell.
- $158\ 00:07:48.030 \longrightarrow 00:07:50.250$ So we have all of this stuff indoors
- 159 00:07:50.250 --> 00:07:53.460 for heating, cooling, cooking, lighting,
- $160\ 00{:}07{:}53.460 {\:\dashrightarrow\:} 00{:}07{:}57.660$ and other things like refrigeration
- $161\ 00:07:57.660 \longrightarrow 00:07:59.550$ and those have a certain amount of energy use with them,
- $162\ 00:07:59.550 \longrightarrow 00:08:00.750$ and that's been a target of a lot
- 163 00:08:00.750 --> 00:08:03.120 of governmental programs through efficiency.
- $164~00{:}08{:}03.120 \dashrightarrow 00{:}08{:}05.820$ You know, you can go and buy energy star things,
- $165\ 00:08:05.820 \longrightarrow 00:08:08.550$ you see them when you go to the store,
- $166\ 00{:}08{:}08.550 \dashrightarrow 00{:}08{:}12.090$ and so, there are targets related to the energy efficiency.
- $167\ 00{:}08{:}12.090 \dashrightarrow 00{:}08{:}15.750$ And then in the building shell is where we start to look
- $168\ 00:08:15.750 \longrightarrow 00:08:19.110$ at the interconnections at indoor air quality.
- $169\ 00{:}08{:}19.110 \dashrightarrow 00{:}08{:}21.570$ 'Cause the indoor environment is really complex.
- $170\ 00:08:21.570 \longrightarrow 00:08:23.070$ The air that gets to us here,
- $171\ 00:08:23.070 \longrightarrow 00:08:26.580$ or the air in your home navigates a lot of places.
- $172\ 00:08:26.580 \longrightarrow 00:08:29.520$ Either through a forced air system or just naturally,
- $173\ 00:08:29.520 \longrightarrow 00:08:33.270$ you have some penetration coming through the walls,
- 174 00:08:33.270 --> 00:08:34.763 and some infiltration of air,
- $175\ 00:08:34.763 \longrightarrow 00:08:36.540$ and the pollutants coming in,
- $176\ 00:08:36.540 \longrightarrow 00:08:38.400$ and some ventilation of the air going out.

177 00:08:38.400 --> 00:08:42.150 You may do that on purpose, opening you know, a door,

 $178\ 00:08:42.150 \longrightarrow 00:08:46.260$ turning on a fan, or that might just be happening naturally,

 $179\ 00:08:46.260 \longrightarrow 00:08:48.000$ and depending on the age of your home

 $180\ 00:08:48.000 \longrightarrow 00:08:49.320$ and how well it's sealed,

181 00:08:49.320 --> 00:08:51.930 that could be happening at quite a high rate.

 $182\ 00:08:51.930 \dashrightarrow 00:08:55.740$ So, we look at the changes in the building shell

183 00:08:55.740 --> 00:08:57.210 across a range of environments,

 $184\ 00:08:57.210 \longrightarrow 00:08:59.610$ and we're gonna talk more about residences today,

 $185\ 00:08:59.610 \longrightarrow 00:09:02.070$ 'cause that's where we do spend most

186 00:09:02.070 --> 00:09:04.657 of our time and a lot of our time,

187 00:09:04.657 --> 00:09:09.210 a lot of our PM2.5 emissions indoors

 $188\ 00:09:09.210 \longrightarrow 00:09:10.680$ occur in our residences.

 $189\ 00:09:10.680$ --> 00:09:12.660 So we'll look at that, and we'll look these scenarios

 $190\ 00{:}09{:}12.660 \dashrightarrow 00{:}09{:}15.390$ where we have existing homes and we look at changes

 $191\ 00:09:15.390 --> 00:09:18.450$ in efficiency that happen at slower incremental rates.

 $192\ 00:09:18.450 \longrightarrow 00:09:20.580$ And then new homes that are built

 $193\ 00:09:20.580 \longrightarrow 00:09:25.080$ to the newest specifications which follow these

 $194\ 00:09:25.080 \longrightarrow 00:09:28.383$ ambitious but demonstrated improvements.

 $195~00:09:29.490 \longrightarrow 00:09:34.320$ So Ken's model, which is the national energy modeling

 $196\ 00:09:34.320 \to 00:09:38.367$ system model that is the scale installation of this,

 $197~00:09:38.367 \dashrightarrow 00:09:42.093$ and the launch model developed by the US EIA,

198 00:09:44.070 --> 00:09:46.260 covers a whole lot of things in the supply side,

199 00:09:46.260 --> 00:09:47.850 convergence side, and demand side,

 $200\ 00:09:47.850 \dashrightarrow 00:09:50.160$ electricity, and integrates it together.

- 201~00:09:50.160 --> 00:09:53.640 So, where we're gonna focus on today for this paper
- $202\ 00{:}09{:}53.640 \dashrightarrow 00{:}09{:}55.710$ is looking at the changes in the residential demand
- $203\ 00:09:55.710 \longrightarrow 00:09:58.560$ and commercial demand that are derived
- 204 00:09:58.560 --> 00:10:01.203 from these changes in energy efficiency.
- 205 00:10:02.220 --> 00:10:04.410 So if we change the design of a building,
- $206\ 00:10:04.410 \longrightarrow 00:10:07.290$ we are changing the energy in the air there,
- 207 00:10:07.290 --> 00:10:10.830 and that has feedbacks to reduce demand,
- $208\ 00{:}10{:}10{:}830 \dashrightarrow 00{:}10{:}13.473$ to increase production and thus we have changes.
- $209\ 00{:}10{:}15.120 \dashrightarrow 00{:}10{:}18.480$ So, there are a lot of things that are in this model,
- 210 00:10:18.480 --> 00:10:20.610 and if you are a big fan of supplemental
- 211 00:10:20.610 --> 00:10:22.740 information sections and papers,
- 212 00:10:22.740 --> 00:10:26.130 I encourage you to check out the,
- $213\ 00{:}10{:}26.130 \dashrightarrow 00{:}10{:}29.890$ somewhere around 55 pages that exist in the paper
- $214\ 00:10:31.050 \longrightarrow 00:10:34.180$ with hopefully, every question that you might have
- $215\ 00:10:35.880 \longrightarrow 00:10:39.090$ about the energy modeling system and then hence,
- $216\ 00:10:39.090 --> 00:10:40.833$ other work using this model.
- 217 00:10:41.700 --> 00:10:44.490 And so, if we look at the scenarios,
- $218\ 00{:}10{:}44.490 \dashrightarrow 00{:}10{:}48.840$ you have the reference case at the top here in red
- $219\ 00{:}10{:}48.840 \dashrightarrow 00{:}10{:}53.840$ that we play around the carbon pricing initiative on there.
- $220\ 00{:}10{:}53.970 \dashrightarrow 00{:}10{:}56.220$ Now we look at the intermediate energy efficiency,
- $221\ 00:10:56.220 --> 00:10:58.422$ just for buildings here and see that that drops
- $222\ 00{:}10{:}58.422 \dashrightarrow 00{:}11{:}01.365$ consumption down somewhat than a more optimistic
- 223 00:11:01.365 --> 00:11:04.290 one with without carbon pricing.

- $224\ 00:11:04.290 --> 00:11:07.020$ The direct effects on carbon dioxide emissions are shown
- $225\ 00{:}11{:}07.020 \dashrightarrow 00{:}11{:}10.530$ over here where you can actually see a pretty sizable effect
- $226\ 00:11:10.530 --> 00:11:12.690$ on overall carbon dioxide emissions
- 227 00:11:12.690 --> 00:11:15.900 just from building energy efficiency improvements.
- 228 00:11:15.900 --> 00:11:19.110 So, this really points back to that fact that
- 229 00:11:19.110 --> 00:11:24.110 40% of our energy use occurs in maintaining
- $230\ 00:11:24.990 --> 00:11:26.460$ our buildings and in our buildings.
- 231 00:11:26.460 --> 00:11:29.253 So, any change that we make here,
- 232 00:11:30.270 --> 00:11:33.210 a policy level has a pretty sizable effect
- $233\ 00{:}11{:}33.210 --> 00{:}11{:}37.203$ on energy demand and related climate pollute emissions.
- $234\ 00{:}11{:}39.210 --> 00{:}11{:}44.210$ This also has a sizable effect on air pollutant emissions
- $235\ 00{:}11{:}44.250 \dashrightarrow 00{:}11{:}48.400$ like criteria pollutants for particular matter, NOx.
- 236 00:11:48.400 --> 00:11:53.400 SO2, VOCs, a sub effect on ammonia and carbon dioxide,
- 237 00:11:54.257 --> 00:11:56.725 excuse me, carbon monoxide,
- 238 00:11:56.725 --> 00:12:01.375 though today we're gonna focus mostly on PM2.5,
- $239\ 00{:}12{:}01.375 \dashrightarrow 00{:}12{:}06.375$ since that is driving factor of premature mortality,
- $240\ 00:12:06.390 \longrightarrow 00:12:11.390$ and what's the key pollutant of interest for this paper.
- $241\ 00:12:11.700 \longrightarrow 00:12:14.760$ So here we've defined what the changes are
- $242\ 00:12:14.760 \longrightarrow 00:12:18.570$ for each of these scenarios over this time rise
- 243 00:12:18.570 --> 00:12:22.530 and extending to 2050 for the energy related
- $244\ 00:12:22.530 \longrightarrow 00:12:24.210$ emissions that are occurring outdoors.
- 245 00:12:24.210 --> 00:12:25.980 So if you wanna visualize it,
- $246\ 00{:}12{:}25.980\ -->\ 00{:}12{:}30.980$ what's coming out of the smokestack for PM2.5 emissions.

 $247\ 00:12:31.680 \longrightarrow 00:12:33.930$ So that's gonna vary a little bit across the country

 $248\ 00{:}12{:}33.930 \dashrightarrow 00{:}12{:}36.150$ where we generate that power, how we generate it.

 $249\ 00:12:36.150 \longrightarrow 00:12:39.060$ And so we'll talk about that at the end

 $250\ 00:12:39.060 \longrightarrow 00:12:41.163$ of the presentation today.

 $251\ 00:12:43.290 \longrightarrow 00:12:48.290$ So, we spend close to 90% of our time indoors, so,

 $252\ 00:12:50.670$ --> 00:12:53.520 so we're thinking about exposure to pollutants

253 00:12:53.520 --> 00:12:55.050 We really need to be considering that

 $254\ 00{:}12{:}55.050 \dashrightarrow 00{:}12{:}58.590$ indoor environment and how it modulates our exposure

255 00:12:58.590 --> 00:13:02.010 to pollution coming in from outdoors,

 $256\ 00:13:02.010 \longrightarrow 00:13:05.607$ but also how it affects,

 $257~00:13:05.607 \dashrightarrow 00:13:06.996$ how the design of that indoor environment

 $258\ 00{:}13{:}06.996 {\:{\mbox{--}}\!>}\ 00{:}13{:}10.953$ affects our exposure to pollutants that are generated.

 $259\ 00{:}13{:}12.630 \dashrightarrow 00{:}13{:}15.270$ Now, I wish I had Jordan Peccia here with me today,

 $260\ 00:13:15.270 \longrightarrow 00:13:18.930$ so he could answer all of your COVID-related questions,

 $261\ 00:13:18.930 \longrightarrow 00:13:21.660$ relating to ventilation and filtration,

 $262\ 00:13:21.660 \longrightarrow 00:13:23.910$ because that is not my area of expertise.

