WEBVTT

NOTE duration: "00:43:23.7970000"

NOTE recognizability:0.951

NOTE language:en-us

NOTE Confidence: 0.979803799999999

 $00:00:00.000 \longrightarrow 00:00:02.304$ Because now the the main focus of today

NOTE Confidence: 0.979803799999999

 $00:00:02.304 \longrightarrow 00:00:04.661$ will be the analysis and interpretation

NOTE Confidence: 0.979803799999999

 $00{:}00{:}04.661 \dashrightarrow 00{:}00{:}06.806$ of single cell sequencing data.

NOTE Confidence: 0.979803799999999

 $00:00:06.810 \longrightarrow 00:00:08.838$ So we won't cover everything today

NOTE Confidence: 0.979803799999999

 $00:00:08.838 \longrightarrow 00:00:11.777$ and so it will take at least another.

NOTE Confidence: 0.96613234

 $00:00:14.070 \longrightarrow 00:00:16.100$ Another meeting for covering everything.

NOTE Confidence: 0.96613234

 $00:00:16.100 \longrightarrow 00:00:18.120$ But today we covered the

NOTE Confidence: 0.96613234

 $00:00:18.120 \longrightarrow 00:00:19.736$ introduction on the methodologies,

NOTE Confidence: 0.96613234

 $00:00:19.740 \longrightarrow 00:00:21.770$ some technical and experimental issues,

NOTE Confidence: 0.96613234

 $00{:}00{:}21.770 \dashrightarrow 00{:}00{:}24.158$ and some issues also with the

NOTE Confidence: 0.96613234

 $00{:}00{:}24.158 \dashrightarrow 00{:}00{:}26.629$ with the analysis of this data.

NOTE Confidence: 0.96613234

 $00{:}00{:}26.630 \to 00{:}00{:}29.072$ So single cell analysis as a

NOTE Confidence: 0.96613234

 $00:00:29.072 \longrightarrow 00:00:31.489$ definition is the study of omics.

 $00:00:31.490 \longrightarrow 00:00:34.318$ At least that's what we're speaking about.

NOTE Confidence: 0.96613234

 $00:00:34.320 \longrightarrow 00:00:37.372$ Today is the study of omics so

NOTE Confidence: 0.96613234

 $00:00:37.372 \longrightarrow 00:00:38.680$ genomics transcriptomics proteomics

NOTE Confidence: 0.96613234

 $00:00:38.748 \longrightarrow 00:00:40.398$ at the single cell level.

NOTE Confidence: 0.96613234

 $00:00:40.400 \longrightarrow 00:00:43.388$ So the advantage is that these.

NOTE Confidence: 0.96613234

 $00{:}00{:}43.390 \to 00{:}00{:}46.282$ Family of methods allowed to capture

NOTE Confidence: 0.96613234

 $00{:}00{:}46.282 \dashrightarrow 00{:}00{:}49.282$ a cellular diversity of tissues with

NOTE Confidence: 0.96613234

 $00:00:49.282 \longrightarrow 00:00:52.234$ the with the single cell resolution.

NOTE Confidence: 0.96613234

 $00:00:52.240 \longrightarrow 00:00:55.345$ Uh, so they feel there is a bursting is

NOTE Confidence: 0.96613234

 $00:00:55.345 \longrightarrow 00:00:58.844$ like exploding with a lot with a number

NOTE Confidence: 0.96613234

 $00:00:58.844 \longrightarrow 00:01:01.969$ of novel experimental techniques every year.

NOTE Confidence: 0.96613234

 $00:01:01.970 \longrightarrow 00:01:04.080$ But there are also many

NOTE Confidence: 0.96613234

 $00:01:04.080 \longrightarrow 00:01:04.924$ computational challenges,

NOTE Confidence: 0.96613234

 $00:01:04.930 \longrightarrow 00:01:06.121$ so these methods,

NOTE Confidence: 0.96613234

 $00:01:06.121 \longrightarrow 00:01:08.503$ the single cell methods require the

NOTE Confidence: 0.96613234

 $00:01:08.503 \longrightarrow 00:01:10.430$ development of appropriate analysis.

 $00:01:10.430 \longrightarrow 00:01:14.180$ And so we will see that.

NOTE Confidence: 0.96613234

 $00{:}01{:}14.180 \dashrightarrow 00{:}01{:}16.490$ Common workflows are an employee,

NOTE Confidence: 0.96613234

 $00:01:16.490 \longrightarrow 00:01:17.460$ some generic.

NOTE Confidence: 0.96613234

 $00:01:17.460 \longrightarrow 00:01:19.885$ For example clustering analysis that

NOTE Confidence: 0.96613234

 $00:01:19.885 \longrightarrow 00:01:22.938$ June spoke about in our first meeting.

NOTE Confidence: 0.96613234

00:01:22.940 --> 00:01:26.167 Some of the methods for the normalization,

NOTE Confidence: 0.96613234

 $00:01:26.170 \longrightarrow 00:01:27.208$ for example,

NOTE Confidence: 0.96613234

 $00:01:27.208 \longrightarrow 00:01:30.841$ or for the calculation of differential gene

NOTE Confidence: 0.96613234

 $00{:}01{:}30.841 \dashrightarrow 00{:}01{:}33.997$ expression are taken from the bulk RNA seek,

NOTE Confidence: 0.96613234

 $00:01:34.000 \longrightarrow 00:01:37.688$ but it is not always the best choice.

NOTE Confidence: 0.96613234

 $00:01:37.690 \longrightarrow 00:01:40.917$ And since the field is rapidly moving,

NOTE Confidence: 0.96613234

 $00:01:40.920 \longrightarrow 00:01:44.728$ there is no gold standard I would say.

NOTE Confidence: 0.96613234

 $00:01:44.730 \longrightarrow 00:01:47.010$ In any step of the analysis,

NOTE Confidence: 0.96613234

 $00:01:47.010 \longrightarrow 00:01:50.050$ so you will find a lot of methods,

NOTE Confidence: 0.96613234

 $00:01:50.050 \longrightarrow 00:01:51.634$ a lot of applications.

 $00:01:51.634 \longrightarrow 00:01:54.010$ You can find the literature compare

NOTE Confidence: 0.96613234

 $00{:}01{:}54.081 \dashrightarrow 00{:}01{:}56.127$ for each step of the analysis,

NOTE Confidence: 0.96613234

00:01:56.130 --> 00:01:56.958 alternative approaches,

NOTE Confidence: 0.96613234

 $00{:}01{:}56.958 \dashrightarrow 00{:}01{:}59.856$ but there is no like gold reference

NOTE Confidence: 0.96613234

 $00:01:59.856 \longrightarrow 00:02:02:02.206$ that you that that you can choose.

NOTE Confidence: 0.96613234

 $00:02:02.210 \longrightarrow 00:02:02.984$ For example,

NOTE Confidence: 0.96613234

 $00{:}02{:}02{:}02{:}984 \longrightarrow 00{:}02{:}06{.}080$ there is a sort of called pipelines in

NOTE Confidence: 0.96613234

 $00:02:06.162 \dashrightarrow 00:02:09.050$ the bulk RNA seek and the single cell.

NOTE Confidence: 0.96613234

 $00:02:09.050 \longrightarrow 00:02:10.570$ It's not so established.

NOTE Confidence: 0.95873636

 $00:02:12.680 \longrightarrow 00:02:14.624$ This is a comparison of the

NOTE Confidence: 0.95873636

 $00{:}02{:}14.624 \dashrightarrow 00{:}02{:}16.290$ method single cell versus bulk,

NOTE Confidence: 0.95873636

 $00:02:16.290 \longrightarrow 00:02:18.918$ so in the back analysis you take a tissue

NOTE Confidence: 0.95873636

 $00:02:18.918 \longrightarrow 00:02:21.436$ or population of cells and you extract

NOTE Confidence: 0.95873636

 $00:02:21.436 \longrightarrow 00:02:23.896$ DNA from the whole population so that

NOTE Confidence: 0.95873636

 $00:02:23.896 \longrightarrow 00:02:28.680$ you mix up the RNA content in the same.

NOTE Confidence: 0.95873636

00:02:28.680 --> 00:02:31.414 Yeah, in the same container, let's say,

 $00:02:31.414 \longrightarrow 00:02:34.053$ and then when you prepare the library

NOTE Confidence: 0.95873636

 $00{:}02{:}34.053 \dashrightarrow 00{:}02{:}37.100$ and you sequence DNA from the whole from

NOTE Confidence: 0.95873636

 $00:02:37.100 \longrightarrow 00:02:39.739$ from the whole population of cells.

NOTE Confidence: 0.95873636

 $00:02:39.740 \longrightarrow 00:02:42.971$ This means that you get for each library from

NOTE Confidence: 0.95873636

 $00:02:42.971 \longrightarrow 00:02:46.055$ each collection of cells from each tissue.

NOTE Confidence: 0.95873636

 $00:02:46.060 \longrightarrow 00:02:47.440$ Only one measurement.

NOTE Confidence: 0.95873636

 $00:02:47.440 \longrightarrow 00:02:50.200$ And this measurement of genes represents

NOTE Confidence: 0.95873636

 $00:02:50.200 \longrightarrow 00:02:52.786$ the average expression of these genes

NOTE Confidence: 0.95873636

 $00:02:52.786 \longrightarrow 00:02:55.749$ across all the details of your tissue.

NOTE Confidence: 0.95873636

 $00:02:55.750 \longrightarrow 00:02:58.431$ So obviously you cannot use the back

NOTE Confidence: 0.95873636

 $00{:}02{:}58.431 \dashrightarrow 00{:}03{:}01.080$ command code if you want, for example,

NOTE Confidence: 0.95873636

 $00:03:01.080 \longrightarrow 00:03:04.120$ to see this cellular it originality in your

NOTE Confidence: 0.95873636

 $00{:}03{:}04.191 \dashrightarrow 00{:}03{:}07.175$ tissue with a single cell analysis you yeah,

NOTE Confidence: 0.95873636

 $00:03:07.180 \longrightarrow 00:03:09.861$ you first perform a a step that

NOTE Confidence: 0.95873636

 $00:03:09.861 \longrightarrow 00:03:12.130$ is the isolation of the cells.

00:03:12.130 --> 00:03:14.416 So this is kind of tricky,

NOTE Confidence: 0.95873636

 $00:03:14.420 \longrightarrow 00:03:16.784$ especially in solid tissues because you

NOTE Confidence: 0.95873636

 $00:03:16.784 \longrightarrow 00:03:18.990$ need to mechanically separated each cell.

NOTE Confidence: 0.95873636

 $00:03:18.990 \longrightarrow 00:03:21.657$ It's easier with the liquid that issues.

NOTE Confidence: 0.95873636

 $00:03:21.660 \longrightarrow 00:03:23.352$ It's easiest, for example,

NOTE Confidence: 0.95873636

 $00{:}03{:}23.352 \dashrightarrow 00{:}03{:}25.890$ when you consider the analysis of.

NOTE Confidence: 0.95873636

 $00:03:25.890 \longrightarrow 00:03:27.912$ Democratic cells and so inside each

NOTE Confidence: 0.95873636

 $00:03:27.912 \longrightarrow 00:03:30.267$ single cell you you perform the

NOTE Confidence: 0.95873636

 $00{:}03{:}30.267 \dashrightarrow 00{:}03{:}32.147$ quantification of gene expression.