 $263\ 00:13:23.910 --> 00:13:27.810$ But you can take this admissions term here,

 $264\ 00{:}13{:}27.810 \dashrightarrow 00{:}13{:}32.160$ and think really about whatever pollutant or microbe

265 00:13:32.160 --> 00:13:35.880 or anything that you want, for your own work,

 $266~00{:}13{:}35.880 \dashrightarrow 00{:}13{:}38.820$ and think about how that's affected by the design

 $267\ 00:13:38.820 \longrightarrow 00:13:42.783$ of your home or the space that you're currently in.

 $268\ 00:13:44.190 --> 00:13:45.510$ This is a box model.

269 00:13:45.510 --> 00:13:48.870 It is actually simplified considerably,

- $270\ 00{:}13{:}48.870 \dashrightarrow 00{:}13{:}53.040$ to just a singular box representing a space indoors.
- 271 00:13:53.040 --> 00:13:57.390 But yes, there's still one equation. For that, I apologize.
- 272 00:13:57.390 --> 00:13:58.950 You can ignore the equation if you like,
- $273\ 00:13:58.950 --> 00:14:01.030\ I\ can\ try\ to\ cover\ it\ up\ and\ we\ can\ ve\ can\ ve\ can\ ve\ can\ ve\ can\ ve\ cover\ it\ up\ and\ ve\ can\ ve\ can\ ve\ can\ ve\ cover\ it\ up\ and\ ve\ can\ ve\ can\ ve\ can\ ve\ cover\ it\ up\ and\ ve\ can\ ve\ can\ ve\ cover\ it\ up\ and\ ve\ can\ ve\ cover\ it\ up\ an\ ve\ can\ ve\ cover\ it\ up\ an\ ve\ can\ ve\ cover\ it\ up\ an\ ve\ on\ ve\ on\$
- $274\ 00:14:01.030 \longrightarrow 00:14:04.470$ focus on the terms that are used here.
- 275 00:14:04.470 --> 00:14:05.720 So, I'm going to point out a few things
- 276 00:14:05.720 --> 00:14:07.380 on how the model connects,
- $277\ 00:14:07.380 \longrightarrow 00:14:10.470$ just to try to show how this all comes together.
- $278\ 00{:}14{:}10.470$ --> $00{:}14{:}15.470$ So first thing, we have recirculation with a filter.
- $279\ 00{:}14{:}15.660$ --> $00{:}14{:}18.780$ Now you're predominantly talking about HVAC system.
- $280\ 00{:}14{:}18.780 \dashrightarrow 00{:}14{:}22.110$ So, forced mechanical air filtration system
- 281 00:14:22.110 --> 00:14:23.970 that you would have in an indoor building.
- 282 00:14:23.970 --> 00:14:26.460 You have them here, your apartment,
- 283 00:14:26.460 --> 00:14:28.320 perhaps up the east rock,
- $284\ 00:14:28.320 \longrightarrow 00:14:33.240$ that was built 80, 90 years ago may not have that,
- $285\ 00{:}14{:}33.240$ --> $00{:}14{:}37.950$ or some newer builds don't have of course, HVAC system,
- $286\ 00:14:37.950 \longrightarrow 00:14:39.750$ but that is where you would have some
- 287 00:14:39.750 --> 00:14:42.213 active particle filtration that's occurring.
- $288\ 00{:}14{:}43.200 \dashrightarrow 00{:}14{:}47.410$ Now in the the era of thinking about filtering for
- 289 00:14:48.930 --> 00:14:51.990 you know, viruses and other microbes doors,
- 290 00:14:51.990 --> 00:14:53.940 whether it be COVID or otherwise.
- $291\ 00{:}14{:}53.940 \dashrightarrow 00{:}14{:}56.370$ We've started to put in some affordable air filters,
- 292 00:14:56.370 --> 00:14:57.900 so you could also think about that,
- $293\ 00:14:57.900 \longrightarrow 00:14:59.550$ but we're predominantly looking at this
- $294\ 00:14:59.550 \longrightarrow 00:15:01.203$ in terms of the HVAC system.

- $295\ 00:15:02.310 \longrightarrow 00:15:07.310$ So, on the other side here you have air coming in
- $296~00:15:07.560 \longrightarrow 00:15:09.750$ So, infiltration is that, what I was talking
- 297 00:15:09.750 --> 00:15:12.030 about was coming through the cracks.
- $298\ 00:15:12.030$ --> 00:15:15.120 You have bad windows, ceiling, it's an old building.
- $299~00:15:15.120 \dashrightarrow 00:15:18.990$ You know, there's some areas where air just gets in.
- 300 00:15:18.990 --> 00:15:21.390 If it's a newer, newer, newer building,
- $301\ 00:15:21.390 \longrightarrow 00:15:23.340$ those seals tend to be better and better,
- $302\ 00:15:23.340 \longrightarrow 00:15:24.990$ and you have fewer spots for
- $303\ 00:15:24.990 \longrightarrow 00:15:26.733$ air to infiltrate from outdoors.
- 304 00:15:27.810 --> 00:15:28.807 But then you have this,
- $305\ 00:15:28.807 --> 00:15:30.300$ and you have a penetration factor in there
- $306\ 00:15:30.300 \longrightarrow 00:15:31.440$ for how much particles
- $307\ 00:15:31.440 \longrightarrow 00:15:32.880$ get through those little cracks.
- $308\ 00:15:32.880 \longrightarrow 00:15:34.750$ So they can get stuck on the way.
- $309\ 00:15:34.750 --> 00:15:36.413$ It's kinda like a filter like our mask.
- 310 00:15:37.827 --> 00:15:41.010 And you have natural ventilation,
- $311\ 00:15:41.010 \longrightarrow 00:15:43.170$ so you open the window because
- 312 00:15:43.170 --> 00:15:45.930 it's hot out or if you burnt toast,
- $313\ 00:15:45.930 --> 00:15:48.480$ and that's gonna provide some natural (indistinct).
- $314\ 00:15:50.910 \longrightarrow 00:15:53.340$ Indoors, you know, the main thing is
- $315\ 00:15:53.340 \longrightarrow 00:15:55.603$ you have emissions for cooking,
- 316~00:15:55.603 --> 00:15:59.100 you burn a toast or just you know, regular,
- $317\ 00:15:59.100 \longrightarrow 00:16:01.350$ you were frying up some eggplant for dinner,
- $318\ 00:16:01.350 --> 00:16:04.773$ and that generated some PM2.5.
- 319 00:16:05.732 --> 00:16:08.040 Number of appliances while you're cooking,
- 320 00:16:08.040 --> 00:16:10.650 actually have a pretty sizable PM sources,
- 321 00:16:10.650 --> 00:16:12.510 but that depends a lot on cooking style,
- $322\ 00:16:12.510 \longrightarrow 00:16:16.563$ and I forget you're affected by some

- $323\ 00:16:16.563 \longrightarrow 00:16:19.053$ of the filtration over your stove.
- $324\ 00:16:20.149 \longrightarrow 00:16:21.120$ We also worked into the model,
- $325\ 00:16:21.120 \longrightarrow 00:16:23.880$ the two loss terms of the deposition of the six.
- 326 00:16:23.880 --> 00:16:25.890 So, particles go to surfaces and also
- $327\ 00:16:25.890 \longrightarrow 00:16:27.723$ they could be meddling outside.
- 328 00:16:29.550 --> 00:16:32.370 But we're thinking today about,
- $329\ 00{:}16{:}32.370 \dashrightarrow 00{:}16{:}37.200$ what is the changes that happen to these terms.
- $330\ 00:16:37.200 \longrightarrow 00:16:40.260$ and how it affects the concentrations indoors.
- $331\ 00:16:40.260 --> 00:16:44.550$ But built within this is thinking about the housing stock.
- 332 00:16:44.550 --> 00:16:45.750 So Colby Buehler,
- 333 00:16:45.750 --> 00:16:48.510 a PhD student in environmental engineering,
- $334\ 00:16:48.510 \longrightarrow 00:16:51.179$ did a literature view of the US housing stock
- $335\ 00{:}16{:}51.179 \dashrightarrow 00{:}16{:}54.160$ working with Peg Long from School of the Environment
- $336\ 00:16:55.020 --> 00:16:58.620$ to determine the filtration flow rates for
- $337\ 00:16:58.620$ --> 00:17:01.950 homes' HVAC, and the fraction of homes with HVAC systems
- $338\ 00:17:01.950 \longrightarrow 00:17:04.203$ and also the quality of filters in there.
- $339\ 00:17:05.250 \longrightarrow 00:17:07.260$ If I was, if we were all talking
- $340\ 00:17:07.260 --> 00:17:08.340$ about this a couple years ago,
- $341\ 00{:}17{:}08.340 \longrightarrow 00{:}17{:}11.310$ you would probably not be very familiar with the quality of
- $342\ 00:17:11.310 \longrightarrow 00:17:14.040$ filters that exists up in these systems.
- $343\ 00:17:14.040 --> 00:17:16.560$ But there's this whole rating system
- $344\ 00:17:16.560 \longrightarrow 00:17:19.888$ for 2, 4, 6, 8, 10, 12, 14
- $345\ 00:17:19.888 --> 00:17:23.100$ and it goes up to 16, then we get the half a grades,
- $346\ 00:17:23.100 \longrightarrow 00:17:26.190$ and that has a major effect on the efficiency
- 347 00:17:26.190 --> 00:17:30.109 of those filters and the filtration of particles,
- $348\ 00{:}17{:}30.109 \dashrightarrow 00{:}17{:}34.083$ doors or air barns, microbes or dusts or anything else.

- $349\ 00{:}17{:}35.730 \dashrightarrow 00{:}17{:}40.620$ And then the infiltration and natural ventilation rates
- $350\ 00:17:40.620 \longrightarrow 00:17:44.550$ are also affected by house, home aid.
- 351 00:17:44.550 --> 00:17:46.230 So you think about infiltration,
- 352 00:17:46.230 --> 00:17:49.110 a home with more cracks, more gaps,
- $353\ 00:17:49.110 --> 00:17:54.110$ has more infiltration through those penetration points.
- $354\ 00{:}17{:}57.300 \dashrightarrow 00{:}18{:}00.450$ Then, the residential energy demand consumption survey
- $355~00:18:00.450 \dashrightarrow 00:18:04.020$ was used to determine appliance usage across all homes.
- $356\ 00:18:04.020 \longrightarrow 00:18:07.860$ So, we could look at the distribution in homes.
- $357\ 00:18:07.860 \longrightarrow 00:18:10.650$ Obviously, it comes down to how many people live in a home,
- $358\ 00:18:10.650 \longrightarrow 00:18:13.050$ but some of us are cooking all the time.
- 359 00:18:13.050 --> 00:18:14.550 We cook at home every single night,
- $360\ 00:18:14.550 \longrightarrow 00:18:17.460$ we use the toaster while we're using the stove,
- $361\ 00:18:17.460 \longrightarrow 00:18:18.927$ while we're using the oven.
- 362 00:18:18.927 --> 00:18:20.940 And some people, you know,
- 363 00:18:20.940 --> 00:18:25.110 will stop by and, you know,
- 364 00:18:25.110 --> 00:18:27.210 pick up something from the local
- $365\ 00:18:27.210 --> 00:18:29.103$ falafel shop for dinner most nights.
- $366\ 00:18:32.520$ --> 00:18:35.670 So, that's gonna have a huge effect on this admissions term,
- $367\ 00:18:35.670 \longrightarrow 00:18:37.890$ and it's going to propagate through this whole system,
- $368\ 00:18:37.890 \longrightarrow 00:18:39.483$ as you'll see later.
- 369 00:18:43.260 --> 00:18:45.600 So we then model over time,
- 370 00:18:45.600 --> 00:18:48.870 the changes in the US housing stock
- 371 00:18:48.870 --> 00:18:51.990 up through 2050 for this analysis.
- 372 00:18:51.990 --> 00:18:55.800 And changes in the building type,
- 373 00:18:55.800 --> 00:18:58.290 which includes the volume of home,
- 374~00:18:58.290 --> 00:18:59.790 sizes are going up,

```
375\ 00:18:59.790 \longrightarrow 00:19:03.330 the amount of new homes that are built
```