NOTE Confidence: 0.95873636

00:03:32.150 --> 00:03:35.382 Because you have a way to create a

NOTE Confidence: 0.95873636

 $00{:}03{:}35.382 \to 00{:}03{:}37.729$ library where you can keep track

NOTE Confidence: 0.95873636

 $00:03:37.729 \longrightarrow 00:03:40.749$ of the cell of origin of each RNA,

NOTE Confidence: 0.95873636

 $00:03:40.750 \longrightarrow 00:03:42.230$ and so that's why,

NOTE Confidence: 0.95873636

 $00{:}03{:}42.230 \dashrightarrow 00{:}03{:}44.941$ then you can quantify for each gene

NOTE Confidence: 0.95873636

00:03:44.941 --> 00:03:47.783 at the expression in each single cell,

NOTE Confidence: 0.95873636

 $00{:}03{:}47.790 \dashrightarrow 00{:}03{:}50.527$ so that each cell has a distinct

00:03:50.527 --> 00:03:51.309 expression profiles.

NOTE Confidence: 0.95873636

 $00:03:51.310 \longrightarrow 00:03:52.090$ For example,

NOTE Confidence: 0.95873636

 $00:03:52.090 \longrightarrow 00:03:54.430$ this cell expresses only one gene.

NOTE Confidence: 0.95873636

 $00:03:54.430 \longrightarrow 00:03:56.514$ These other cells express.

NOTE Confidence: 0.95873636

 $00{:}03{:}56.514 \dashrightarrow 00{:}03{:}59.119$ Different multiple genes and with

NOTE Confidence: 0.95873636

00:03:59.119 --> 00:04:01.442 different amounts and so that you

NOTE Confidence: 0.95873636

 $00:04:01.442 \longrightarrow 00:04:02.474$ can use that.

NOTE Confidence: 0.95873636

 $00:04:02.480 \longrightarrow 00:04:04.955$ This difference in the expression

NOTE Confidence: 0.95873636

 $00:04:04.955 \longrightarrow 00:04:07.430$ between different cells in order

NOTE Confidence: 0.95873636

 $00{:}04{:}07.505 \dashrightarrow 00{:}04{:}09.969$ to see how much cells are similar

NOTE Confidence: 0.95873636

 $00:04:09.969 \longrightarrow 00:04:12.079$ to each other or different.

NOTE Confidence: 0.95873636

 $00:04:12.080 \longrightarrow 00:04:13.277$ So for example,

NOTE Confidence: 0.95873636

 $00{:}04{:}13.277 \dashrightarrow 00{:}04{:}15.671$ you can perform clustering analysis of

NOTE Confidence: 0.95873636

 $00:04:15.671 \longrightarrow 00:04:18.470$ cells based on their expression profiles

NOTE Confidence: 0.95873636

 $00:04:18.470 \longrightarrow 00:04:20.800$ and also other downstream analysis.

00:04:20.800 --> 00:04:24.650 So obviously you have a richer data.

NOTE Confidence: 0.95873636

00:04:24.650 --> 00:04:28.166 That you can see and UM.

NOTE Confidence: 0.95873636

 $00:04:28.170 \longrightarrow 00:04:31.668$ And you have multiple more options

NOTE Confidence: 0.95873636

 $00:04:31.668 \longrightarrow 00:04:35.870$ in India in the final analysis.

NOTE Confidence: 0.95873636

 $00{:}04{:}35.870 \dashrightarrow 00{:}04{:}36.478$ So yes,

NOTE Confidence: 0.95873636

 $00:04:36.478 \longrightarrow 00:04:38.606$ when it was launched is like there

NOTE Confidence: 0.95873636

 $00:04:38.606 \longrightarrow 00:04:40.832$ was this kind of comparison between

NOTE Confidence: 0.95873636

 $00{:}04{:}40.832 \dashrightarrow 00{:}04{:}43.220$ bike and array seek that Vulcan.

NOTE Confidence: 0.95873636

 $00:04:43.220 \longrightarrow 00:04:45.670$ Alesis is like the analysis of through.

NOTE Confidence: 0.95873636

 $00:04:45.670 \longrightarrow 00:04:48.120$ It seems Moody and the single cell.

NOTE Confidence: 0.95873636

 $00{:}04{:}48.120 \dashrightarrow 00{:}04{:}50.591$ It's like the analysis of a fruit

NOTE Confidence: 0.95873636

 $00:04:50.591 \longrightarrow 00:04:53.051$ salad where you can distinguish the

NOTE Confidence: 0.95873636

 $00:04:53.051 \longrightarrow 00:04:55.691$ contribution of each fluid for each

NOTE Confidence: 0.95873636

 $00:04:55.691 \longrightarrow 00:04:58.807$ fruit is a different cell type or subtype.

NOTE Confidence: 0.95873636

 $00:04:58.810 \longrightarrow 00:05:01.282$ Now the main application for single

NOTE Confidence: 0.95873636

 $00:05:01.282 \longrightarrow 00:05:04.148$ cell RNA sequencing when we're speaking

 $00:05:04.148 \longrightarrow 00:05:06.998$ about discrimination among different cells.

NOTE Confidence: 0.95873636

 $00{:}05{:}07.000 \dashrightarrow 00{:}05{:}09.316$ There are multiple. I divided the.

NOTE Confidence: 0.95873636

 $00:05:09.320 \longrightarrow 00:05:11.250$ These are in two branches,

NOTE Confidence: 0.95873636

 $00:05:11.250 \longrightarrow 00:05:13.560$ so why is it so cold?

NOTE Confidence: 0.95873636

 $00:05:13.560 \longrightarrow 00:05:14.718$ The discrete analysis?

NOTE Confidence: 0.95873636

 $00:05:14.718 \longrightarrow 00:05:16.648$ So you you have a,

NOTE Confidence: 0.95873636

 $00:05:16.650 \longrightarrow 00:05:18.386$ you collect the expression,

NOTE Confidence: 0.95873636

 $00:05:18.386 \longrightarrow 00:05:20.556$ abundance of transcripts of genes

NOTE Confidence: 0.95873636

 $00:05:20.556 \longrightarrow 00:05:22.896$ inside each cell and you want to

NOTE Confidence: 0.95873636

 $00:05:22.896 \longrightarrow 00:05:25.033$ cluster cells in order to identify

NOTE Confidence: 0.95873636

00:05:25.033 --> 00:05:26.296 different cell types.

NOTE Confidence: 0.95873636

 $00:05:26.300 \longrightarrow 00:05:27.012$ For example,

NOTE Confidence: 0.95873636

 $00{:}05{:}27.012 \dashrightarrow 00{:}05{:}29.148$ this cell types that compose the

NOTE Confidence: 0.95873636

 $00:05:29.148 \longrightarrow 00:05:30.929$ tissue that you're studying.

NOTE Confidence: 0.95873636

 $00:05:30.930 \longrightarrow 00:05:33.576$ So this is a discrete analysis because

 $00:05:33.576 \longrightarrow 00:05:36.325$ you are assuming that your tissue is

NOTE Confidence: 0.95873636

 $00:05:36.325 \longrightarrow 00:05:38.635$ composed by different types of cells

NOTE Confidence: 0.9781691

 $00:05:38.710 \longrightarrow 00:05:39.880$ that are clearly.

NOTE Confidence: 0.9781691

 $00:05:39.880 \longrightarrow 00:05:41.700$ Distinguishable from each other,

NOTE Confidence: 0.9781691

 $00:05:41.700 \longrightarrow 00:05:43.975$ and so these analysis has,

NOTE Confidence: 0.9781691

 $00:05:43.980 \longrightarrow 00:05:46.255$ for example, something to do

NOTE Confidence: 0.9781691

 $00:05:46.255 \longrightarrow 00:05:48.530$ with the class with clustering,

NOTE Confidence: 0.9781691

 $00:05:48.530 \longrightarrow 00:05:50.845$ because ultimately you want to

NOTE Confidence: 0.9781691

 $00{:}05{:}50.845 \dashrightarrow 00{:}05{:}52.697$ identify separate clusters of

NOTE Confidence: 0.9781691

00:05:52.697 --> 00:05:54.984 cells based on their expression

NOTE Confidence: 0.9781691

 $00{:}05{:}54.984 \dashrightarrow 00{:}05{:}57.169$ profile on the right question.

NOTE Confidence: 0.9856172

 $00{:}05{:}57.170 \dashrightarrow 00{:}05{:}59.445$ Every question this is super

NOTE Confidence: 0.9856172

00:05:59.445 --> 00:06:00.810 relevant to hematopoiesis,

NOTE Confidence: 0.9856172

 $00{:}06{:}00.810 \dashrightarrow 00{:}06{:}02.534$ so there's even controversy.

NOTE Confidence: 0.9856172

 $00:06:02.534 \longrightarrow 00:06:05.120$ I don't know that it should

NOTE Confidence: 0.9856172

 $00:06:05.202 \longrightarrow 00:06:07.587$ be a controversy about whether

 $00{:}06{:}07.587 \dashrightarrow 00{:}06{:}09.972$ there are discrete cell states.

NOTE Confidence: 0.9856172

 $00{:}06{:}09.980 \dashrightarrow 00{:}06{:}11.976$ Versus everything being continuous

NOTE Confidence: 0.9856172

 $00:06:11.976 \longrightarrow 00:06:14.970$ and logic tells me that there's

NOTE Confidence: 0.9856172

 $00:06:15.046 \longrightarrow 00:06:17.584$ going to be a continuous change

NOTE Confidence: 0.9856172

 $00:06:17.584 \longrightarrow 00:06:19.810$ in a bazillion different genes,

NOTE Confidence: 0.9856172

 $00:06:19.810 \longrightarrow 00:06:22.145$ because every cell is going

NOTE Confidence: 0.9856172

 $00:06:22.145 \longrightarrow 00:06:24.013$ to be slightly different.

NOTE Confidence: 0.9856172

 $00:06:24.020 \longrightarrow 00:06:26.820$ So do you have to actually ask

NOTE Confidence: 0.9856172

 $00:06:26.820 \longrightarrow 00:06:28.990$ the algorithm to analyze the

NOTE Confidence: 0.9856172

 $00{:}06{:}28.990 \dashrightarrow 00{:}06{:}31.642$ data to find discrete sets versus

NOTE Confidence: 0.9856172

 $00{:}06{:}31.642 \dashrightarrow 00{:}06{:}34.320$ find a continuous analysis?

NOTE Confidence: 0.9816257

 $00:06:36.320 \longrightarrow 00:06:41.270$ So I personally don't know if there is a way.

NOTE Confidence: 0.9816257

 $00{:}06{:}41.270 \dashrightarrow 00{:}06{:}43.900$ If there is a tool so I never use that

NOTE Confidence: 0.9816257

 $00:06:43.978 \longrightarrow 00:06:46.866$ tool that tells you if the best analysis

NOTE Confidence: 0.9816257

 $00:06:46.866 \longrightarrow 00:06:49.710$ is discrete or continuous. OK, I think

 $00:06:49.710 \longrightarrow 00:06:52.027$ that probably if we looked at different

NOTE Confidence: 0.98393106

 $00{:}06{:}52.027 \dashrightarrow 00{:}06{:}54.211$ papers where they claim it's discrete

NOTE Confidence: 0.98393106

 $00:06:54.211 \longrightarrow 00:06:55.719$ versus claiming it's continuous

NOTE Confidence: 0.98393106

00:06:55.719 --> 00:06:58.020 that we would find differences in

NOTE Confidence: 0.98393106

 $00:06:58.020 \longrightarrow 00:06:59.820$ how they analyzed it, yes,

NOTE Confidence: 0.98393106

 $00:06:59.820 \longrightarrow 00:07:02.459$ so the priority knowledge of the

NOTE Confidence: 0.98393106

 $00:07:02.459 \longrightarrow 00:07:04.878$ sample is something that you can user,

NOTE Confidence: 0.98393106

 $00:07:04.880 \longrightarrow 00:07:07.323$ and for example if you take for

NOTE Confidence: 0.98393106

 $00{:}07{:}07.323 \dashrightarrow 00{:}07{:}08.850$ example a peripheral blood,

NOTE Confidence: 0.98393106

 $00:07:08.850 \longrightarrow 00:07:11.153$ if you take single cell data sets

NOTE Confidence: 0.98393106

 $00{:}07{:}11.153 \dashrightarrow 00{:}07{:}12.851$ of peripheral blood are where

NOTE Confidence: 0.98393106

 $00:07:12.851 \longrightarrow 00:07:14.789$ most of these cells are mature

NOTE Confidence: 0.98393106

00:07:14.789 --> 00:07:16.430 and already differentiated,

NOTE Confidence: 0.98393106

 $00{:}07{:}16.430 \dashrightarrow 00{:}07{:}19.118$ then you see clearly that you have.

NOTE Confidence: 0.98393106

00:07:19.120 --> 00:07:20.904 Very separated discrete clusters,

NOTE Confidence: 0.98393106

 $00:07:20.904 \longrightarrow 00:07:24.556$ and so it makes more sense to perform

00:07:24.556 --> 00:07:26.786 a discrete analysis or clustering

NOTE Confidence: 0.98393106

 $00{:}07{:}26.786 \dashrightarrow 00{:}07{:}29.816$ analysis if you take them on marrow

NOTE Confidence: 0.98393106

00:07:29.816 --> 00:07:32.228 or a population that isn't reached

NOTE Confidence: 0.98393106

 $00:07:32.230 \longrightarrow 00:07:34.420$ for stem cells or progenitors,

NOTE Confidence: 0.98393106

 $00:07:34.420 \longrightarrow 00:07:38.508$ then you expect to have a more continuous

NOTE Confidence: 0.98393106

 $00{:}07{:}38.508 \dashrightarrow 00{:}07{:}40.660$ representation of your sample.

NOTE Confidence: 0.98393106

 $00:07:40.660 \longrightarrow 00:07:43.324$ And so this is important because

NOTE Confidence: 0.98393106

 $00:07:43.324 \longrightarrow 00:07:45.510$ whatever tool that you use,

NOTE Confidence: 0.98393106

 $00:07:45.510 \longrightarrow 00:07:47.138$ any clustering analysis will

NOTE Confidence: 0.98393106

 $00:07:47.138 \longrightarrow 00:07:49.580$ give you clustering and any like

NOTE Confidence: 0.98393106

 $00:07:49.647 \longrightarrow 00:07:52.022$ continuous analysis such as like

NOTE Confidence: 0.98393106

 $00:07:52.022 \longrightarrow 00:07:53.447$ inference of trajectory.

NOTE Confidence: 0.98393106

 $00{:}07{:}53.450 \dashrightarrow 00{:}07{:}55.198$ We'll find the trajectory.

NOTE Confidence: 0.98393106

00:07:55.198 --> 00:07:59.179 So if you submit your sample to any analysis,

NOTE Confidence: 0.98393106

 $00:07:59.180 \longrightarrow 00:08:00.944$ you will obtain result,

 $00:08:00.944 \longrightarrow 00:08:03.590$ but the result can be meaningless.

NOTE Confidence: 0.98393106

 $00:08:03.590 \longrightarrow 00:08:06.030$ For example a continuous analysis

NOTE Confidence: 0.98393106

 $00:08:06.030 \longrightarrow 00:08:08.470$ can be minutes meaningless if

NOTE Confidence: 0.98393106

00:08:08.557 --> 00:08:11.037 your sample is biologically not.

NOTE Confidence: 0.98393106

00:08:11.040 --> 00:08:11.541 Uhm,

NOTE Confidence: 0.98393106

 $00:08:11.541 \longrightarrow 00:08:12.543$ for example,

NOTE Confidence: 0.98393106

 $00:08:12.543 \longrightarrow 00:08:14.547$ something that is differentiating

NOTE Confidence: 0.98393106

 $00:08:14.547 \longrightarrow 00:08:15.549$ or developing.

NOTE Confidence: 0.9756925

 $00:08:18.950 \longrightarrow 00:08:21.520$ So yeah, yeah, so yeah.

NOTE Confidence: 0.9756925

 $00:08:21.520 \longrightarrow 00:08:24.090$ And that's that's the parallel.

NOTE Confidence: 0.9756925

 $00{:}08{:}24.090 \dashrightarrow 00{:}08{:}28.689$ So whenever you see they they like.

NOTE Confidence: 0.9756925

 $00:08:28.690 \longrightarrow 00:08:30.730$ Courses or tutorials on continuous analysis.

NOTE Confidence: 0.9756925

 $00:08:30.730 \longrightarrow 00:08:33.110$ That's something you need to be careful.

NOTE Confidence: 0.9756925

 $00:08:33.110 \longrightarrow 00:08:35.150$ You will always get a graph.

NOTE Confidence: 0.9756925

00:08:35.150 --> 00:08:37.572 You will always get like a sort

NOTE Confidence: 0.9756925

00:08:37.572 --> 00:08:39.230 of differentiation trees the tree,

 $00:08:39.230 \longrightarrow 00:08:41.568$ but you have to be careful because

NOTE Confidence: 0.9756925

 $00{:}08{:}41.568 \dashrightarrow 00{:}08{:}43.310$ sometimes it doesn't make sense.

NOTE Confidence: 0.98708284

 $00:08:46.020 \longrightarrow 00:08:48.690$ To make the analysis at all.

NOTE Confidence: 0.98708284

00:08:48.690 --> 00:08:50.330 Because it's one of these,

NOTE Confidence: 0.98708284

 $00{:}08{:}50.330 \dashrightarrow 00{:}08{:}52.220$ one of the assumption of a

NOTE Confidence: 0.98708284

 $00:08:52.220 \longrightarrow 00:08:53.878$ continuous analysis is that you

NOTE Confidence: 0.98708284

 $00:08:53.878 \longrightarrow 00:08:55.876$ have a sampling of the continuous

NOTE Confidence: 0.98708284

 $00{:}08{:}55.876 \dashrightarrow 00{:}08{:}57.868$ process that you're trying to model.

NOTE Confidence: 0.98708284

 $00:08:57.870 \longrightarrow 00:08:59.510$ For example, development or differentiation.

NOTE Confidence: 0.98708284

 $00:08:59.510 \longrightarrow 00:09:01.150$ If this is not true,

NOTE Confidence: 0.98708284

 $00:09:01.150 \longrightarrow 00:09:02.790$ you don't have an assumption

NOTE Confidence: 0.98708284

 $00:09:02.790 \longrightarrow 00:09:04.760$ to do the analysis at all.

NOTE Confidence: 0.97320217

 $00{:}09{:}06.800 \dashrightarrow 00{:}09{:}09{:}726$ So tomorrow you so so I think this

NOTE Confidence: 0.97320217

 $00:09:09.726 \longrightarrow 00:09:11.964$ is a very important question that

NOTE Confidence: 0.97320217

 $00:09:11.964 \dashrightarrow 00:09:14.614$ I raised because you know in real

 $00:09:14.614 \longrightarrow 00:09:16.856$ life situations we will get samples

NOTE Confidence: 0.97320217

 $00{:}09{:}16.856 \dashrightarrow 00{:}09{:}19.560$ sequenced and and how do we tell if

NOTE Confidence: 0.97320217

 $00{:}09{:}19.560 \dashrightarrow 00{:}09{:}21.720$ this is reasonable or not reasonable

NOTE Confidence: 0.97320217

 $00:09:21.720 \longrightarrow 00:09:24.681$ so so just wonder if anyone has done

NOTE Confidence: 0.97320217

00:09:24.681 --> 00:09:27.180 a very careful analysis to sort of,

NOTE Confidence: 0.97320217

00:09:27.180 --> 00:09:29.728 you know something ground truth for example,

NOTE Confidence: 0.97320217

 $00{:}09{:}29.730 \dashrightarrow 00{:}09{:}32.187$ you have two discrete cell states you

NOTE Confidence: 0.97320217

 $00:09:32.187 \longrightarrow 00:09:34.445$ already isolated or somehow maintained and

NOTE Confidence: 0.97320217

 $00{:}09{:}34.445 \dashrightarrow 00{:}09{:}37.112$ put them into a single cell sequencing.

NOTE Confidence: 0.97320217

 $00:09:37.120 \longrightarrow 00:09:39.647$ And then you force it to assume

NOTE Confidence: 0.97320217

 $00{:}09{:}39.647 \dashrightarrow 00{:}09{:}41.408$ trajectory based methodology and do

NOTE Confidence: 0.97320217

 $00{:}09{:}41.408 \dashrightarrow 00{:}09{:}43.256$ cause many major artifacts or not.

NOTE Confidence: 0.97320217

 $00:09:43.260 \longrightarrow 00:09:45.647$ I think that's one of the ways

NOTE Confidence: 0.97320217

 $00:09:45.647 \longrightarrow 00:09:46.670$ to think about.

NOTE Confidence: 0.9500493

00:09:48.000 --> 00:09:51.112 Yeah, so, uh, so I'm not aware meaning

NOTE Confidence: 0.9500493

 $00{:}09{:}51.112 \dashrightarrow 00{:}09{:}54.828$ that I never use the like tools that

00:09:54.828 --> 00:09:57.749 explicitly tell you which one which

NOTE Confidence: 0.9500493

 $00:09:57.749 \longrightarrow 00:10:00.533$ branch of the analysis is better.

NOTE Confidence: 0.9500493

 $00:10:00.540 \longrightarrow 00:10:02.332$ So by exploratory analysis,

NOTE Confidence: 0.9500493

 $00:10:02.332 \longrightarrow 00:10:05.520$ for example, we will see why when

NOTE Confidence: 0.9500493

 $00:10:05.520 \longrightarrow 00:10:08.974$ you do the preprocessing and then the

NOTE Confidence: 0.9500493

 $00:10:08.974 \longrightarrow 00:10:11.639$ dimensionality reduction and you have

NOTE Confidence: 0.9500493

 $00:10:11.639 \longrightarrow 00:10:15.860$ a lot like a on a hyperplane of cells.

NOTE Confidence: 0.9500493

 $00:10:15.860 \longrightarrow 00:10:18.086$ That you can like a guess,

NOTE Confidence: 0.9500493

 $00:10:18.090 \longrightarrow 00:10:20.680$ depending on the structure of your sample,

NOTE Confidence: 0.9500493

 $00{:}10{:}20.680 \dashrightarrow 00{:}10{:}22.725$ whether it's more reasonable to

NOTE Confidence: 0.9500493

 $00{:}10{:}22.725 \dashrightarrow 00{:}10{:}25.154$ proceed with the discrete cluster or

NOTE Confidence: 0.9500493

 $00:10:25.154 \longrightarrow 00:10:27.359$ to perform like a trajectory or boss.

NOTE Confidence: 0.9500493

00:10:27.360 --> 00:10:30.328 So sometimes, for example, if you it would,

NOTE Confidence: 0.9500493

 $00:10:30.330 \longrightarrow 00:10:33.482$ it could make sense to start with an

NOTE Confidence: 0.9500493

 $00:10:33.482 \longrightarrow 00:10:35.520$ exploratory analysis on all the cells.

 $00:10:35.520 \longrightarrow 00:10:38.047$ I think this as an example because

NOTE Confidence: 0.9500493

00:10:38.047 --> 00:10:39.600 it's on this life,

NOTE Confidence: 0.9500493

 $00{:}10{:}39.600 \dashrightarrow 00{:}10{:}43.247$ so this seems to be like separate

NOTE Confidence: 0.9500493

 $00:10:43.247 \longrightarrow 00:10:44.810$ cluster of cells.