- $376\ 00:19:03.330 \longrightarrow 00:19:05.760$ and the characteristics of those homes
- $377~00{:}19{:}05.760 \dashrightarrow 00{:}19{:}10.620$ with respect to the installation of HVAC systems
- $378\ 00:19:10.620 \longrightarrow 00:19:13.590$ and filter types and all of that.
- 379 00:19:13.590 --> 00:19:17.910 So, and ultimately, the big effect that this
- 380 00:19:17.910 --> 00:19:20.970 has with the changes in the housing stock
- 381 00:19:20.970 --> 00:19:23.580 and energy creation or energy efficiency
- $382\ 00:19:23.580 \longrightarrow 00:19:26.583$ scenario is on this infiltration.
- 383 00:19:28.350 --> 00:19:30.180 So, how much ventilation occurs
- $384\ 00:19:30.180 \longrightarrow 00:19:34.560$ in your home without you actively doing that.
- 385 00:19:34.560 --> 00:19:37.710 You didn't turn on the HVAC system,
- 386 00:19:37.710 --> 00:19:39.720 you didn't necessarily open the window,
- 387 00:19:39.720 --> 00:19:42.453 but you have some pressure changes in home,
- 388 00:19:43.350 --> 00:19:44.880 and air is also very good
- 389 00:19:44.880 --> 00:19:47.460 at moving through cracks and things,
- 390 00:19:47.460 --> 00:19:49.983 and it will bring (indistinct) with it.
- 391 00:19:51.510 --> 00:19:53.280 If any of you just moved to New Haven,
- 392 00:19:53.280 --> 00:19:55.923 wait until a nice cold day,
- $393~00:19:56.940 \longrightarrow 00:19:59.430$ go stand near a window at an older building,
- $394\ 00:19:59.430 \longrightarrow 00:20:00.810$ and you'll certainly feel that
- 395 00:20:00.810 --> 00:20:03.183 cold air moving through some of those gaps.
- 396 00:20:04.170 --> 00:20:06.600 I know I had that experience when
- 397~00:20:06.600 --> 00:20:07.950 I first moved to New Haven.
- $398\ 00:20:12.540 \longrightarrow 00:20:13.980$ So, we also look at the changes,
- $399\ 00{:}20{:}13.980 \dashrightarrow 00{:}20{:}18.393$ changes in the appliance type throughout the study.
- 400 00:20:21.660 --> 00:20:23.490 I'm gonna talk about something not,
- $401~00:20:23.490 \longrightarrow 00:20:25.650$ I won't refer to it as a Monte Carlo analysis
- $402~00{:}20{:}25.650 \dashrightarrow 00{:}20{:}28.300$ over and over again but I want to make the point that
- 403 00:20:29.430 --> 00:20:31.833 to constrain the uncertainty in the study,

- 40400:20:33.210 --> 00:20:38.210 Colby Buehler ran this a lot, a lot, a lot of times.
- $405\ 00:20:38.250 \longrightarrow 00:20:40.620$ Thousands upon thousands, across the entire
- 406 00:20:40.620 --> 00:20:41.940 US housing stock.
- $407\ 00:20:41.940 \longrightarrow 00:20:43.260$ So if you go through and you simulate
- 408 00:20:43.260 --> 00:20:45.630 a whole bunch of homes with this model,
- $409\ 00:20:45.630 \longrightarrow 00:20:48.780$ and you look at all the different conditions you can have,
- $410\ 00:20:48.780 \longrightarrow 00:20:50.790$ what is the net outcome of those?
- 411 00:20:50.790 --> 00:20:52.050 So again, we're not just talking about
- 412 00:20:52.050 --> 00:20:53.490 one home with one set of conditions,
- $413\ 00:20:53.490 \longrightarrow 00:20:55.030$ or a small perturbations that
- $414\ 00:20:56.180 \longrightarrow 00:20:57.210$ we will look at one or two things.
- 415 00:20:57.210 --> 00:20:58.667 But trying to put those all together so
- $416\ 00{:}20{:}58.667 \dashrightarrow 00{:}21{:}02.576$ we can show sensitivity to these different features.
- $417\ 00{:}21{:}02.576$ --> $00{:}21{:}05.490$ So, the HVAC system and what it means for emissions,
- 418 00:21:05.490 --> 00:21:07.188 and how does infiltration change
- $419\ 00:21:07.188 \longrightarrow 00:21:12.188$ with energy efficiency measures, and the age of a home.
- $420\ 00{:}21{:}16.650 \dashrightarrow 00{:}21{:}21.650$ So questions before we start moving out to results.
- $421\ 00{:}21{:}24.930 \dots > 00{:}21{:}28.830$ If not, good work, you just got through like lecture five,
- $422\ 00{:}21{:}28.830 \dashrightarrow 00{:}21{:}33.423$ or six of my class on box models so that's great.
- 423~00:21:36.180 --> 00:21:37.710 < v Speaker>We do have a student.</v>
- $424\ 00:21:37.710 \longrightarrow 00:21:39.180 < v Dr. Gentner > Yes. < /v >$
- 425 00:21:39.180 --> 00:21:42.647 <
v Student>Yeah, I'm just, how confident are</br/>/v>
- 426 00:21:42.647 --> 00:21:45.120 you in modeling how the housing stock group
- 427 00:21:45.120 --> 00:21:47.940 change also changes in appliance?

- $428\ 00:21:47.940 --> 00:21:51.873$ Like out to 2050, or did you use different scenarios?
- $429\ 00:21:53.229 --> 00:21:57.420 < v Dr. Gentner>So, actually Ken, </v>$
- $430\ 00:21:57.420 \longrightarrow 00:21:58.770$ I'll let you answer that one.
- 431 00:21:58.770 --> 00:22:00.494 It's phone a friend time already.
- $432\ 00{:}22{:}00.494 \longrightarrow 00{:}22{:}03.270$ The question was how confident are we in the changes
- $433\ 00:22:03.270 \longrightarrow 00:22:06.297$ of the housing stock and appliance shifting over time,
- $434\ 00:22:06.297 \longrightarrow 00:22:09.660$ and how are those scenarios, model there,
- $435\ 00:22:09.660 \longrightarrow 00:22:12.840$ are there multiple scenarios in the NEMS model?
- 436 00:22:12.840 --> 00:22:14.340 <
v Dr. Gillingham>That's a a great question.
</v>
- $437\ 00:22:14.340 \longrightarrow 00:22:16.320$ What we do is we use,
- $438~00:22:16.320 \longrightarrow 00:22:20.670$ so it's built into NEMS and NEMS explicitly
- 439 00:22:20.670 --> 00:22:23.280 is modeling housing stock changes
- $440\ 00:22:23.280 \longrightarrow 00:22:25.173$ based on trends in the past.
- $441\ 00:22:26.490 \longrightarrow 00:22:30.723$ We easily could do uncertainty analyses over those numbers.
- 442 00:22:31.560 --> 00:22:35.280 I think that kind of, main takeaway on that
- 443 00:22:35.280 --> 00:22:38.520 from my understanding is that those aren't gonna be
- 444 00:22:38.520 --> 00:22:42.390 the driving forces of our final results
- 445 00:22:42.390 --> 00:22:44.438 unless you are really dramatically
- $446\ 00:22:44.438 \longrightarrow 00:22:45.990$ changing the housing stock.
- $447\ 00{:}22{:}45.990 \to 00{:}22{:}48.990$ And I know this from another paper, not this paper.
- 448 00:22:48.990 --> 00:22:50.610 You'd have to really dramatically change
- 449 00:22:50.610 --> 00:22:54.270 the kind of core housing stock itself.
- $450\ 00:22:54.270 \longrightarrow 00:22:55.710$ And the reason for this is that there's
- $451\ 00:22:55.710 \longrightarrow 00:22:58.020$ a lot of inertia in the housing stock.
- $452\ 00{:}22{:}58.020$ --> $00{:}23{:}01.710$ So, there may be changes in how well it's insulated

- $453\ 00{:}23{:}01.710 --> 00{:}23{:}06.480$ and you know, broader retrofits in how they're done.
- $454\ 00:23:06.480 \longrightarrow 00:23:11.130$ But the basic stock itself is quite slow moving.
- $455~00{:}23{:}11.130 \dashrightarrow 00{:}23{:}14.010$ That said, I think you should take anything out to 2050
- 456 00:23:14.010 --> 00:23:16.263 with a grain of salt, maybe a very large one,
- $457\ 00{:}23{:}17.520$ --> $00{:}23{:}21.960$ and so I'm not gonna hang my hat on the exact numbers on
- 458 00:23:21.960 --> 00:23:23.790 the nature of the housing stock,
- $459\ 00:23:23.790 \longrightarrow 00:23:24.660$ 'cause it's the full nature
- $460\ 00:23:24.660 \longrightarrow 00:23:26.460$ of the housing stock that's being modeled.
- 461 00:23:26.460 --> 00:23:27.570 And I'm not gonna hang my hat on the
- $462\ 00:23:27.570 \longrightarrow 00:23:30.300$ full nature of the housing stock in 2050.
- $463\ 00{:}23{:}30.300 \dashrightarrow 00{:}23{:}31.980$ But I'm pretty confident that the numbers are gonna be
- 464 00:23:31.980 --> 00:23:34.890 pretty close to right in 2030, 2035,
- $465\ 00:23:34.890 \longrightarrow 00:23:37.680$ in that range and maybe even now out to 2040,
- $466\ 00:23:37.680 --> 00:23:38.850$ just because of how much inertia
- $467\ 00:23:38.850 \longrightarrow 00:23:40.230$ there is in housing stock.
- $468\ 00{:}23{:}40.230 \dashrightarrow 00{:}23{:}43.653$ But only a small amount of turnover actually occurs.
- 469 00:23:45.994 --> 00:23:47.527 <v Student>Just on the second part though,</v>
- $470\ 00:23:47.527 \longrightarrow 00:23:51.183$ I'd have to be more concerned about appliance type.
- 471 00:23:52.350 --> 00:23:53.730 It seems like, you know,
- $472\ 00:23:53.730 --> 00:23:55.950$ we have possible scenarios of
- 473 00:23:55.950 --> 00:23:59.250 complete electrification, right, by 2050.
- $474\ 00{:}23{:}59.250 \dashrightarrow 00{:}24{:}02.670$ Versus not doing that and still having a substantial
- 475 00:24:02.670 --> 00:24:05.628 number of gas stoves for example,
- $476\ 00:24:05.628 \longrightarrow 00:24:10.628$ would have a large effect on your conclusions.
- $477\ 00:24:12.300 \longrightarrow 00:24:13.977 < v Dr. Gentner>So, the question's on </v>$