NOTE Confidence: 0.9500493

 $00:10:44.810 \longrightarrow 00:10:46.206$ It could be reasonable,

NOTE Confidence: 0.9500493

 $00:10:46.206 \longrightarrow 00:10:47.951$ then to select only this

NOTE Confidence: 0.9500493

 $00:10:47.951 \longrightarrow 00:10:49.619$ cluster within this cluster.

NOTE Confidence: 0.9500493

 $00:10:49.620 \longrightarrow 00:10:51.470$ We don't see clear subclasses,

NOTE Confidence: 0.9500493

00:10:51.470 --> 00:10:53.690 so within this cluster it may.

NOTE Confidence: 0.9500493

00:10:53.690 --> 00:10:55.922 It could make sense to perform

NOTE Confidence: 0.9500493

 $00{:}10{:}55.922 \dashrightarrow 00{:}10{:}58.192$ a trajectory analysis to see if

NOTE Confidence: 0.9500493

 $00:10:58.192 \longrightarrow 00:10:59.977$ there is a continuous process,

NOTE Confidence: 0.9500493

 $00:10:59.980 \longrightarrow 00:11:01.830$ but not at the beginning

NOTE Confidence: 0.9500493

 $00:11:01.830 \longrightarrow 00:11:02.570$ taking consideration.

NOTE Confidence: 0.9500493

 $00:11:02.570 \longrightarrow 00:11:04.820$ Also, these two clusters here

NOTE Confidence: 0.9500493

 $00{:}11{:}04.820 \dashrightarrow 00{:}11{:}06.620$ because they're clearly separated.

 $00{:}11{:}06.620 \dashrightarrow 00{:}11{:}09.116$ So sometimes I think the that

NOTE Confidence: 0.9500493

 $00:11:09.116 \longrightarrow 00:11:11.810$ the workflow can be also mixed.

NOTE Confidence: 0.9500493

00:11:11.810 --> 00:11:14.316 So you start with all these cells,

NOTE Confidence: 0.9500493

 $00:11:14.320 \longrightarrow 00:11:16.456$ so you remove clear outlier clusters.

NOTE Confidence: 0.9500493

 $00:11:16.460 \longrightarrow 00:11:18.250$ Maybe you annotate the cluster

NOTE Confidence: 0.9500493

 $00:11:18.250 \longrightarrow 00:11:19.682$ so that you know,

NOTE Confidence: 0.9500493

00:11:19.690 --> 00:11:20.402 for example,

NOTE Confidence: 0.9500493

 $00:11:20.402 \longrightarrow 00:11:22.894$ that inside your population you have a

NOTE Confidence: 0.9500493

00:11:22.894 --> 00:11:25.060 mixture of progenitors or stem cells,

NOTE Confidence: 0.9500493

 $00:11:25.060 \longrightarrow 00:11:27.960$ and inside that cluster.

NOTE Confidence: 0.9500493

 $00{:}11{:}27.960 \dashrightarrow 00{:}11{:}29.708$ Perform the trajectory analysis.

NOTE Confidence: 0.98311144

 $00:11:32.640 \longrightarrow 00:11:34.674$ I see so that would be

NOTE Confidence: 0.98311144

00:11:34.674 --> 00:11:36.030 my yes tentative answer.

NOTE Confidence: 0.98311144

00:11:36.030 --> 00:11:38.064 Now I don't know if anyone

NOTE Confidence: 0.98311144

 $00:11:38.064 \longrightarrow 00:11:39.420$ else has other suggestions.

 $00:11:46.290 \longrightarrow 00:11:47.690$ That maybe we can leave.

NOTE Confidence: 0.9858118

 $00{:}11{:}47.690 \dashrightarrow 00{:}11{:}49.412$ I can find those some material

NOTE Confidence: 0.9858118

 $00{:}11{:}49.412 \dashrightarrow 00{:}11{:}51.639$ for next time to see if I can

NOTE Confidence: 0.9858118

00:11:51.639 --> 00:11:52.710 answer more, like extensively.

NOTE Confidence: 0.98225963

 $00:11:54.940 \longrightarrow 00:11:56.200$ I think it's a tough question

NOTE Confidence: 0.98225963

00:11:56.200 --> 00:11:57.332 because I don't think there's

NOTE Confidence: 0.98225963

 $00:11:57.332 \longrightarrow 00:11:58.567$ a consensus necessarily in the

NOTE Confidence: 0.98225963

 $00:11:58.567 \longrightarrow 00:11:59.889$ field and people just to see.

NOTE Confidence: 0.98225963

00:11:59.890 --> 00:12:01.666 OK, if it makes sense or it doesn't

NOTE Confidence: 0.98225963

 $00:12:01.666 \longrightarrow 00:12:03.040$ make sense to their own eyes.

NOTE Confidence: 0.97921542

00:12:04.670 --> 00:12:06.980 Yep. Yeah, again I I don't know

NOTE Confidence: 0.97921542

 $00:12:06.980 \longrightarrow 00:12:09.490$ if someone is trying to to build

NOTE Confidence: 0.97921542

 $00:12:09.490 \longrightarrow 00:12:11.650$ some tools that yeah you know,

NOTE Confidence: 0.97921542

 $00{:}12{:}11.650 \dashrightarrow 00{:}12{:}13.806$ yeah that like kind of quantify the.

NOTE Confidence: 0.98804873

00:12:16.350 --> 00:12:17.970 Reasonableness of each

NOTE Confidence: 0.98804873

 $00:12:17.970 \longrightarrow 00:12:19.950$ of the approaches. Yeah.

00:12:23.460 --> 00:12:25.908 But yes, it's an important distinction.

NOTE Confidence: 0.88182193

00:12:25.910 --> 00:12:30.470 Also, uh, yes. Also also later, 'cause it.

NOTE Confidence: 0.88182193

 $00:12:30.470 \longrightarrow 00:12:31.562$ Uhm, some history.

NOTE Confidence: 0.88182193

 $00:12:31.562 \longrightarrow 00:12:34.110$ So this is the first publication on

NOTE Confidence: 0.88182193

 $00:12:34.186 \longrightarrow 00:12:37.356$ single cell sequencing, so it's a 20.

NOTE Confidence: 0.88182193

 $00:12:37.356 \longrightarrow 00:12:39.376$ No sorry 12 years ago,

NOTE Confidence: 0.88182193

 $00:12:39.380 \longrightarrow 00:12:42.215$ so it was a nice seat cover.

NOTE Confidence: 0.88182193

 $00{:}12{:}42.220 \dashrightarrow 00{:}12{:}44.512$ The whole transcriptome of a single

NOTE Confidence: 0.88182193

 $00:12:44.512 \longrightarrow 00:12:47.737$ cell so it was really one single cell

NOTE Confidence: 0.88182193

 $00:12:47.737 \longrightarrow 00:12:50.656$ because it was a mouse blaster that

NOTE Confidence: 0.88182193

 $00{:}12{:}50.656 \dashrightarrow 00{:}12{:}53.540$ was isolated with a microscope so it

NOTE Confidence: 0.88182193

 $00:12:53.540 \longrightarrow 00:12:55.854$ was manually picked under my screw.

NOTE Confidence: 0.88182193

00:12:55.854 --> 00:12:58.080 A microscope then lies and then

NOTE Confidence: 0.88182193

 $00:12:58.156 \longrightarrow 00:13:00.910$ sequenced and together with the blaster.

NOTE Confidence: 0.88182193

00:13:00.910 --> 00:13:03.268 Also, 50 sites were also analyzed

 $00:13:03.268 \longrightarrow 00:13:06.116$ and so so basically the trick here

NOTE Confidence: 0.88182193

 $00{:}13{:}06.116 \dashrightarrow 00{:}13{:}08.516$ to reach the single cell resolution

NOTE Confidence: 0.88182193

 $00:13:08.516 \longrightarrow 00:13:11.071$ was the isolation of these cells

NOTE Confidence: 0.88182193

00:13:11.071 --> 00:13:13.566 and then that the procedure was

NOTE Confidence: 0.88182193

00:13:13.566 --> 00:13:15.646 standard Lisa and then library

NOTE Confidence: 0.88182193

 $00:13:15.646 \longrightarrow 00:13:18.858$ preparation as in a as in balcony seek.

NOTE Confidence: 0.88182193

00:13:18.860 --> 00:13:23.466 But from the starting from 1 cell.

NOTE Confidence: 0.88182193

 $00:13:23.470 \longrightarrow 00:13:25.816$ So from that to the fielder,

NOTE Confidence: 0.88182193

 $00:13:25.820 \longrightarrow 00:13:27.296$ as I told you,

NOTE Confidence: 0.88182193

 $00:13:27.296 \longrightarrow 00:13:30.510$ an exploded and so in this plot here.

NOTE Confidence: 0.88182193

 $00:13:30.510 \longrightarrow 00:13:34.029$ So this is from a review that was 2018,

NOTE Confidence: 0.88182193

 $00:13:34.030 \longrightarrow 00:13:36.767$ so it was ten years after these

NOTE Confidence: 0.88182193

00:13:36.767 --> 00:13:37.549 first publication.

NOTE Confidence: 0.88182193

 $00:13:37.550 \longrightarrow 00:13:40.000$ And what you can see is the

NOTE Confidence: 0.88182193

 $00:13:40.000 \longrightarrow 00:13:41.568$ release of multiple approaches

NOTE Confidence: 0.88182193

00:13:41.568 --> 00:13:44.190 for single cell at any seeker.

 $00:13:44.190 \longrightarrow 00:13:46.075$ UM, that increase the number

NOTE Confidence: 0.88182193

 $00:13:46.075 \longrightarrow 00:13:48.490$ of cells that you can study.

NOTE Confidence: 0.88182193

 $00:13:48.490 \longrightarrow 00:13:50.445$ So obviously that one alone

NOTE Confidence: 0.88182193

 $00:13:50.445 \longrightarrow 00:13:52.400$ was a proof of concept,

NOTE Confidence: 0.88182193

 $00:13:52.400 \longrightarrow 00:13:53.516$ but the real.

NOTE Confidence: 0.88182193

00:13:53.516 --> 00:13:55.004 Single cell explosion happened

NOTE Confidence: 0.88182193

 $00:13:55.004 \longrightarrow 00:13:57.618$ when you put when you will be

NOTE Confidence: 0.88182193

 $00:13:57.618 \longrightarrow 00:13:59.398$ able to parallelize the process.

NOTE Confidence: 0.88182193

 $00:13:59.400 \longrightarrow 00:14:01.388$ So where you were able to capture

NOTE Confidence: 0.88182193

 $00:14:01.388 \longrightarrow 00:14:03.424$ a single cell expression level of

NOTE Confidence: 0.88182193

 $00:14:03.424 \longrightarrow 00:14:05.294$ first hundreds and then thousands

NOTE Confidence: 0.88182193

 $00:14:05.294 \longrightarrow 00:14:07.198$ and then millions of cells.

NOTE Confidence: 0.88182193

 $00{:}14{:}07.200 \dashrightarrow 00{:}14{:}09.896$ So here you see the publication data of

NOTE Confidence: 0.88182193

 $00:14:09.896 \longrightarrow 00:14:11.949$ the techniques and the single cells.

NOTE Confidence: 0.88182193

 $00:14:11.950 \longrightarrow 00:14:13.640$ The number of single cells

 $00:14:13.640 \longrightarrow 00:14:14.654$ that were analyzed.