- 478 00:24:13.977 --> 00:24:15.327 the changes in appliance tech Ken,
- $479\ 00{:}24{:}15.327 \dashrightarrow 00{:}24{:}19.320$ and I'll take a quick shot at it and let you add to it.
- $480\ 00:24:19.320 \longrightarrow 00:24:23.130$ But, so that does get discussed in the paper.
- 481 00:24:23.130 --> 00:24:26.610 We don't include specific perturbations but we talk about
- 482 00:24:26.610 --> 00:24:30.480 how stoves changing up,
- $483\ 00{:}24{:}30.480 \dashrightarrow 00{:}24{:}34.230$ changing to full electrification could affect that.
- $484\ 00:24:34.230 \longrightarrow 00:24:36.213$ We get into some really interesting questions
- $485\ 00:24:36.213 \longrightarrow 00:24:38.400$ then about where the emissions coming from.
- 486 00:24:38.400 --> 00:24:41.730 Are they derived from the use of natural gas,
- $487\ 00:24:41.730 --> 00:24:44.610$ or are they derived from the process itself?
- 488 00:24:44.610 --> 00:24:48.180 If I, like your toaster is generating PM,
- $489\ 00:24:48.180 \longrightarrow 00:24:49.680$ based on what you're doing with it,
- 490 00:24:49.680 --> 00:24:51.180 not so much based on how much power,
- 491 00:24:51.180 --> 00:24:53.880 obviously, if it's not a natural gas toaster.
- 492 00:24:53.880 --> 00:24:56.910 But if we're thinking about a stove,
- 493 00:24:56.910 --> 00:24:59.010 some fraction of that PM comes
- $494\ 00:24:59.010 \longrightarrow 00:25:01.440$ from the actual burn itself.
- 495 00:25:01.440 --> 00:25:05.160 But if it's a reasonable stove,
- $496\ 00{:}25{:}05.160 --> 00{:}25{:}08.313$ the PM is probably coming more from the cooking itself.
- $497\ 00:25:09.210 --> 00:25:10.950$ And that's a really interesting question,
- $498\ 00:25:10.950 \longrightarrow 00:25:15.370$ and one that there was a cool paper
- $499\ 00:25:16.440 --> 00:25:19.590$ that came out of Stanford looking at the emission rates,
- 500 00:25:19.590 --> 00:25:20.430 although they were thinking more
- 501 00:25:20.430 --> 00:25:22.320 about methane in particular,
- $502\ 00:25:22.320 \longrightarrow 00:25:25.020$ which is where you have a huge impact on (indistinct).
- $503\ 00:25:28.330 --> 00:25:31.620$ So, on the climate side is where I think
- $504\ 00:25:31.620 --> 00:25:32.880$ we can see a large effect of

- $505\ 00:25:32.880 \longrightarrow 00:25:34.730$ short lived climate pollutants there.
- $506\ 00:25:36.750 --> 00:25:41.158$ And we do build in a few scenarios
- $507\ 00:25:41.158 --> 00:25:43.373$ in there to look at some of these changes
- $508\ 00:25:43.373 \longrightarrow 00:25:44.883$ and try to bound them.
- $509\ 00:25:45.960 --> 00:25:48.180$ Ken, can you grade my response
- 510 00:25:48.180 --> 00:25:50.100 and add anything to help there?
- 511 00:25:50.100 --> 00:25:51.420 <
v Dr. Gillingham>I liked your response.
</v>
- $512\ 00:25:51.420 \longrightarrow 00:25:52.410$ I wanna add a few things.
- 513 00:25:52.410 --> 00:25:54.390 One thing is this paper is explicitly
- 514 00:25:54.390 --> 00:25:56.940 about improving the efficiency,
- $515\ 00{:}25{:}56.940 \dashrightarrow 00{:}26{:}01.930$ given the existing forecasted technologies in NEMS.
- 516 00:26:03.480 --> 00:26:06.810 In our scenarios, it's not about fuel switching,
- 517 00:26:06.810 --> 00:26:08.430 and I think fuel switching is a really,
- 518 00:26:08.430 --> 00:26:12.030 really important question and we actually have work underway
- 519~00:26:12.030 --> 00:26:15.780 to explore that question, where we're looking at scenarios
- 520 00:26:15.780 --> 00:26:17.580 that actually would allow fuel switching.
- $521~00{:}26{:}17.580 \dashrightarrow 00{:}26{:}22.290$ So, say switching from burning natural gas in your range,
- $522~00{:}26{:}22.290 \dashrightarrow 00{:}26{:}26.430$ to an induction range, right? Electric induction range.
- $523\ 00:26:26.430 \longrightarrow 00:26:31.020$ So, that type of fuel switching, we hold constant in this.
- $524\ 00:26:31.020 \longrightarrow 00:26:34.320$ So we don't, any trends that are in
- 525 00:26:34.320 --> 00:26:36.273 the baseline in NEMS, we continue,
- $526\ 00:26:37.131 \longrightarrow 00:26:38.040$ and we don't focus on those,
- $527\ 00:26:38.040 \longrightarrow 00:26:42.390$ our scenarios are very much about improving the efficiency.
- $528\ 00:26:42.390 \longrightarrow 00:26:43.650$ I think in reality,
- 529 00:26:43.650 --> 00:26:45.780 you may end up seeing both

- 530 00:26:45.780 --> 00:26:48.387 happening somewhat at the same time.
- 531 00:26:48.387 --> 00:26:50.940 But it depends on the policy direction.
- $532~00{:}26{:}50.940 \dashrightarrow 00{:}26{:}53.100$ You could see a world in which you do see a lot of fuel
- $533\ 00{:}26{:}53.100 \dashrightarrow 00{:}26{:}55.980$ switching and not much efficiency or vice versa.
- $534\ 00:26:55.980 \longrightarrow 00:26:58.680$ And I think from a intellectual perspective
- $535\ 00:26:58.680 \longrightarrow 00:27:01.020$ it's really helpful to parse those out,
- $536\ 00:27:01.020 \longrightarrow 00:27:03.150$ and understand them separately.
- $537\ 00:27:03.150 \longrightarrow 00:27:04.650$ So that was sort of the,
- $538\ 00:27:04.650 \longrightarrow 00:27:06.273$ some of the thinking behind it,
- $539\ 00{:}27{:}07.410 \dashrightarrow 00{:}27{:}12.210$ how it plays out in what we do here in this analysis.
- $540\ 00:27:12.210 --> 00:27:13.450$ But it's a really great question
- $541\ 00:27:13.450 --> 00:27:14.880$ and a really important point.
- $542\ 00:27:14.880 \longrightarrow 00:27:17.580$ I think it's becoming increasingly important as we move
- $543~00{:}27{:}17.580 \dashrightarrow 00{:}27{:}22.500$ forward because of the IRA, you know, the recent act,
- $544\ 00:27:22.500 \longrightarrow 00:27:26.940$ and other efforts to lead to electrifying the home.
- 545~00:27:26.940 --> 00:27:31.080 There's been a real push in that direction, so I think,
- $546~00{:}27{:}31.080 \dashrightarrow 00{:}27{:}33.810$ but this framework that we've set up is reasonably
- $547\ 00:27:33.810 \longrightarrow 00:27:37.099$ well suited with some modifications to understanding
- $548\ 00{:}27{:}37.099 \dashrightarrow 00{:}27{:}39.549$ the implications of some of those questions, too.
- 549 00:27:41.820 --> 00:27:44.160 <
v Dr. Gentner>Right, thank you for the questions.
</v>
- 550 00:27:44.160 --> 00:27:47.010 Just so I don't have to skip slides at the end,
- $551\ 00:27:47.010 --> 00:27:48.900$ I'm gonna move forward.
- 552 00:27:48.900 --> 00:27:51.330 Johan, to answer your question,

- $553~00{:}27{:}51.330 \dashrightarrow 00{:}27{:}53.790$ the exact materials that are used to change
- $554\ 00:27:53.790 \longrightarrow 00:27:56.010$ the building efficiency in terms of insulation
- 555 00:27:56.010 --> 00:27:57.960 are not explicitly worked in here,
- $556~00:27:57.960 \longrightarrow 00:28:02.220$ but they are part of changes in building shell efficiency.
- 557 00:28:02.220 --> 00:28:04.410 So we look at, in the paper we discussed,
- $558\ 00:28:04.410 --> 00:28:06.090$ how changes in installation versus
- 559 00:28:06.090 --> 00:28:07.920 changes in building ceiling
- $560\ 00:28:07.920 \longrightarrow 00:28:11.310$ could affect the ultimate outcome.
- 561 00:28:11.310 --> 00:28:15.030 Alright, so, participation time.
- $562\ 00:28:15.030 --> 00:28:17.610$ How many people in the room have an
- 563 00:28:17.610 --> 00:28:20.373 HVAC system in their home or apartment?
- 564 00:28:22.704 --> 00:28:24.054 Alrighty, so we're talking,
- $565\ 00:28:25.440 \longrightarrow 00:28:27.990$ alright so that number came in at about 10%.
- 566~00:28:27.990 --> $00:28:30.030~\mathrm{I}$ don't know, hands were really kind of low on there.
- 567 00:28:30.030 --> 00:28:32.370 So, now is where we have like,
- $568\ 00:28:32.370 \longrightarrow 00:28:35.400$ a choose your own adventure moment in the presentation.
- $569\ 00:28:35.400 --> 00:28:40.350$ So for those who are in homes that do not have,
- $570\ 00:28:43.050 --> 00:28:45.843$ it's gonna come back I promise. Alright.
- 571 00:28:48.180 --> 00:28:50.220 Recirculation with filtration,
- $572\ 00:28:50.220 \longrightarrow 00:28:51.720$ here are the overall results for
- 573 00:28:51.720 --> 00:28:53.793 the entire US housing stock,
- $574~00{:}28{:}54.660 \dashrightarrow 00{:}28{:}57.120$ comparing the reference scenario
- $575\ 00:28:57.120 \longrightarrow 00:28:59.610$ here in the reddish orange color
- 576 00:28:59.610 --> 00:29:02.100 to the intermediate case in blue.
- 577 00:29:02.100 --> 00:29:04.230 And then green is the optimistic energy
- 578 00:29:04.230 --> 00:29:06.030 efficiency case for buildings.
- 579 00:29:06.030 --> 00:29:08.097 On the bottom here, you're looking at
- $580\ 00:29:08.097 --> 00:29:11.010$ the indoor emissions percentile.

- $581\ 00:29:11.010 \longrightarrow 00:29:13.023$ So the far left,
- $582\ 00:29:14.310 --> 00:29:15.690$ this is the person who picked up
- $583\ 00:29:15.690 \longrightarrow 00:29:18.514$ falafel for dinner every night then.
- 584 00:29:18.514 --> 00:29:21.750 Hopefully, they got different toppings but they
- 585 00:29:21.750 --> 00:29:24.270 did not do much cooking in their home,
- $586\ 00:29:24.270 --> 00:29:27.180$ and breakfast they got on the way to campus.
- 587 00:29:27.180 --> 00:29:28.290 And on the far right here,
- $588\ 00{:}29{:}28.290 \dashrightarrow 00{:}29{:}31.170$ this is the person who wanted deep fried cauliflower
- 589~00:29:31.170 --> 00:29:36.030 three times times that week, and is cooking a lot.
- 590 00:29:36.030 --> 00:29:37.560 Maybe it wasn't deep fried cauliflower,
- 591 00:29:37.560 --> 00:29:38.730 but you get the point.
- $592\ 00:29:38.730 \dashrightarrow 00:29:40.950$ Here is where there's a lot more indoor emissions.
- $593\ 00:29:40.950 \longrightarrow 00:29:44.190$ So it's what you could imagine a home that is,
- $594~00{:}29{:}44.190 \dashrightarrow 00{:}29{:}48.690$ has more PM generated from various appliances,
- 595 00:29:48.690 --> 00:29:51.167 but ends up being an an important one,
- $596\ 00:29:51.167 \longrightarrow 00:29:52.380$ And on the far left,
- $597\ 00:29:52.380 --> 00:29:54.540$ this one you can think as a cleaner home
- 598 00:29:54.540 --> 00:29:56.280 just in terms of the indoor emissions.
- $599~00:29:56.280 \dashrightarrow 00:29:59.163$ So, if you're all the way here on the left side,
- 600 00:30:00.360 --> 00:30:03.750 you're seeing actually a benefit
- $601~00{:}30{:}03.750 \dashrightarrow 00{:}30{:}08.670$ compared to the reference case of building tighten.
- $602\ 00{:}30{:}08.670 --> 00{:}30{:}11.910$ So reducing that in filtration actually yields you a benefit.
- $603\ 00{:}30{:}11.910 \dashrightarrow 00{:}30{:}16.350$ And the reason is, any of the PM that is outside
- $604\ 00{:}30{:}16.350 \dashrightarrow 00{:}30{:}20.940$ is not making it indoors because your home is sealed off.