NOTE Confidence: 0.88182193

 $00:14:14.660 \longrightarrow 00:14:17.020$ So this is our first with only one

NOTE Confidence: 0.88182193

 $00:14:17.020 \longrightarrow 00:14:19.768$ cells and then you see that the trend

NOTE Confidence: 0.88182193

00:14:19.768 --> 00:14:22.024 is to release techniques that allow

NOTE Confidence: 0.88182193

 $00:14:22.024 \longrightarrow 00:14:24.388$ you to increase the high throughput.

NOTE Confidence: 0.88182193

 $00:14:24.390 \longrightarrow 00:14:26.748$ In terms of the number of

NOTE Confidence: 0.88182193

00:14:26.748 --> 00:14:29.220 cells that you can quantify,

NOTE Confidence: 0.88182193

 $00:14:29.220 \longrightarrow 00:14:31.848$ you can consider in each experiment.

NOTE Confidence: 0.988861

00:14:33.300 --> 00:14:34.680 Question, yeah, I don't know if

NOTE Confidence: 0.988861

 $00:14:34.680 \longrightarrow 00:14:36.009$ you're going to get to this.

NOTE Confidence: 0.988861

 $00{:}14{:}36.010 \dashrightarrow 00{:}14{:}39.674$ So if you are just saying never mind.

NOTE Confidence: 0.988861

 $00:14:39.680 \longrightarrow 00:14:41.983$ As the number of cells that are

NOTE Confidence: 0.988861

00:14:41.983 --> 00:14:43.680 being sequenced has increased,

NOTE Confidence: 0.988861

 $00:14:43.680 \longrightarrow 00:14:46.025$ the number of reads per cell that

NOTE Confidence: 0.988861

 $00:14:46.025 \longrightarrow 00:14:48.779$ people get and report on has decreased,

NOTE Confidence: 0.988861

 $00:14:48.780 \longrightarrow 00:14:50.760$ and I'd like to understand is

 $00:14:50.760 \longrightarrow 00:14:52.502$ that just because that's what's

NOTE Confidence: 0.988861

 $00{:}14{:}52.502 {\:\dashrightarrow\:} 00{:}14{:}54.302$ convenient in terms of putting

NOTE Confidence: 0.988861

00:14:54.302 --> 00:14:56.420 it onto an illuminous sequencer,

NOTE Confidence: 0.988861

 $00:14:56.420 \longrightarrow 00:14:59.157$ or is there something about the various

NOTE Confidence: 0.988861

 $00:14:59.157 \longrightarrow 00:15:01.403$ techniques where you reach the limit

NOTE Confidence: 0.988861

00:15:01.403 --> 00:15:03.734 of your detection after X number of

NOTE Confidence: 0.988861

00:15:03.800 --> 00:15:08.180 reads and it's not worth getting more?

NOTE Confidence: 0.9299402

 $00:15:08.180 \longrightarrow 00:15:09.704$ Yes, so there is a tradeoff

NOTE Confidence: 0.9299402

00:15:09.704 --> 00:15:11.440 in in these two parameters.

NOTE Confidence: 0.9299402

 $00:15:11.440 \longrightarrow 00:15:14.365$ One is the number of cells that you consider

NOTE Confidence: 0.9299402

 $00:15:14.365 \longrightarrow 00:15:16.986$ and the other is the number of reads

NOTE Confidence: 0.9299402

 $00{:}15{:}16.986 \dashrightarrow 00{:}15{:}19.568$ there that you obtained for each cell.

NOTE Confidence: 0.9299402

 $00:15:19.570 \longrightarrow 00:15:23.112$ The trend for the techniques has been

NOTE Confidence: 0.9299402

 $00:15:23.112 \longrightarrow 00:15:26.530$ mainly to increase the number of cells,

NOTE Confidence: 0.9299402

 $00:15:26.530 \longrightarrow 00:15:29.010$ and obviously these was against.

 $00:15:29.010 \longrightarrow 00:15:31.495$ This is against the number

NOTE Confidence: 0.9299402

00:15:31.495 --> 00:15:33.980 of reads for each cell.

NOTE Confidence: 0.9299402

 $00:15:33.980 \longrightarrow 00:15:37.580$ So for example and.

NOTE Confidence: 0.9299402

 $00:15:37.580 \longrightarrow 00:15:39.680$ So let's say that the fielder and

NOTE Confidence: 0.9299402

 $00:15:39.680 \longrightarrow 00:15:41.889$ the the most popular techniques,

NOTE Confidence: 0.9299402

 $00:15:41.890 \longrightarrow 00:15:43.650$ for example Tenax, have been

NOTE Confidence: 0.9299402

00:15:43.650 --> 00:15:45.840 increasing more the number of cells,

NOTE Confidence: 0.9299402

 $00:15:45.840 \longrightarrow 00:15:49.864$ then the number of reads for each cell.

NOTE Confidence: 0.9299402

00:15:49.870 --> 00:15:52.210 Uh, these are depends on the

NOTE Confidence: 0.9299402

 $00:15:52.210 \longrightarrow 00:15:54.420$ application of the method I guess.

NOTE Confidence: 0.9299402

 $00{:}15{:}54.420 \dashrightarrow 00{:}15{:}56.628$ So obviously if you're interested in

NOTE Confidence: 0.9299402

00:15:56.628 --> 00:15:59.349 the cell as your unit of interest,

NOTE Confidence: 0.9299402

 $00:15:59.350 \longrightarrow 00:16:01.240$ so if you're interested in

NOTE Confidence: 0.9299402

00:16:01.240 --> 00:16:02.752 like more cellular biology,

NOTE Confidence: 0.9299402

 $00:16:02.760 \longrightarrow 00:16:04.650$ you're interested more in capturing

NOTE Confidence: 0.9299402

 $00:16:04.650 \longrightarrow 00:16:06.162$ cells and separating cells,

00:16:06.170 --> 00:16:08.065 you're not so interesting looking

NOTE Confidence: 0.9299402

 $00{:}16{:}08.065 \dashrightarrow 00{:}16{:}10.405$ with in great detail on thousands

NOTE Confidence: 0.9299402

00:16:10.405 --> 00:16:12.679 of genes that are expressed within

NOTE Confidence: 0.9299402

00:16:12.679 --> 00:16:14.879 each cell on the other side,

NOTE Confidence: 0.9299402

00:16:14.880 --> 00:16:16.424 if you're more interested,

NOTE Confidence: 0.9299402

 $00:16:16.424 \longrightarrow 00:16:18.354$ for example in the molecular

NOTE Confidence: 0.9299402

 $00:16:18.354 \longrightarrow 00:16:19.540$ biology rather than.

NOTE Confidence: 0.9299402

 $00:16:19.540 \longrightarrow 00:16:22.432$ Just separating cells so it would

NOTE Confidence: 0.9299402

 $00:16:22.432 \longrightarrow 00:16:25.408$ be more interesting to increase the

NOTE Confidence: 0.9299402

 $00{:}16{:}25.408 \dashrightarrow 00{:}16{:}28.754$ depth of the sequencing in each cell.

NOTE Confidence: 0.9299402

 $00{:}16{:}28.760 \dashrightarrow 00{:}16{:}32.060$ There are techniques where these is

NOTE Confidence: 0.9299402

 $00{:}16{:}32.060 \dashrightarrow 00{:}16{:}35.173$ maximized and obviously the trade off

NOTE Confidence: 0.9299402

00:16:35.173 --> 00:16:38.453 is that you cannot get so many cells.

NOTE Confidence: 0.9299402

 $00:16:38.460 \longrightarrow 00:16:41.760$ As for the other method.

NOTE Confidence: 0.9299402

00:16:41.760 --> 00:16:42.470 Uhm?

 $00:16:44.710 \longrightarrow 00:16:46.639$ I. Think I'm

NOTE Confidence: 0.98394567

00:16:46.640 --> 00:16:48.500 just asking also and maybe June

NOTE Confidence: 0.98394567

00:16:48.500 --> 00:16:50.490 knows is there a maximum number

NOTE Confidence: 0.98394567

 $00:16:50.490 \longrightarrow 00:16:52.524$ of reads you want per cell?

NOTE Confidence: 0.98394567

00:16:52.530 --> 00:16:54.165 Because after that you don't

NOTE Confidence: 0.98394567

 $00{:}16{:}54.165 \dashrightarrow 00{:}16{:}57.290$ get any additional information.

NOTE Confidence: 0.92274123

 $00:16:57.290 \longrightarrow 00:17:00.322$ So we will see we can measure when

NOTE Confidence: 0.92274123

 $00:17:00.322 \longrightarrow 00:17:03.374$ you reach the like the plateau

NOTE Confidence: 0.92274123

 $00{:}17{:}03.374 \dashrightarrow 00{:}17{:}06.563$ when you reach the plateau of the

NOTE Confidence: 0.92274123

 $00:17:06.563 \longrightarrow 00:17:09.713$ sequencing using tricks such as the UMI.

NOTE Confidence: 0.92274123

 $00{:}17{:}09.720 \dashrightarrow 00{:}17{:}11.832$ So if you append to each

NOTE Confidence: 0.92274123

 $00:17:11.832 \longrightarrow 00:17:13.980$ read like a random barcode,

NOTE Confidence: 0.92274123

 $00:17:13.980 \longrightarrow 00:17:16.716$ you can see when a it doesn't make sense

NOTE Confidence: 0.92274123

 $00{:}17{:}16.716 \dashrightarrow 00{:}17{:}19.692$ to sequence more depth because all the

NOTE Confidence: 0.92274123

 $00:17:19.692 \longrightarrow 00:17:22.489$ additional reads that you are detecting.

NOTE Confidence: 0.92274123

 $00{:}17{:}22.490 \dashrightarrow 00{:}17{:}24.990$ Other PCR duplicates of what

 $00:17:24.990 \longrightarrow 00:17:26.790$ you already sequenced. Right,

NOTE Confidence: 0.97971755

 $00:17:26.790 \longrightarrow 00:17:28.010$ got it? Yeah I

NOTE Confidence: 0.97971755

 $00:17:28.010 \longrightarrow 00:17:29.134$ agree with the Tommaso.

NOTE Confidence: 0.97971755

 $00{:}17{:}29.134 \dashrightarrow 00{:}17{:}31.522$ So I think there are some studies was

NOTE Confidence: 0.97971755

 $00:17:31.522 \longrightarrow 00:17:33.454$ down those kind of things before,

NOTE Confidence: 0.97971755

 $00:17:33.460 \longrightarrow 00:17:35.075$ but they were using different

NOTE Confidence: 0.97971755

00:17:35.075 --> 00:17:36.690 technologies compared to what you're

NOTE Confidence: 0.97971755

00:17:36.742 --> 00:17:38.308 going to use probably right now,

NOTE Confidence: 0.97971755

 $00:17:38.310 \longrightarrow 00:17:40.375$ so I'm not sure whether for every

NOTE Confidence: 0.97971755

 $00:17:40.375 \longrightarrow 00:17:41.640$ single technology out there,

NOTE Confidence: 0.97971755

 $00{:}17{:}41.640 \dashrightarrow 00{:}17{:}43.754$ there has already been a paper published.

NOTE Confidence: 0.97971755

 $00{:}17{:}43.760 \dashrightarrow 00{:}17{:}45.428$ Maybe for 10X there's already paper

NOTE Confidence: 0.97971755

 $00{:}17{:}45.428 \dashrightarrow 00{:}17{:}47.090$ published on the standard procedures,

NOTE Confidence: 0.97971755

00:17:47.090 --> 00:17:49.330 but in your own data you can actually

NOTE Confidence: 0.97971755

 $00:17:49.330 \longrightarrow 00:17:50.925$ analyze yourself to see whether

00:17:50.925 --> 00:17:52.550 it's approaching saturation or not,

NOTE Confidence: 0.97971755

 $00{:}17{:}52.550 \dashrightarrow 00{:}17{:}54.727$ and you can re sequence more from

NOTE Confidence: 0.97971755

 $00:17:54.727 \longrightarrow 00:17:56.489$ same library if you want to.

NOTE Confidence: 0.933664227272727

00:17:57.190 --> 00:17:59.992 Yeah. Yes, yes using Umm eyes

NOTE Confidence: 0.933664227272727

 $00:17:59.992 \longrightarrow 00:18:02.440$ and you can measure that.

NOTE Confidence: 0.933664227272727

00:18:02.440 --> 00:18:05.052 OK, I understand, thank you then.

NOTE Confidence: 0.933664227272727

 $00:18:05.052 \longrightarrow 00:18:06.378$ The same techniques,

NOTE Confidence: 0.933664227272727

 $00:18:06.378 \longrightarrow 00:18:08.588$ for example 10X at every

NOTE Confidence: 0.933664227272727

 $00:18:08.588 \longrightarrow 00:18:10.690$ release like increase or the.

NOTE Confidence: 0.974990600000001

00:18:13.170 --> 00:18:15.030 Increase the detection of multiple

NOTE Confidence: 0.974990600000001

 $00{:}18{:}15.030 \dashrightarrow 00{:}18{:}17.258$ molecules inside each cell so that

NOTE Confidence: 0.974990600000001

00:18:17.258 --> 00:18:19.372 the saturation limit is higher and so

NOTE Confidence: 0.974990600000001

 $00:18:19.372 \longrightarrow 00:18:21.583$ it really depends also on the depends

NOTE Confidence: 0.974990600000001

 $00:18:21.583 \longrightarrow 00:18:24.441$ on the technique and then and on the

NOTE Confidence: 0.974990600000001

 $00:18:24.441 \longrightarrow 00:18:27.500$ version of the of the technique itself.

NOTE Confidence: 0.974990600000001

 $00{:}18{:}27.500 \dashrightarrow 00{:}18{:}29.908$ But in general, I would say that

 $00:18:29.908 \longrightarrow 00:18:32.574$ the number of cells that you can

NOTE Confidence: 0.974990600000001

 $00{:}18{:}32.574 \dashrightarrow 00{:}18{:}34.908$ measure has increased the more in

NOTE Confidence: 0.974990600000001

 $00:18:34.985 \longrightarrow 00:18:37.230$ the average of the techniques.

NOTE Confidence: 0.974990600000001

 $00:18:37.230 \longrightarrow 00:18:39.558$ Then the depth that then the,

NOTE Confidence: 0.974990600000001

 $00:18:39.560 \longrightarrow 00:18:42.480$ then the within cell depth.

NOTE Confidence: 0.974990600000001

 $00:18:42.480 \longrightarrow 00:18:44.485$ With an exception that they

NOTE Confidence: 0.974990600000001

00:18:44.485 --> 00:18:47.050 show you in your Indies slide,

NOTE Confidence: 0.974990600000001

 $00:18:47.050 \longrightarrow 00:18:49.125$ that is the smart speaker

NOTE Confidence: 0.974990600000001

 $00:18:49.125 \longrightarrow 00:18:50.370$ family of technical.

NOTE Confidence: 0.974990600000001

 $00{:}18{:}50.370 \dashrightarrow 00{:}18{:}52.884$ So this family of techniques is

NOTE Confidence: 0.974990600000001

 $00{:}18{:}52.884 \dashrightarrow 00{:}18{:}55.848$ the ideal family when you are not

NOTE Confidence: 0.974990600000001

 $00:18:55.848 \longrightarrow 00:18:58.669$ interested in capturing a lot of cells,

NOTE Confidence: 0.974990600000001

 $00{:}18{:}58.670 \dashrightarrow 00{:}19{:}01.764$ but you want to maximize the analysis

NOTE Confidence: 0.974990600000001

 $00{:}19{:}01.764 \dashrightarrow 00{:}19{:}05.076$ within each cell and the advantage of

NOTE Confidence: 0.974990600000001

 $00:19:05.076 \longrightarrow 00:19:07.926$ dictating of these techniques is that

 $00:19:08.009 \longrightarrow 00:19:11.449$ you can have 1,000,000 read for each cell.

NOTE Confidence: 0.974990600000001

 $00:19:11.450 \longrightarrow 00:19:14.339$ So it has a high coverage and also and

NOTE Confidence: 0.974990600000001

 $00:19:14.339 \longrightarrow 00:19:17.501$ it's one of the techniques that allow you

NOTE Confidence: 0.974990600000001

 $00:19:17.501 \longrightarrow 00:19:20.708$ to capture reads from the whole transcript.

NOTE Confidence: 0.974990600000001

 $00:19:20.710 \longrightarrow 00:19:23.412$ So we will see that the majority

NOTE Confidence: 0.974990600000001

 $00:19:23.412 \longrightarrow 00:19:24.570$ of commercial techniques,

NOTE Confidence: 0.974990600000001

 $00:19:24.570 \longrightarrow 00:19:27.910$ such as the 10X A.

NOTE Confidence: 0.974990600000001

 $00:19:27.910 \longrightarrow 00:19:29.680$ Do not allow you to cover

NOTE Confidence: 0.974990600000001

 $00:19:29.680 \longrightarrow 00:19:30.565$ the full transcript,

NOTE Confidence: 0.974990600000001

 $00:19:30.570 \longrightarrow 00:19:32.346$ but they are like three prime

NOTE Confidence: 0.974990600000001

 $00{:}19{:}32.346 \dashrightarrow 00{:}19{:}33.530$ end or five prime.

NOTE Confidence: 0.974990600000001

 $00:19:33.530 \longrightarrow 00:19:34.508$ End the libraries.

NOTE Confidence: 0.974990600000001

 $00:19:34.508 \longrightarrow 00:19:36.790$ So that means that you can capture

NOTE Confidence: 0.974990600000001

 $00:19:36.860 \longrightarrow 00:19:39.172$ only the fragment that is near to the

NOTE Confidence: 0.974990600000001

 $00:19:39.172 \longrightarrow 00:19:41.374$ palie for the three prime end or near

NOTE Confidence: 0.974990600000001

 $00:19:41.374 \longrightarrow 00:19:43.446$ to the cap for the five prime end.

 $00:19:43.446 \longrightarrow 00:19:45.616$ This is one of the few methods where

NOTE Confidence: 0.974990600000001

 $00:19:45.616 \longrightarrow 00:19:48.237$ you can add in bulk and in most by

NOTE Confidence: 0.974990600000001

00:19:48.237 --> 00:19:50.271 Karen Acq can capture reads from

NOTE Confidence: 0.974990600000001

 $00:19:50.271 \longrightarrow 00:19:52.406$ the full transcript and this is an

NOTE Confidence: 0.974990600000001

 $00:19:52.406 \longrightarrow 00:19:53.801$ advantage because for example if

NOTE Confidence: 0.974990600000001

00:19:53.801 --> 00:19:55.730 you want to do splicing analysis,

NOTE Confidence: 0.974990600000001

 $00:19:55.730 \longrightarrow 00:19:57.836$ that's the only way you can.

NOTE Confidence: 0.974990600000001

 $00{:}19{:}57.840 \longrightarrow 00{:}20{:}00.717$ You know that that that's the

NOTE Confidence: 0.974990600000001

 $00{:}20{:}00.717 \dashrightarrow 00{:}20{:}03.927$ only method you can use to have a like.

NOTE Confidence: 0.974990600000001

 $00{:}20{:}03.930 \dashrightarrow 00{:}20{:}05.982$ To perform splicing and a full

NOTE Confidence: 0.974990600000001

00:20:05.982 --> 00:20:07.013 splicing analysis, otherwise,

NOTE Confidence: 0.974990600000001

 $00:20:07.013 \longrightarrow 00:20:08.728$ you can prefer splicing analysis

NOTE Confidence: 0.974990600000001

00:20:08.728 --> 00:20:10.430 only on the initial exon,

NOTE Confidence: 0.974990600000001

 $00{:}20{:}10.430 \dashrightarrow 00{:}20{:}12.796$ five prime end or on the terminal

NOTE Confidence: 0.974990600000001

 $00:20:12.796 \longrightarrow 00:20:15.218$ axons and also for a Allen Alesys.

 $00:20:15.220 \longrightarrow 00:20:17.422$ So analysis of variations analysis of

NOTE Confidence: 0.974990600000001

 $00{:}20{:}17.422 \dashrightarrow 00{:}20{:}19.887$ Snips from Renee see from RNA seek

NOTE Confidence: 0.974990600000001

 $00:20:19.887 \longrightarrow 00:20:22.057$ A if you're a mutation of interest.

NOTE Confidence: 0.974990600000001

 $00:20:22.060 \longrightarrow 00:20:24.610$ If your variation of interest is

NOTE Confidence: 0.974990600000001

 $00:20:24.610 \longrightarrow 00:20:27.761$ inside the body of the gene and not

NOTE Confidence: 0.974990600000001

 $00:20:27.761 \longrightarrow 00:20:30.899$ at the five prime or the three prime.

NOTE Confidence: 0.974990600000001

 $00:20:30.900 \longrightarrow 00:20:34.295$ So this has all the advantages of

NOTE Confidence: 0.974990600000001

 $00:20:34.295 \longrightarrow 00:20:36.720$ allowing analysis within each cell

NOTE Confidence: 0.974990600000001

 $00:20:36.720 \longrightarrow 00:20:39.354$ that is comparable to the biker,

NOTE Confidence: 0.974990600000001 00:20:39.360 --> 00:20:41.880 any SQL. NOTE Confidence: 0.974990600000001

00:20:41.880 --> 00:20:44.491 It has a limitation that is shared

NOTE Confidence: 0.974990600000001

 $00:20:44.491 \longrightarrow 00:20:45.610$ with other techniques.

NOTE Confidence: 0.974990600000001

 $00:20:45.610 \longrightarrow 00:20:48.235$ Is that most of the single cell

NOTE Confidence: 0.974990600000001

00:20:48.235 --> 00:20:50.796 techniques right now allow you to

NOTE Confidence: 0.974990600000001

00:20:50.796 --> 00:20:53.066 detect the only polyadenylated RNA

NOTE Confidence: 0.974990600000001

 $00{:}20{:}53.066 \dashrightarrow 00{:}20{:}56.000$ because they're based on quality selection.

 $00:20:56.000 \longrightarrow 00:20:58.484$ And you have a low number of cells that

NOTE Confidence: 0.974990600000001

 $00{:}20{:}58.484 \to 00{:}21{:}00.880$ you can sequence in each experiment,

NOTE Confidence: 0.974990600000001

 $00:21:00.880 \longrightarrow 00:21:02.164$ so less than 1000.

NOTE Confidence: 0.974990600000001

00:21:02.164 --> 00:21:04.779 Then the smart Seeker has already 3 version,

NOTE Confidence: 0.974990600000001

 $00:21:04.780 \longrightarrow 00:21:07.048$ so it was released first in 2012.

NOTE Confidence: 0.974990600000001

 $00:21:07.050 \longrightarrow 00:21:09.466$ Then here is a smart seek to release

NOTE Confidence: 0.974990600000001

 $00:21:09.466 \longrightarrow 00:21:11.686$ the one year after and then the

NOTE Confidence: 0.974990600000001

00:21:11.686 --> 00:21:14.034 latest is March 6th 3 that was

NOTE Confidence: 0.974990600000001

 $00:21:14.034 \longrightarrow 00:21:15.498$ released the last year.