- $605\ 00:30:20.940 \longrightarrow 00:30:23.670$ You have a very, you have a tighter box that you live in.
- $606\ 00:30:23.670 --> 00:30:25.557$ So you are just living with your own emissions,
- $607\ 00:30:25.557 \longrightarrow 00:30:26.700$ and you don't have as much
- 608 00:30:26.700 --> 00:30:29.280 infiltration of particles from outside.
- 609 00:30:29.280 --> 00:30:32.310 If you move to this other side here,
- $610\ 00:30:32.310 \longrightarrow 00:30:35.403$ and you can see where it is worse than the,
- $611\ 00:30:36.720 \longrightarrow 00:30:38.880$ oh excuse me, this is with recirculation.
- $612\ 00:30:38.880 \longrightarrow 00:30:40.050$ I said before this is without,
- $613~00{:}30{:}40.050 \dashrightarrow 00{:}30{:}42.513$ this for the 10% of you that have an HVAC system.
- 614 00:30:45.120 --> 00:30:48.180 Here on this side is showing
- 615 00:30:48.180 --> 00:30:49.950 if you're doing a lot of cooking indoors,
- 616 00:30:49.950 --> 00:30:52.110 you actually see a penalty from
- $617~00:30:52.110 \dashrightarrow 00:30:54.030$ those energy efficiency measures.
- 618 00:30:54.030 --> 00:30:56.760 'Cause now you have bottled up your home,
- 619 00:30:56.760 --> 00:30:58.350 you have filled all the cracks,
- $620\ 00{:}30{:}58.350 \dashrightarrow 00{:}31{:}02.500$ maybe not every last one of them but you haven't improved
- 621 00:31:03.660 --> 00:31:06.480 the ceiling through your home to the point that you
- $622\ 00{:}31{:}06.480 \dashrightarrow 00{:}31{:}10.113$ spend a longer time with any of your emissions indoors.
- $623\ 00:31:12.000 \longrightarrow 00:31:14.910$ So, the bummer is that that toast
- 624 00:31:14.910 --> 00:31:18.210 that you burnt lingers longer,
- $625\ 00{:}31{:}18.210 \dashrightarrow 00{:}31{:}21.027$ or any other combustion source that you have indoors.
- $626~00{:}31{:}21.027 \dashrightarrow 00{:}31{:}24.757$ And so, thus you would have more exposure to that.
- 627 00:31:24.757 --> 00:31:27.150 Or it could be a continued source of something,
- 628 00:31:27.150 --> 00:31:28.950 if you had a bad pilot light or something
- $629\ 00{:}31{:}28.950 \dashrightarrow 00{:}31{:}33.950$ else in your home then that continues, or persists along.

- 630 00:31:34.500 --> 00:31:38.610 So, when you're looking at this,
- $631~00{:}31{:}38.610 \dashrightarrow 00{:}31{:}42.300$ the reference case models the building stock without
- $632\ 00{:}31{:}42.300 \dashrightarrow 00{:}31{:}45.060$ any changes from the energy efficiency scenario.
- $633\ 00:31:45.060 \longrightarrow 00:31:46.290$ So what is the current inertia,
- $634\ 00:31:46.290 \longrightarrow 00:31:47.520$ and everything that we talked about.
- 635 00:31:47.520 --> 00:31:50.970 And then this represents the change,
- $636\ 00:31:50.970 \longrightarrow 00:31:53.310$ where the left shows some benefit,
- $637\ 00:31:53.310 --> 00:31:55.560$ and the right where you get about
- $638\ 00:31:55.560 --> 00:31:58.833$ the reference case line shows a detriment indoors.
- 639 00:32:00.150 --> 00:32:03.840 So, for those of you,
- $640\ 00:32:03.840 --> 00:32:07.950$ the 90% in the room that don't have an HVAC system,
- 641 00:32:07.950 --> 00:32:10.503 or other recirculation with filtration,
- $642\ 00:32:11.517 \longrightarrow 00:32:13.230$ this is what it looks like.
- $643\ 00:32:13.230 \longrightarrow 00:32:15.060$ So, everything is the same here.
- $644~00{:}32{:}15.060 --> 00{:}32{:}18.990$ The only difference is now we're looking at the 38 to 45%
- $645\ 00:32:18.990 \longrightarrow 00:32:22.060$ of homes depending on the scenario that have
- 64600:32:25.260 --> 00:32:27.750 no filtration or HVAC system at the home.
- $647\ 00:32:27.750 \longrightarrow 00:32:30.480$ So, now you can see this effect is exacerbated.
- $648\ 00:32:30.480 \dashrightarrow 00:32:34.260$ There's a smaller fraction of homes that see a benefit
- $649\ 00:32:34.260 \longrightarrow 00:32:36.630$ for their indoor pollution from
- $650\ 00:32:36.630 \longrightarrow 00:32:38.916$ these energy efficiency measures,
- $651\ 00:32:38.916 --> 00:32:40.470$ and a larger fraction that get
- 652 00:32:40.470 --> 00:32:43.560 greater exposure to particulate matter,
- $653\ 00{:}32{:}43.560 \dashrightarrow 00{:}32{:}46.287$ because they spend more time with those emissions.
- 654 00:32:47.160 --> 00:32:50.130 So this shows two things,
- $655\ 00:32:50.130 \longrightarrow 00:32:52.810$ the importance of the indoor emissions

- $656\ 00:32:53.880 \longrightarrow 00:32:55.630$ in determining your indoor exposure
- $657\ 00:32:56.580 \longrightarrow 00:32:58.950$ and target ventilation there.
- $658\ 00:32:58.950 \longrightarrow 00:33:00.660$ And the importance of recirculation
- 659 00:33:00.660 --> 00:33:03.110 with filtration, just for PM2.5. Yes?
- 660 00:33:04.920 --> 00:33:06.450 <v Student 2>This might be a silly question, but,</v>
- $661\ 00:33:06.450 \longrightarrow 00:33:09.780$ is there, is like the,
- 662 00:33:09.780 --> 00:33:11.100 it's hard for me to to believe,
- 663 00:33:11.100 --> 00:33:14.670 to understand how building efficiency,
- 664 00:33:14.670 --> 00:33:17.160 have that much impact over HVAC.
- $665~00{:}33{:}17.160 \dashrightarrow 00{:}33{:}21.720$ Like I would think that homes have the circulation system
- 666 00:33:21.720 --> 00:33:25.770 would be filtering air more than like,
- $667\ 00:33:25.770 \longrightarrow 00:33:26.940$ having cracks in the wall,
- $668\ 00:33:26.940 \longrightarrow 00:33:29.960$ and like, not as great of efficiency
- 669 00:33:29.960 --> 00:33:32.714 would like, have an impact on this.
- $670\ 00:33:32.714 \longrightarrow 00:33:33.547$ Does that make sense?
- $671\ 00:33:33.547 \longrightarrow 00:33:35.700$ Like, just looking at the reference line there.
- $672\ 00:33:35.700 \longrightarrow 00:33:36.690$ So like, if there were no
- 673 00:33:36.690 --> 00:33:38.940 improved efficiency in the building,
- 674 00:33:38.940 --> 00:33:41.420 you would still be having this kind of like,
- $675\ 00:33:41.420 \longrightarrow 00:33:43.093$ being close to the one to one line
- $676\ 00:33:43.093 \longrightarrow 00:33:45.750$ if you had a lot of indoor air emissions.
- $677\ 00:33:45.750 \longrightarrow 00:33:50.750$ But then, you improved, like how is the HVAC not filtering?
- $678\ 00:33:53.850 --> 00:33:54.840 < v Dr. Gentner>Improving?</v>$
- 679 00:33:54.840 --> 00:33:56.130 <
v Student 2>Yeah, I guess, or I guess, yeah.
</v>
- $680~00{:}33{:}56.130 \dashrightarrow 00{:}33{:}59.370~I$ just think of it as like constantly pulling air out,
- $681\ 00:33:59.370 --> 00:34:01.500$ and like, pushing fresher air back in.
- 682 00:34:01.500 --> 00:34:04.800 So that was the, how is the increased

 $683\ 00{:}34{:}04.800 --> 00{:}34{:}08.257$ efficiency of a building making that almost worse.

 $684\ 00:34:08.257 \longrightarrow 00:34:09.960$ Does that make sense?

685 00:34:09.960 --> 00:34:10.950 <v Dr. Gentner>It does, and it's actually</v>

 $686\ 00{:}34{:}10.950 \dashrightarrow 00{:}34{:}14.793$ a great opportunity to make a clarifying point here,

 $687\ 00:34:17.321 --> 00:34:21.223$ that in the current paradigm of building temperature,

 $688\ 00{:}34{:}24.030 \dashrightarrow 00{:}34{:}27.093$ climate control, infiltration, this is a closed one.

 $689~00{:}34{:}27.960 \dashrightarrow 00{:}34{:}31.200$ Your HVAC system takes air, conditions it,

 $690\ 00:34:31.200 \longrightarrow 00:34:34.140$ and puts it back into your home.

 $691\ 00:34:34.140 --> 00:34:36.570$ So, it comes down to the efficiency of that filter,

692 00:34:36.570 --> 00:34:39.180 rather than if saying, we're gonna give you

 $693\ 00:34:39.180 \longrightarrow 00:34:41.070$ completely fresh air from outside,

 $694\ 00:34:41.070 \longrightarrow 00:34:42.619$ to get rid of all our air

 $695\ 00:34:42.619 --> 00:34:44.777$ from the inside and put it outdoors.

 $696\ 00:34:44.777 \longrightarrow 00:34:47.430$ This is where we're starting.

 $697~00{:}34{:}47.430 \dashrightarrow 00{:}34{:}50.030$ We'd be thinking about like, next generation things.

 $698\ 00{:}34{:}50.910$ --> $00{:}34{:}55.110$ Is there any opportunities to get fresh air while

 $699\ 00:34:55.110 \longrightarrow 00:34:57.430$ not paying the penalty for having to completely

700 00:34:57.430 --> 00:34:59.760 recondition, well I say recondition,

701 00:34:59.760 --> 00:35:03.150 I mean, change the temperature of all the air coming in.

702 00:35:03.150 --> 00:35:04.050 <v Student>Perfect, yeah.</v>

703 00:35:04.050 --> 00:35:06.330 <v Dr. Gentner>No problem, that's a good point to clarify, </v>

 $704\ 00:35:06.330 \longrightarrow 00:35:07.163$ so thank you for that.

 $705\ 00{:}35{:}07.163 \dashrightarrow 00{:}35{:}12.163$ The only major every day example for a lot of us, $706\ 00:35:12.720 --> 00:35:15.990$ or exemption to that would be in some of our labs,

 $707\ 00:35:15.990 \longrightarrow 00:35:17.340$ we have a fume hood obviously,

708 00:35:17.340 --> 00:35:20.090 we'd dump all of that out the building,

 $709\ 00:35:20.090 \longrightarrow 00:35:21.867$ we don't recirculate that.

 $710\ 00:35:21.867 \longrightarrow 00:35:26.820$ And there were some changes in various buildings,

711 00:35:26.820 \rightarrow 00:35:29.610 like on campus I know where the percentage of fresh air

712 00:35:29.610 --> 00:35:33.093 versus recycled air has changed over the past couple years.

713 00:35:34.800 --> 00:35:39.637 So, alright, so,

 $714\ 00:35:43.002 \longrightarrow 00:35:44.681$ If we think about this effect,

715 00:35:44.681 --> 00:35:47.430 this is looking at the overall effect,

 $716\ 00:35:47.430 --> 00:35:51.900$ the entire housing stock for these two cases,

717 00:35:51.900 --> 00:35:56.580 or two types of homes across old and existing.

 $718\ 00:35:56.580 \longrightarrow 00:35:59.520$ Then we have this result where we end up

719 00:35:59.520 --> 00:36:02.760 at steady state having higher overall concentrations.

720 00:36:02.760 --> 00:36:05.010 If you wanna visualize this more,

 $721\ 00:36:05.010 --> 00:36:07.590$ as what's happening for any singular event,

 $722\ 00{:}36{:}07.590 \dashrightarrow 00{:}36{:}11.100$ you can think about the response time to something.

 $723\ 00:36:11.100 \longrightarrow 00:36:14.100$ So if you just look at this as a singular case,

724 00:36:14.100 --> 00:36:15.270 let's say here,

725 00:36:15.270 --> 00:36:19.593 you, oh, stick with the burning toast scenario,

726 00:36:20.430 --> 00:36:22.620 you burnt toast or you were frying something,

 $727\ 00:36:22.620 \longrightarrow 00:36:23.820$ you generated really high concentrations

 $728\ 00:36:23.820 \longrightarrow 00:36:25.263$ and then you stopped.

 $729\ 00:36:26.280 \longrightarrow 00:36:29.215$ How long does that take to decay down?

 $730\ 00:36:29.215 \longrightarrow 00:36:32.400$ And specifically, we think about that as the folding time,

- 731 00:36:32.400 --> 00:36:37.400 so down to one over just 37%, to keep it going on
- $732\ 00:36:39.743 \longrightarrow 00:36:42.750$ And, so we look at that in the different scenarios
- $733\ 00:36:42.750 \longrightarrow 00:36:45.450$ with and without filtration.
- 734 00:36:45.450 --> 00:36:46.920 One other point, actually I wanted to make
- 735 00:36:46.920 --> 00:36:48.540 about your quick filtration question
- $736\ 00:36:48.540 \longrightarrow 00:36:52.170$ is in a lot of homes,
- $737\ 00:36:52.170 --> 00:36:54.870$ we're not recirculating air
- $738\ 00:36:54.870 \longrightarrow 00:36:56.477$ at a range of like, the entire house
- 739 00:36:56.477 --> 00:36:59.523 over 6 points or something.
- 740 00:37:01.170 --> 00:37:03.510 During COVID we increased some of
- 741 00:37:03.510 --> 00:37:05.730 those ventilation rates for public spaces.
- 742 00:37:05.730 --> 00:37:09.270 Marketing air exchange rate of 4 or 5,
- $743\ 00:37:09.270 \longrightarrow 00:37:10.740$ those are probably the goal ones.
- 744 00:37:10.740 --> 00:37:12.213 So air exchange per hour,
- 745 00:37:13.290 --> 00:37:15.093 but we're not changing everything.
- 746 00:37:17.190 --> 00:37:19.350 <v ->So, that's why there are differences</v>
- $747\ 00:37:19.350 \longrightarrow 00:37:21.900$ here with the filtration and recirculation
- 748 00:37:21.900 --> 00:37:24.210 for dropping it quicker,
- 749 00:37:24.210 --> 00:37:26.430 in the cases of having an HVAC system.
- 750 00:37:26.430 --> 00:37:28.650 And then you can see, you know,
- $751\ 00:37:28.650 \longrightarrow 00:37:30.287$ as we tighten up the building more and more
- 752 00:37:30.287 --> 00:37:33.691 in the optimistic energy efficiency case,
- 753 00:37:33.691 --> 00:37:37.710 you know, that time that you're spent with the burning
- $754\ 00:37:37.710 \longrightarrow 00:37:39.993$ of be it toast or whatever else,
- 755 00:37:41.456 --> 00:37:44.430 that happen indoors increases,
- $756\ 00:37:44.430 --> 00:37:48.074$ and you can see the theory we're approaching.
- 757 00:37:48.074 --> 00:37:50.574 (indistinct)
- 758 00:37:52.748 --> 00:37:55.440 So, that helps to visualize what's happening,

- $759\ 00:37:55.440 \longrightarrow 00:37:57.240$ just in terms of the time.
- $760\ 00:37:57.240 --> 00:37:59.364$ Hopefully, that's a useful comparison.
- 761 00:37:59.364 --> 00:38:03.480 < v -> So, but we know that the system < / v >
- $762\ 00:38:03.480 \longrightarrow 00:38:06.720$ is sensitive to outdoor PM concentration.
- $763\ 00:38:06.720 \longrightarrow 00:38:08.170$ So, we did all this modeling,
- $764\ 00:38:09.030 \longrightarrow 00:38:11.790$ and then we did a couple case studies
- $765\ 00:38:11.790$ --> 00:38:16.080 within it across all different outdoor PM concentrations,
- $766\ 00:38:16.080$ --> 00:38:21.080 and looked at how the system responded to outdoor PM.
- 767 00:38:22.830 --> 00:38:24.750 Because if we go back to that box funnel,
- 768 00:38:24.750 --> 00:38:27.600 and I won't put it back on the screen again,
- $769\ 00:38:27.600 \longrightarrow 00:38:28.433$ but you know, remember we have
- 770 00:38:28.433 --> 00:38:30.810 the concentrations of PM outside,
- 771 00:38:30.810 --> 00:38:31.860 and that's trying to come in
- $772~00{:}38{:}31.860 \dashrightarrow 00{:}38{:}34.170$ and then we have our indoor PM and that's going out.
- $773\ 00:38:34.170 --> 00:38:36.540$ So we have this really complex game
- 774 00:38:36.540 --> 00:38:38.290 that's happening over the building.
- $775\ 00{:}38{:}39.180 \dashrightarrow 00{:}38{:}43.470$ And so, if we keep our indoor emissions on the bottom.
- $776\ 00{:}38{:}43.470 --> 00{:}38{:}45.780$ So, again, this is the home of the most indoor emissions
- 777 00:38:45.780 \rightarrow 00:38:47.760 and this is the home of the least,
- $778\ 00:38:47.760 --> 00:38:49.320$ and we look at the outdoor
- 779 00:38:49.320 --> 00:38:54.320 concentrations on the Y axis here.
- 780~00:38:55.170 --> $00:39:00.170~\mathrm{So}$ this is the ambient outdoor PM2.5 concentration.
- $781\ 00:39:00.180 \longrightarrow 00:39:01.740$ The national average is here,
- $782\ 00:39:01.740 \longrightarrow 00:39:03.330$ the annual standard is here,
- $783\ 00:39:03.330 \longrightarrow 00:39:05.703$ and then the 24 hour standard's up there.
- 784 00:39:06.960 --> 00:39:08.100 So, depending on where you live,

 $785\ 00:39:08.100 \longrightarrow 00:39:11.397$ and even time of year or if it's a pollution event,

 $786\ 00:39:11.397 --> 00:39:14.163$ you're going to fall on different spots.

787~00:39:15.810 --> 00:39:19.830 This graph vertically and that ratio of what it is

 $788\ 00:39:19.830 --> 00:39:22.410$ in the optimistic energy efficiency case,

 $789\ 00:39:22.410 --> 00:39:25.740$ versus the reference case is shown here.

 $790\ 00:39:25.740 --> 00:39:29.760$ Where red has just energy efficiency measure

791 00:39:29.760 --> 00:39:34.140 increasing the indoor concentrations,

792~00:39:34.140 --> 00:39:39.140 and blue shows it decreasing the indoor concentrations.

793 00:39:40.950 --> 00:39:43.170 And that's just because again,

 $794\ 00:39:43.170 \longrightarrow 00:39:48.170$ here you are preventing the PM from outdoors coming in.

795 00:39:48.930 --> 00:39:51.960 Imagine it's a wildfire scenario,

796 00:39:51.960 --> 00:39:55.015 and you know, you're living in the northwest

797 00:39:55.015 --> 00:39:58.650 and your home is really tightly sealed,

 $798\ 00:39:58.650 \dashrightarrow 00:40:01.113$ so your concentrations are really high outdoors,

 $799\ 00:40:02.220 --> 00:40:03.484$ and you're up in this space where your home

 $800\ 00:40:03.484 \longrightarrow 00:40:05.883$ is more well sealed so less stuff gets in.

 $801\ 00:40:06.780 \longrightarrow 00:40:08.738$ If you go all the way to the right of this

 $802\ 00:40:08.738 \longrightarrow 00:40:10.800$ and you're in cleaner conditions outdoors,

803 00:40:10.800 --> 00:40:14.040 but you have a lot of indoor sources,

 $804\ 00:40:14.040 \longrightarrow 00:40:17.940$ now that tighter building with with less infiltration

 $805\ 00:40:17.940 --> 00:40:20.013$ actually increases your indoor content.

 $806\ 00{:}40{:}21.120 \dashrightarrow 00{:}40{:}24.960$ So point says, interesting interplay between outdoor

 $807\ 00:40:24.960 \longrightarrow 00:40:29.100$ and indoor PM and how that interacts.

808 00:40:29.100 \rightarrow 00:40:31.550 So, if there's anything you take away from today,

 $809\ 00:40:32.700 \longrightarrow 00:40:34.170$ whether it be for particulate matter

- $810\ 00:40:34.170 \longrightarrow 00:40:38.340$ or other atmospheric public health considerations,
- 811 00:40:38.340 --> 00:40:40.920 I hope it's thinking a little bit about that
- 812 00:40:40.920 --> 00:40:43.282 interaction between outdoor and indoors.
- 813 00:40:43.282 --> 00:40:48.282 So, in summary for this slide,
- $814\ 00:40:48.960 \longrightarrow 00:40:51.960$ which it literally has a lot of different
- $815\ 00:40:51.960 \longrightarrow 00:40:53.970$ information on it and colors.
- 816 00:40:53.970 --> 00:40:55.980 The impacts of these energy efficiency measures
- 817 00:40:55.980 --> 00:40:59.100 on indoor air quality are partially dependent
- 818 00:40:59.100 --> 00:41:00.990 on outdoor air quality,
- $819\ 00:41:00.990 \longrightarrow 00:41:02.910$ in addition to the in-home emissions.
- 820 00:41:02.910 --> 00:41:06.810 So if you were to translate this to Delhi,
- $821\ 00:41:06.810 \longrightarrow 00:41:09.963$ or another city that has higher outdoor concentrations,
- 822 00:41:10.890 --> 00:41:12.783 have to help how you approach this.
- $823\ 00:41:15.130 \longrightarrow 00:41:16.653$ There are some studies that were done,
- 824 00:41:16.653 --> 00:41:19.690 just looking at a few homes back in Beijing.
- 825 00:41:22.268 --> 00:41:24.460 And, probably like a decade ago,
- 826 00:41:24.460 --> 00:41:26.780 (indistinct) at Berkeley looked at the changes
- $827\ 00:41:26.780 \longrightarrow 00:41:31.050$ in home infiltration and ceiling and how that actually
- $828\ 00:41:31.050 --> 00:41:34.893$ affected imperfect air concentrations to outdoor ratios.
- $829\ 00:41:36.156 \longrightarrow 00:41:39.480$ So, it does have an impact in other locations,
- $830\ 00:41:39.480 \longrightarrow 00:41:42.130$ and it can be different than what we're showing here.
- $831~00{:}41{:}43.740$ --> $00{:}41{:}48.740$ Okay, so to wrap this up and look at it together.
- $832\ 00:41:50.070 --> 00:41:52.140\ I$ said we wanted to look at the outdoor effects
- $833\ 00:41:52.140 \longrightarrow 00:41:53.070$ and the indoor effects.
- $834\ 00:41:53.070 \longrightarrow 00:41:56.883$ We spent a little bit more time on the indoor stuff today,