NOTE Confidence: 0.974990600000001

 $00:21:15.500 \longrightarrow 00:21:19.210$ So each of these kind of increase.

NOTE Confidence: 0.974990600000001

 $00:21:19.210 \longrightarrow 00:21:21.610$ Then then the number of usable

NOTE Confidence: 0.974990600000001

00:21:21.610 --> 00:21:23.210 reads with smart smart

NOTE Confidence: 0.9669231

00:21:23.294 --> 00:21:25.786 seek two didn't allow to use the.

NOTE Confidence: 0.9669231

 $00:21:25.790 \longrightarrow 00:21:29.660$ Umm, I but Smartsilk 3 allows to to use also.

NOTE Confidence: 0.9669231

 $00:21:29.660 \longrightarrow 00:21:32.117$ Umm, I and this is a comparison

 $00:21:32.117 \longrightarrow 00:21:33.920$ between the two versions.

NOTE Confidence: 0.9669231

00:21:33.920 --> 00:21:36.302 Smartsilk 2 smartest see where you

NOTE Confidence: 0.9669231

 $00:21:36.302 \longrightarrow 00:21:39.616$ see the box block with the number of

NOTE Confidence: 0.9669231

 $00:21:39.616 \longrightarrow 00:21:42.088$ genes that are detected within each

NOTE Confidence: 0.9669231

 $00:21:42.169 \longrightarrow 00:21:44.857$ cell and as you see with the mastic

NOTE Confidence: 0.9669231

00:21:44.857 --> 00:21:47.134 tree you can for each seller cover

NOTE Confidence: 0.9669231

 $00:21:47.134 \longrightarrow 00:21:49.540$ detector from 10,000 to 12,000 jeans.

NOTE Confidence: 0.9669231

 $00:21:49.540 \longrightarrow 00:21:51.962$ And also this number it is comparable

NOTE Confidence: 0.9669231

 $00{:}21{:}51.962 \dashrightarrow 00{:}21{:}54.886$ to buy her any seek if you compare

NOTE Confidence: 0.9669231

 $00:21:54.886 \longrightarrow 00:21:57.171$ this number with the other method

NOTE Confidence: 0.9669231

00:21:57.171 --> 00:21:59.156 cells such as SYNNEX, internex.

NOTE Confidence: 0.9669231

 $00:21:59.156 \longrightarrow 00:22:02.899$ I think the average is 3 to 5000 genes for

NOTE Confidence: 0.9669231

 $00:22:02.899 \longrightarrow 00:22:05.819$ each cell when when this value is high.

NOTE Confidence: 0.95787907

 $00{:}22{:}10.900 \dashrightarrow 00{:}22{:}14.032$ OK, so this is an example of high coverage,

NOTE Confidence: 0.95787907

 $00:22:14.040 \longrightarrow 00:22:15.348$ but low throughput are.

NOTE Confidence: 0.95787907

 $00:22:15.348 \longrightarrow 00:22:18.112$ On the other hand there you have methods

00:22:18.112 --> 00:22:20.308 where you have low coverage inside

NOTE Confidence: 0.95787907

 $00{:}22{:}20.308 \dashrightarrow 00{:}22{:}22.806$ each cell and but high throughput and

NOTE Confidence: 0.95787907

 $00:22:22.806 \longrightarrow 00:22:25.206$ a family of these methods they are

NOTE Confidence: 0.95787907

 $00:22:25.206 \longrightarrow 00:22:26.946$ the so-called droplet based methods.

NOTE Confidence: 0.95787907

 $00:22:26.950 \longrightarrow 00:22:31.081$ These was one of the first set that was

NOTE Confidence: 0.95787907

00:22:31.081 --> 00:22:34.836 really that was released and it is the.

NOTE Confidence: 0.95787907

00:22:34.840 --> 00:22:37.336 I had the drop seeker analysis,

NOTE Confidence: 0.95787907

 $00:22:37.340 \longrightarrow 00:22:41.806$ so the principle is to isolate cells.

NOTE Confidence: 0.95787907

 $00{:}22{:}41.810 \dashrightarrow 00{:}22{:}43.720$ Single cells in single droplet.

NOTE Confidence: 0.95787907

 $00:22:43.720 \longrightarrow 00:22:46.789$ Will you have your cell and you have a

NOTE Confidence: 0.95787907

 $00:22:46.789 \longrightarrow 00:22:49.430$ barcode that beats are barcoded beads.

NOTE Confidence: 0.95787907

 $00{:}22{:}49.430 \dashrightarrow 00{:}22{:}52.776$ Allow you to attach a cellular barcode

NOTE Confidence: 0.95787907

00:22:52.776 --> 00:22:55.965 that is unique for each beat down

NOTE Confidence: 0.95787907

 $00:22:55.965 \longrightarrow 00:22:59.000$ and so it's unique for each cell.

NOTE Confidence: 0.95787907

 $00:22:59.000 \longrightarrow 00:23:01.975$ And so that's the trick that is

 $00:23:01.975 \longrightarrow 00:23:04.025$ used in order to, uh,

NOTE Confidence: 0.95787907

 $00{:}23{:}04.025 \dashrightarrow 00{:}23{:}06.000$ associated the content of each

NOTE Confidence: 0.95787907

 $00:23:06.000 \longrightarrow 00:23:08.260$ cell with a single barcode.

NOTE Confidence: 0.95787907

 $00:23:08.260 \longrightarrow 00:23:11.750$ That is the cell barcode.

NOTE Confidence: 0.95787907

 $00:23:11.750 \longrightarrow 00:23:15.506$ Uhm it, so it allows to map 1000 or 10s of

NOTE Confidence: 0.95787907

 $00:23:15.506 \longrightarrow 00:23:18.810$ thousands of cells in the same experiments.

NOTE Confidence: 0.95787907

 $00:23:18.810 \longrightarrow 00:23:21.498$ Uhm, it's so the drops eater is

NOTE Confidence: 0.95787907

00:23:21.498 --> 00:23:23.512 only three prime end sequencing

NOTE Confidence: 0.95787907

 $00{:}23{:}23.512 --> 00{:}23{:}26.249$ and it allows you the use of,

NOTE Confidence: 0.95787907

 $00:23:26.250 \longrightarrow 00:23:27.986$ Umm unique molecular identifiers.

NOTE Confidence: 0.95787907

 $00{:}23{:}27.986 \dashrightarrow 00{:}23{:}31.336$ So I will have some slides later to

NOTE Confidence: 0.95787907

 $00:23:31.336 \longrightarrow 00:23:33.695$ show what is the meaning of that.

NOTE Confidence: 0.95787907

 $00:23:33.700 \longrightarrow 00:23:35.564$ This is the pipeline.

NOTE Confidence: 0.95787907

 $00:23:35.564 \longrightarrow 00:23:37.428$ Are the experimental pipeline

NOTE Confidence: 0.95787907

 $00:23:37.428 \longrightarrow 00:23:40.199$ of a drop seek experiment.

NOTE Confidence: 0.95787907

 $00:23:40.200 \longrightarrow 00:23:42.588$ So the the principle is twice.

00:23:42.590 --> 00:23:44.990 Let some point in a droplet,

NOTE Confidence: 0.95787907

 $00{:}23{:}44.990 \dashrightarrow 00{:}23{:}46.980$ one cell with one microparticle.

NOTE Confidence: 0.95787907

 $00:23:46.980 \longrightarrow 00:23:50.388$ Inside this droplet you have the capture of

NOTE Confidence: 0.95787907

00:23:50.388 --> 00:23:52.968 the polyadenylated RNA with a polety probe,

NOTE Confidence: 0.95787907

00:23:52.970 --> 00:23:55.756 and then you have the little transcript,

NOTE Confidence: 0.95787907

 $00:23:55.760 \longrightarrow 00:23:57.980$ the reverse transcription and the generation

NOTE Confidence: 0.95787907

 $00:23:57.980 \longrightarrow 00:24:01.350$ of the C DNA and the library preparation.

NOTE Confidence: 0.95787907

 $00:24:01.350 \longrightarrow 00:24:04.368$ This is kind of similar to

NOTE Confidence: 0.95787907

 $00{:}24{:}04.368 \dashrightarrow 00{:}24{:}06.380$ also buy currency approaches.

NOTE Confidence: 0.95787907

 $00:24:06.380 \longrightarrow 00:24:08.345$ Very similar to drop seek

NOTE Confidence: 0.95787907

 $00{:}24{:}08.345 \dashrightarrow 00{:}24{:}10.310$ is also the 10X approach.

NOTE Confidence: 0.95787907

 $00:24:10.310 \longrightarrow 00:24:11.882$ That is the commercial

NOTE Confidence: 0.95787907

 $00{:}24{:}11.882 \dashrightarrow 00{:}24{:}13.847$ development of the drug seeker,

NOTE Confidence: 0.95787907

 $00:24:13.850 \longrightarrow 00:24:15.810$ so send it to next.

NOTE Confidence: 0.95787907

 $00:24:15.810 \longrightarrow 00:24:18.234$ You have the same strategy of

 $00:24:18.234 \longrightarrow 00:24:19.850$ dividing dividing cells so

NOTE Confidence: 0.95787907

 $00:24:19.931 \longrightarrow 00:24:22.097$ that you have droplets in oil,

NOTE Confidence: 0.95787907

 $00{:}24{:}22.100 \dashrightarrow 00{:}24{:}25.052$ in this case with a single cell and a

NOTE Confidence: 0.95787907

 $00:24:25.052 \longrightarrow 00:24:27.996$ single barcode with the cellular barcode.

NOTE Confidence: 0.95787907

 $00:24:28.000 \longrightarrow 00:24:30.744$ And as you can see the barcode attached

NOTE Confidence: 0.95787907

 $00:24:30.744 \longrightarrow 00:24:33.477$ to each bid have standard adapter that

NOTE Confidence: 0.95787907

 $00:24:33.477 \longrightarrow 00:24:36.330$ you can use in Illumina sequencing.

NOTE Confidence: 0.95787907

 $00:24:36.330 \longrightarrow 00:24:37.950$ You have the cellular barcode,

NOTE Confidence: 0.95787907

 $00{:}24{:}37.950 --> 00{:}24{:}39.560$ you have the Umm I,

NOTE Confidence: 0.95787907

 $00:24:39.560 \longrightarrow 00:24:41.835$ and then you have a positive probe

NOTE Confidence: 0.95787907

 $00{:}24{:}41.835 \dashrightarrow 00{:}24{:}44.406$ that is used to capture Poly a RNA.

NOTE Confidence: 0.9411849

 $00:24:47.110 \longrightarrow 00:24:48.745$ Uhm, this is to remind

NOTE Confidence: 0.9411849

00:24:48.745 --> 00:24:49.726 that different platforms,

NOTE Confidence: 0.9411849

 $00:24:49.730 \longrightarrow 00:24:51.355$ according to different strategies have

NOTE Confidence: 0.9411849

 $00:24:51.355 \longrightarrow 00:24:53.320$ different gene coverage is so smart.

NOTE Confidence: 0.9411849

 $00:24:53.320 \longrightarrow 00:24:55.282$ Seek two that we saw before

 $00:24:55.282 \longrightarrow 00:24:56.590$ has a full coverage.