- $835\ 00:41:57.930 \longrightarrow 00:42:00.940$ but we get this huge gain
- 836 $00:42:02.040 \longrightarrow 00:42:05.640$ from the reduction in outdoor PM2.5.
- 837 $00:42:05.640 \longrightarrow 00:42:08.240$ This is really like the energy related PM2.5.
- $838\ 00{:}42{:}09.390 \dashrightarrow 00{:}42{:}13.170$ So we've dropped the energy demand for buildings
- 839 $00:42:13.170 \longrightarrow 00:42:16.710$ considerably with the cases here.
- $840\ 00:42:16.710 --> 00:42:19.773$ So intermediate, optimistic, optimistic with carbon pricing.
- $841\ 00:42:21.060 \longrightarrow 00:42:24.180$ And so we have a few benefits
- $842\ 00{:}42{:}24.180 --> 00{:}42{:}27.903$ in reduced premature mortality that's avoided in 2050.
- $843\ 00:42:29.940$ --> 00:42:33.003 We just talked about the complexity of indoors.
- $844\ 00:42:34.170 \longrightarrow 00:42:39.170$ And so overall, we see a detriment indoors
- 845 00:42:41.790 --> 00:42:45.137 but this is not for every home,
- $846\ 00:42:45.137 --> 00:42:46.090$ 'cause there's many homes that see a
- $847\ 00{:}42{:}46.090 \dashrightarrow 00{:}42{:}50.400$ health benefit from the energy efficiency improvements
- $848\ 00:42:50.400 \longrightarrow 00:42:51.723$ based on this modeling.
- 849 00:42:52.590 --> 00:42:54.900 And so it's those high emissions homes,
- $850\ 00:42:54.900 \longrightarrow 00:42:56.940$ high indoor emissions homes that
- $851\ 00:42:56.940 \longrightarrow 00:43:00.633$ drive the overall effect negative.
- 852 00:43:01.560 --> 00:43:03.240 So, those graphs that I showed you before
- $853\ 00:43:03.240$ --> 00:43:08.240 that had the lines across them for HVAC and non-HVAC
- 854 00:43:08.340 --> 00:43:09.450 were showing that, you know,
- $855\ 00:43:09.450 --> 00:43:12.175$ there's a fraction of homes that see a detriment
- $856\ 00:43:12.175 \longrightarrow 00:43:16.410$ and need to see a benefit from this as well.
- 857 00:43:16.410 --> 00:43:19.517 But overall, the indoor effect offsets
- 858 00:43:21.840 --> 00:43:23.966 this positive outdoor effect,
- $859\ 00:43:23.966 \longrightarrow 00:43:25.230$ but it's weighted towards a
- $860\ 00{:}43{:}25.230 \dashrightarrow 00{:}43{:}29.160$ subset of homes and a subset of the population.

861~00:43:29.160 --> 00:43:32.574 We look at this on net for those three scenarios

 $862\ 00:43:32.574 --> 00:43:36.030$ Intermediate, optimistic, optimistic with carbon pricing.

 $863\ 00:43:36.030 \longrightarrow 00:43:39.270$ We see that we get a net benefit from energy efficiency

 $864\ 00:43:39.270 \longrightarrow 00:43:42.503$ for avoiding premature mortality for PM2.5.

865 00:43:43.500 --> 00:43:46.020 This is stacked on top of all of the benefits

 $866\ 00:43:46.020$ --> 00:43:49.653 that we get from the reduced climate pollutants.

867 00:43:53.520 --> 00:43:56.250 So, we get a climate benefit in terms

868 00:43:56.250 --> 00:43:59.070 of reduced CO2 emissions,

 $869\ 00{:}43{:}59.070 \dashrightarrow 00{:}44{:}04.070$ and we get a benefit in terms of improved public health.

 $870\ 00:44:04.920 \longrightarrow 00:44:07.830$ And that's driven by a large decrease

871 00:44:07.830 --> 00:44:10.140 in energy-related pollutant emissions,

 $872\ 00:44:10.140 \longrightarrow 00:44:12.600$ and to some degree,

 $873\ 00{:}44{:}12.600 \dashrightarrow 00{:}44{:}16.560$ some of the homes that have poor indoor air quality.

 $874\ 00:44:16.560 \longrightarrow 00:44:18.787$ But we do see some of the negative effects

 $875\ 00:44:18.787 \longrightarrow 00:44:21.693$ on indoor air quality overall.

 $876\ 00:44:22.869 \longrightarrow 00:44:27.217$ That's what I said in summary.

 $877\ 00:44:27.217 --> 00:44:30.615$ And then, we wanted to test how the effect

 $878\ 00{:}44{:}30.615 \dashrightarrow 00{:}44{:}35.615$ of HVAC usage or or filtration system's effectiveness.

 $879\ 00{:}44{:}37.170 \dashrightarrow 00{:}44{:}40.710$ So, if we look at the case where we actually upgraded

880 00:44:40.710 --> 00:44:44.100 all homes to have 100% good HVAC systems.

881 00:44:44.100 --> 00:44:47.160 So boost that investment up,

 $882\ 00{:}44{:}47.160 \dashrightarrow 00{:}44{:}52.160$ actually increases the health benefits that occur.

883 00:44:52.470 --> 00:44:54.646 So, basically if we improve indoor air quality

884 00:44:54.646 --> 00:44:59.560 through improved filtration indoors at PM2.5,

 $885\ 00:45:01.290 --> 00:45:04.417$ we can achieve a larger benefit there.

- 886 $00:45:07.410 \longrightarrow 00:45:11.970$ This can be put up as a summary.
- $887\ 00:45:11.970 --> 00:45:15.150$ Here, where reductions in outdoor emissions,
- $888\ 00:45:15.150 --> 00:45:20.150$ yielding that benefit across the entire building stock.
- 889 00:45:21.480 --> 00:45:24.273 And, the observed changes indoor air quality,
- 890 00:45:25.350 --> 00:45:27.750 due to these energy efficiency improvements,
- 891 00:45:27.750 --> 00:45:29.820 really require us to think about
- 892 00:45:29.820 --> 00:45:34.820 improvements to our indoor PM2.5 emissions,
- $893\ 00:45:35.670 \longrightarrow 00:45:38.340$ the targeted ventilation of those emissions.
- 894 00:45:38.340 --> 00:45:41.010 So, better ventilation of cooking emissions,
- $895\ 00:45:41.010 --> 00:45:43.950$ improving the PM2.5 filtration efficiency.
- $896\ 00:45:43.950 \longrightarrow 00:45:46.890$ So, upgrade your filters, get better efficiency
- $897\ 00:45:46.890 \longrightarrow 00:45:49.440$ for those of you who can.
- 898~00:45:49.440 --> 00:45:52.650 And then, careful consideration of these energy efficiency
- $899\ 00:45:52.650 \longrightarrow 00:45:57.650$ policies and how we look at ventilation in buildings.
- $900\ 00:46:00.960 \longrightarrow 00:46:02.190$ And this is yet another time
- 901 00:46:02.190 --> 00:46:04.627 where I wish I had Jordan Peccia
- $902~00{:}46{:}05.539 \dashrightarrow 00{:}46{:}09.240$ on the line as well, to make a few comments on that.
- 903 00:46:09.240 --> 00:46:12.990 Because it is a really interesting, important topic
- $904\ 00:46:12.990 \longrightarrow 00:46:17.610$ for how design, building ventilation for quality of life,
- $905\ 00{:}46{:}17.610 \dashrightarrow 00{:}46{:}21.060$ well being and thinking about a range of pollutants.
- $906\ 00:46:21.060 \longrightarrow 00:46:23.850$ So we present this today in the paper,
- 907 00:46:23.850 --> 00:46:25.223 through the lens of PM2.5.
- 908 00:46:26.725 --> 00:46:28.140 And we include some discussions in the paper
- 909 00:46:28.140 --> 00:46:29.553 about different pollutants,
- 910 00:46:30.643 --> 00:46:34.560 I think for indoors, and we did it in various amounts.

- 911 00:46:34.560 \rightarrow 00:46:37.920 so that goes through the range of criteria pollutants.
- $912\ 00:46:37.920 --> 00:46:39.313$ We can even start to think about radon
- 913 $00:46:39.313 \longrightarrow 00:46:41.887$ in some areas of the country.
- 914 00:46:41.887 --> 00:46:46.560 We can start thinking about disease transmission.
- 915 00:46:46.560 --> 00:46:48.660 No worries, it has nothing to do with this paper,
- 916 00:46:48.660 --> 00:46:53.100 but it does come up against the space
- $917\ 00:46:53.100 \longrightarrow 00:46:54.030$ where we think a lot about
- $918\ 00:46:54.030 \longrightarrow 00:46:57.663$ building design, and filtration and ventilation.
- $919\ 00:46:58.740 \longrightarrow 00:47:03.740$ So, looking at these benefits across the country pay.
- 920 00:47:04.710 --> 00:47:06.450 The graduate student who was working,
- 921 00:47:06.450 --> 00:47:09.180 sorry, the postdoc who was working on this,
- 922 00:47:09.180 --> 00:47:14.180 modeled it spatially and across various geographic regions.
- 923 00:47:14.460 --> 00:47:16.020 And you can see for the intermediate
- 924 00:47:16.020 --> 00:47:18.210 energy efficiency pace, the optimistic one.
- 925 00:47:18.210 --> 00:47:20.628 And then when we employ carbon pricing
- $926\ 00:47:20.628 --> 00:47:23.225$ and carbon pricing with the optimistic
- $927\ 00:47:23.225 \longrightarrow 00:47:27.030$ case where the benefits occur.
- 928 00:47:27.030 --> 00:47:31.020 And these differences come down in many ways
- $929\ 00:47:31.020 \longrightarrow 00:47:32.910$ to how power is, generator,
- 930 00:47:32.910 --> 00:47:34.530 how electricity is generated in
- 931 00:47:34.530 --> 00:47:37.050 various areas of the country.
- 932 00:47:37.050 --> 00:47:39.690 So where we see some of the largest
- 933 $00:47:39.690 \longrightarrow 00:47:42.630$ benefits depending on the case.
- 934 00:47:42.630 --> 00:47:46.343 So, carbon pricing is gonna have a sudden different effect
- $935\ 00:47:46.343 \longrightarrow 00:47:49.680$ than on the optimistic case on it's own.
- 936 $00:47:49.680 \longrightarrow 00:47:51.780$ It's going to change the

937 00:47:51.780 --> 00:47:56.243 underlying fuel that we're using for generator outlets.

938 00:47:56.243 --> 00:47:58.277 So, you know, we think about

939 $00:47:58.277 \longrightarrow 00:48:00.570$ the midwest and the northeast here,

940 00:48:00.570 \rightarrow 00:48:04.674 the types of fuels that we're using for power plants.

941 00:48:04.674 \rightarrow 00:48:07.893 So, using that demand is going have a larger effect,

942 00:48:11.580 --> 00:48:13.780 where there's a higher amount of renewables.

943 00:48:14.700 --> 00:48:17.466 So, in summary, and then we'll open it up to questions

 $944\ 00:48:17.466 \longrightarrow 00:48:19.413$ with whatever time we have.

945 00:48:20.370 --> 00:48:22.800 The study used the NEMS model coupled

946 00:48:22.800 --> 00:48:25.027 with The Monte Carlo analysis.

 $947\ 00:48:25.027 --> 00:48:26.970$ Indoor air quality box model across

948 00:48:26.970 --> 00:48:28.593 the entire US housing stock.

949 00:48:29.430 --> 00:48:33.333 We see a 6 to 11% reduction in carbon dioxide emissions.

950 00:48:34.320 --> 00:48:37.338 and a 18 to 25% reduction in

951 00:48:37.338 --> 00:48:41.670 outdoor energy-related emissions of PM2.5.

952 00:48:41.670 --> 00:48:46.670 So, this is not including other PM2.5 sources.

 $953~00{:}48{:}46.740 \dashrightarrow 00{:}48{:}49.140$ These reductions are complimentary with carbon pricing.

 $954\ 00:48:49.140 \longrightarrow 00:48:51.660$ It takes the pressure off as we're

 $955\ 00{:}48{:}51.660 \dashrightarrow 00{:}48{:}55.320$ trying to decarbonize electricity going forward.

 $956\ 00{:}48{:}55.320 \operatorname{-->} 00{:}48{:}58.980$ So these building event, energy efficiency measures

957 00:48:58.980 --> 00:49:00.870 provide a huge opportunity,

958 00:49:00.870 \rightarrow 00:49:05.550 but they require attention to indoor PM2.5 emissions,

959 00:49:05.550 --> 00:49:09.390 and improving PM2.5 filtration,

960 00:49:09.390 --> 00:49:11.293 and thinking about how we implement

961 00:49:11.293 --> 00:49:13.568 these ventilation-grouping policies

- $962\ 00:49:13.568 \longrightarrow 00:49:15.739$ that get at some of the nuances that
- 963 00:49:15.739 --> 00:49:18.000 you're talking about with
- 964 00:49:18.000 --> 00:49:21.063 fresh air exchange and energy recovery.
- $965\ 00{:}49{:}23.040 \dashrightarrow 00{:}49{:}27.960$ And so, in all the majority of homes see improvement
- 966 00:49:27.960 --> 00:49:30.240 or little change to indoor air quality,
- $967\ 00:49:30.240 \longrightarrow 00:49:32.689$ with these energy efficiency improvements.
- 968 00:49:32.689 --> 00:49:34.352 A subset of homes have increased
- 969 00:49:34.352 --> 00:49:38.160 PM2.5 concentrations indoors,
- $970\ 00:49:38.160 \longrightarrow 00:49:40.230$ which there, overall are driving
- 971 00:49:40.230 --> 00:49:44.010 health effects going forward there.
- $972\ 00{:}49{:}44.010 \dashrightarrow 00{:}49{:}46.650$ And we're seeing that benefit in total, outdoors.
- $973\ 00:49:46.650 \longrightarrow 00:49:51.446$ So with that, we are at 12:50,
- $974\ 00:49:51.446 --> 00:49:54.360$ so I'm happy to take any questions that people have.
- $975\ 00:49:54.360 \longrightarrow 00:49:56.430$ I have Ken here to answer all the tough ones
- 976 00:49:56.430 --> 00:49:58.353 that I can't or don't wanna answer,
- 977 00:49:59.742 --> 00:50:01.290 and thank you so much for you time
- $978\ 00:50:01.290 \longrightarrow 00:50:02.740$ today and for the invitation.
- 979 00:50:07.232 --> 00:50:09.390 (indistinct)
- 980 00:50:09.390 --> 00:50:11.517 <v Host>So, I think we have two questions.</v>
- 981 00:50:11.517 --> 00:50:12.510 <v Dr. Gentner>Okay.</v>
- 982 00:50:12.510 --> 00:50:13.770 <v Host>I guess each student</v>
- 983 00:50:13.770 \rightarrow 00:50:15.158 already prepared some questions.
- 984 00:50:15.158 --> 00:50:18.451 So, and what would you want to ask?
- 985 00:50:18.451 --> 00:50:19.284 <v Student 3>Hey could you go back to</v>
- 986 00:50:19.284 --> 00:50:21.284 the health impact slide?
- 987 00:50:23.235 --> 00:50:25.235 Sorry, yeah, thank you.
- 988 00:50:27.103 --> 00:50:30.120 First, if there was a bar on there
- 989 00:50:30.120 --> 00:50:34.860 for no, like without the energy efficiency,

- 990 00:50:34.860 --> 00:50:38.273 like, whereabouts would it be?
- 991 00:50:41.450 --> 00:50:43.200 <v Dr. Gentner>So this is all comparisons</v>
- $992\ 00:50:43.200 \longrightarrow 00:50:44.910$ to the reference case.
- 993 $00:50:44.910 \longrightarrow 00:50:48.085$ So to the current trajector.
- $994\ 00:50:48.085 \longrightarrow 00:50:51.930$ So, this is the changes that occur on top of
- $995\ 00:50:51.930 \longrightarrow 00:50:54.930$ whatever we expect to happen
- $996\ 00:50:54.930 \longrightarrow 00:50:56.883$ in the absence of these standards.
- 997 00:51:03.464 --> 00:51:08.464 <-v Student 3>I guess I didn't consider, (indistinct)</v>
- 998 00:51:10.432 --> 00:51:12.432 <- Dr. Gentner>It does.</v>
- 999 00:51:18.010 --> 00:51:22.350 Though, it doesn't include a distribution
- $1000\ 00{:}51{:}22.350 --> 00{:}51{:}25.440$ of clients saying you know, across different subsets
- $1001\ 00{:}51{:}25.440 --> 00{:}51{:}30.000$ of the population who is spending more or less
- $1002\ 00:51:30.000 \longrightarrow 00:51:31.200$ time at their residence.
- $1003\ 00:51:33.029 \longrightarrow 00:51:35.823$ But it does scale for them.
- 1004 00:51:37.193 --> 00:51:40.538 <
v Student 4>I was wondering if there are plans
</v>
- 1005 00:51:40.538 --> 00:51:43.007 to put your study off to different groups,
- $1006\ 00:51:43.007 \longrightarrow 00:51:48.007$ so looking at how (indistinct)
- $1007\ 00:51:53.941 \longrightarrow 00:51:55.464$ You know, what are the,
- $1008\ 00:51:55.464 \longrightarrow 00:52:00.464$ are there plans to study the specific (indistinct)?
- 1009 00:52:02.481 --> 00:52:04.898 (indistinct)
- $1010\ 00:52:21.152 \longrightarrow 00:52:22.638 < v Dr. Gentner > Yeah, so < / v >$
- 1011 00:52:22.638 --> 00:52:26.316 <v Host>The online audience is gonna hear the students-</v>
- 1012 00:52:26.316 --> 00:52:27.963 <v Dr. Gentner>Oh, okay.</v>
- 1013 00:52:27.963 --> 00:52:30.428 Yeah the first question, prior to that
- $1014\ 00:52:30.428 \longrightarrow 00:52:34.560$ was about the half of the slide that's up.
- $1015\ 00:52:34.560 \longrightarrow 00:52:35.910$ What the zero line is,

- $1016\ 00:52:35.910 \longrightarrow 00:52:37.920$ and that's the comparison to the reference case.
- $1017\ 00:52:37.920$ --> 00:52:42.920 The question was just posed is is how much does
- $1018\ 00:52:43.140 \longrightarrow 00:52:45.870$ or do we have plans for another study
- $1019\ 00:52:45.870 \dashrightarrow 00:52:48.570$ or set of studies looking at gas phase pollutants?
- $1020\ 00:52:48.570 \longrightarrow 00:52:52.290$ And so we include some commentary in the paper about some of
- $1021\ 00:52:52.290 \longrightarrow 00:52:54.360$ the factors that need to be considered.
- 1022 00:52:54.360 --> 00:52:57.270 And it does, it comes down to how much
- $1023\ 00:52:57.270 \longrightarrow 00:52:58.320$ the emissions current indoors
- $1024\ 00:52:58.320 \longrightarrow 00:53:00.030$ versus outdoors.
- $1025\ 00:53:00.030 \longrightarrow 00:53:02.580$ The other for Nox,
- 1026 00:53:02.580 --> 00:53:04.410 you already really got out one of
- $1027\ 00:53:04.410 \longrightarrow 00:53:06.933$ the huge factors there, is there is no,
- $1028\ 00{:}53{:}08.520 \dashrightarrow 00{:}53{:}10.920$ there's not a readily available filter that we already have
- 1029 00:53:10.920 --> 00:53:13.890 in all the homes that filter NOx with
- $1030\ 00:53:13.890 --> 00:53:16.830$ the kinda efficacy that we have with particle filters.
- $1031\ 00{:}53{:}16.830 \dashrightarrow 00{:}53{:}21.330$ So, that adds a really interesting thing that makes it
- $1032\ 00:53:21.330 \longrightarrow 00:53:23.010$ so that HVAC system doesn't have as
- $1033\ 00:53:23.010 --> 00:53:25.803$ large effect on that gas phase pollutant.
- 1034 00:53:27.000 --> 00:53:29.370 So, Ken and I have have some things
- 1035 00:53:29.370 --> 00:53:31.320 that we're thinking about and working on,
- $1036~00{:}53{:}31.320 \dashrightarrow 00{:}53{:}35.400$ although NOx is not one of 'em at the moment.
- $1037\ 00:53:35.400 \longrightarrow 00:53:38.280$ Unless Ken's gonna send me an email later today,
- $1038\ 00:53:38.280 \longrightarrow 00:53:40.200$ telling me to start writing.
- $1039\ 00{:}53{:}40.200$ --> $00{:}53{:}43.563$ But yes, there's a lot of interesting things here.

1040 00:53:44.596 --> 00:53:48.210 Yeah, we're just kinda scratching the surface

 $1041\ 00:53:48.210 \longrightarrow 00:53:49.457$ to thinking about how other pollutants

 $1042\ 00:53:49.457 \longrightarrow 00:53:52.200$ behave in these changes.

 $1043\ 00:53:52.200 --> 00:53:55.500$ And Jordan Peccia spends a lot time thinking about moisture,

 $1044\ 00:53:55.500 \longrightarrow 00:53:56.490$ and how that's going to affect

 $1045\ 00:53:56.490 --> 00:53:58.650$ microbial activity at home.

 $1046\ 00:53:58.650 \longrightarrow 00:54:01.440$ So we think about holes, and other standpoints.

 $1047\ 00:54:01.440 --> 00:54:02.550$ That's an area of interest.

 $1048\ 00:54:02.550 --> 00:54:05.586$ I encourage you to try to catch up with

 $1049\ 00:54:05.586 \longrightarrow 00:54:08.003$ Jordan, because he'd love it.

 $1050\ 00:54:09.277$ --> 00:54:14.027 That is a real important factor on developmental health.

 $1052\ 00:54:17.607$ --> 00:54:20.700 And because we have across right of us, so we're happy,

1053 00:54:20.700 --> 00:54:22.458 and thank you everyone for coming.

 $1054\ 00:54:22.458 --> 00:54:24.227$ Thank you again Ken and Drew.

 $1055\ 00:54:24.227 --> 00:54:26.376 < v$ Dr. Gentner>Thank you Ken.</v>