NOTE Confidence: 0.9411849

 $00:24:56.590 \longrightarrow 00:24:59.533$ So if you consider these are like meta gene,

NOTE Confidence: 0.9411849

 $00:24:59.540 \longrightarrow 00:25:01.496$ we have the five prime UTR,

NOTE Confidence: 0.9411849

 $00:25:01.500 \longrightarrow 00:25:03.130$ the body of the gene,

NOTE Confidence: 0.9411849

 $00{:}25{:}03.130 \dashrightarrow 00{:}25{:}05.530$ the coding sequence and the three prime UTR

NOTE Confidence: 0.9411849

00:25:05.530 --> 00:25:08.037 you have coverage of the full transcript,

NOTE Confidence: 0.9411849

00:25:08.040 --> 00:25:10.140 while with 10X or free payment

NOTE Confidence: 0.9411849

 $00{:}25{:}10.140 \dashrightarrow 00{:}25{:}11.901$ method you haven't richemond only

NOTE Confidence: 0.9411849

 $00:25:11.901 \longrightarrow 00:25:13.980$ at the three prime end of the

NOTE Confidence: 0.9411849

 $00:25:13.980 \longrightarrow 00:25:15.937$ transcript with the five prime method.

NOTE Confidence: 0.9411849

 $00:25:15.940 \longrightarrow 00:25:17.144$ You haven't richemond all

NOTE Confidence: 0.9411849

 $00:25:17.144 \longrightarrow 00:25:18.649$ yet to five prime end,

NOTE Confidence: 0.9411849

 $00{:}25{:}18.650 \dashrightarrow 00{:}25{:}20.687$ so you need to be careful on

NOTE Confidence: 0.9411849

00:25:20.687 --> 00:25:22.259 which library you are using,

NOTE Confidence: 0.9411849

 $00:25:22.260 \longrightarrow 00:25:25.140$ because if it is for just

 $00:25:25.140 \longrightarrow 00:25:26.580$ for gene quantification.

NOTE Confidence: 0.9411849

 $00:25:26.580 \longrightarrow 00:25:28.060$ Methods can be comparable,

NOTE Confidence: 0.9411849

 $00:25:28.060 \longrightarrow 00:25:29.910$ but if you are interested,

NOTE Confidence: 0.9411849

 $00:25:29.910 \longrightarrow 00:25:32.130$ for example in a ice form,

NOTE Confidence: 0.9411849

 $00:25:32.130 \longrightarrow 00:25:32.870$ expressions, pricing,

NOTE Confidence: 0.9411849

 $00:25:32.870 \longrightarrow 00:25:34.720$ analysis and so on only.

NOTE Confidence: 0.9411849

 $00:25:34.720 \longrightarrow 00:25:36.570$ These methods allow you to

NOTE Confidence: 0.9411849

00:25:36.570 --> 00:25:38.050 perform a complete analysis,

NOTE Confidence: 0.9411849

 $00:25:38.050 \longrightarrow 00:25:39.160$ not these ones.

NOTE Confidence: 0.9613364

 $00:25:41.520 \longrightarrow 00:25:43.150$ And this is another plot

NOTE Confidence: 0.9613364

 $00{:}25{:}43.150 \dashrightarrow 00{:}25{:}44.780$ comparing the aging coverage are

NOTE Confidence: 0.9613364

 $00:25:44.838 \longrightarrow 00:25:46.438$ when you have full coverage.

NOTE Confidence: 0.9613364

 $00:25:46.440 \longrightarrow 00:25:48.228$ So this plot here is similar

NOTE Confidence: 0.9613364

 $00{:}25{:}48.228 \dashrightarrow 00{:}25{:}50.212$ to plots that you could obtain

NOTE Confidence: 0.9613364

00:25:50.212 --> 00:25:52.017 from back button a seeker.

NOTE Confidence: 0.9613364

 $00{:}25{:}52.020 \dashrightarrow 00{:}25{:}53.976$ This method is free prime end.

 $00:25:53.980 \longrightarrow 00:25:55.540$ There is a free payment

NOTE Confidence: 0.9613364

 $00:25:55.540 \longrightarrow 00:25:57.590$ method and so you see there.

NOTE Confidence: 0.9613364

 $00:25:57.590 \longrightarrow 00:25:58.902$ Richmond at the free

NOTE Confidence: 0.9613364

 $00:25:58.902 \longrightarrow 00:26:00.214$ prime of the transcript.

NOTE Confidence: 0.9614097

 $00:26:03.960 \longrightarrow 00:26:07.767$ Now this was for many for the technical part.

NOTE Confidence: 0.9614097

 $00:26:07.770 \longrightarrow 00:26:10.704$ Now the outlook on the computational

NOTE Confidence: 0.9614097

 $00:26:10.704 \longrightarrow 00:26:13.206$ analysis of single seller is

NOTE Confidence: 0.9614097

 $00:26:13.206 \longrightarrow 00:26:15.038$ resumed by these workflow.

NOTE Confidence: 0.9614097

 $00{:}26{:}15.040 \dashrightarrow 00{:}26{:}17.693$ So most of their most popular methods

NOTE Confidence: 0.9614097

 $00{:}26{:}17.693 \longrightarrow 00{:}26{:}20.073$ that allow you to generate libraries

NOTE Confidence: 0.9614097

 $00:26:20.073 \longrightarrow 00:26:22.782$ and the result will be read the

NOTE Confidence: 0.9614097

 $00{:}26{:}22.857 \dashrightarrow 00{:}26{:}25.157$ sequence with a standard platform

NOTE Confidence: 0.9614097

00:26:25.157 --> 00:26:27.838 such as illuminum some single cell

NOTE Confidence: 0.9614097

 $00{:}26{:}27.838 \dashrightarrow 00{:}26{:}29.728$ methods have been published also

NOTE Confidence: 0.9614097

 $00:26:29.728 \longrightarrow 00:26:32.010$ that user full length sequencing.

00:26:32.010 --> 00:26:35.040 They think they're so probably

NOTE Confidence: 0.9614097

 $00:26:35.040 \longrightarrow 00:26:38.520$ in the future they would be.

NOTE Confidence: 0.9614097

 $00:26:38.520 \longrightarrow 00:26:39.576$ Use that more,

NOTE Confidence: 0.9614097

 $00:26:39.576 \longrightarrow 00:26:41.688$ but right now the standard is

NOTE Confidence: 0.9614097

 $00:26:41.688 \longrightarrow 00:26:44.068$ to use short read sequencing.

NOTE Confidence: 0.9614097

 $00{:}26{:}44.070 \dashrightarrow 00{:}26{:}46.464$ Couple to see what self analysis so

NOTE Confidence: 0.9614097

 $00:26:46.464 \longrightarrow 00:26:49.198$ we will see how RO data are obtained

NOTE Confidence: 0.9614097

 $00{:}26{:}49.198 \dashrightarrow 00{:}26{:}52.240$ and how the raw data reads can be

NOTE Confidence: 0.9614097

 $00:26:52.240 \longrightarrow 00:26:54.012$ transformed into count matrices

NOTE Confidence: 0.9614097

 $00:26:54.012 \longrightarrow 00:26:56.478$ that are similar to the count

NOTE Confidence: 0.9614097

 $00{:}26{:}56.478 \dashrightarrow 00{:}26{:}59.110$ matrixes of the bike and a secret.

NOTE Confidence: 0.9614097

 $00:26:59.110 \longrightarrow 00:27:01.672$ But you have instead of having samples

NOTE Confidence: 0.9614097

 $00:27:01.672 \longrightarrow 00:27:04.254$ and jeans you have single cells and

NOTE Confidence: 0.9614097

 $00{:}27{:}04.254 \dashrightarrow 00{:}27{:}06.836$ genes in your matrix and the numbers

NOTE Confidence: 0.9614097

 $00:27:06.836 \longrightarrow 00:27:09.200$ correspond to the number of reads

NOTE Confidence: 0.9614097

 $00:27:09.200 \longrightarrow 00:27:11.930$ mapping to the gene in the cell.

 $00:27:11.930 \longrightarrow 00:27:14.240$ Then there are quality control methodologies.

NOTE Confidence: 0.9614097

 $00{:}27{:}14.240 \to 00{:}27{:}17.210$ Is well is ation methodology's class ring,

NOTE Confidence: 0.9614097

00:27:17.210 --> 00:27:19.458 uh identification of trajectories.

NOTE Confidence: 0.9614097

 $00:27:19.458 \longrightarrow 00:27:22.830$ So like analysis that assume your

NOTE Confidence: 0.9614097

 $00:27:22.919 \longrightarrow 00:27:25.604$ sample your population of cells

NOTE Confidence: 0.9614097

 $00:27:25.604 \longrightarrow 00:27:28.289$ user continues and methods assume

NOTE Confidence: 0.9614097

 $00:27:28.380 \longrightarrow 00:27:31.110$ that your population is discrete.

NOTE Confidence: 0.9614097

 $00{:}27{:}31.110 \dashrightarrow 00{:}27{:}32.946$ So let's start from the beginning.

NOTE Confidence: 0.9614097

 $00:27:32.950 \longrightarrow 00:27:35.198$ So usually in most of the methods row

NOTE Confidence: 0.9614097

 $00:27:35.198 \longrightarrow 00:27:37.859$ in in the row reads that you receive.

NOTE Confidence: 0.9614097

 $00{:}27{:}37.860 \dashrightarrow 00{:}27{:}39.395$ There are three important parts

NOTE Confidence: 0.9614097

 $00:27:39.395 \longrightarrow 00:27:40.316$ that you have,

NOTE Confidence: 0.9614097

 $00:27:40.320 \longrightarrow 00:27:43.416$ and there are three parts of this sequence.

NOTE Confidence: 0.9614097

00:27:43.420 --> 00:27:45.448 And so the first important part

NOTE Confidence: 0.9614097

 $00:27:45.448 \longrightarrow 00:27:46.800$ is the cell barcode.

 $00:27:46.800 \longrightarrow 00:27:49.560$ So this is a an oligonucleotides there that

NOTE Confidence: 0.9614097

 $00{:}27{:}49.560 \dashrightarrow 00{:}27{:}52.876$ can be like 8 to 12 or more nucleotide long.

NOTE Confidence: 0.9614097

 $00:27:52.880 \longrightarrow 00:27:55.085$ This depends on the on the technique

NOTE Confidence: 0.9614097

 $00:27:55.085 \longrightarrow 00:27:57.571$ and the so it's these sequence the

NOTE Confidence: 0.9614097

 $00:27:57.571 \longrightarrow 00:28:00.659$ cell barcode is unique for each of the bids.

NOTE Confidence: 0.9614097

 $00:28:00.660 \longrightarrow 00:28:03.750$ For example that you used.

NOTE Confidence: 0.9614097

 $00:28:03.750 \longrightarrow 00:28:05.320$ That when your cell was

NOTE Confidence: 0.9614097

 $00:28:05.320 \longrightarrow 00:28:06.890$ in the in the droplet,

NOTE Confidence: 0.9614097

 $00{:}28{:}06.890 \longrightarrow 00{:}28{:}09.716$ so it's what you use to identify the cell,

NOTE Confidence: 0.9614097

 $00:28:09.720 \longrightarrow 00:28:11.638$ meaning that one of the first step

NOTE Confidence: 0.9614097

 $00{:}28{:}11.638 --> 00{:}28{:}14.071$ is to look at this region of the

NOTE Confidence: 0.9614097

 $00:28:14.071 \longrightarrow 00:28:16.053$ reader that correspond to the cell

NOTE Confidence: 0.9614097

 $00:28:16.053 \longrightarrow 00:28:17.878$ barcode and the group together.

NOTE Confidence: 0.9614097

 $00:28:17.880 \longrightarrow 00:28:20.120$ All the reads that have the same

NOTE Confidence: 0.9614097

 $00:28:20.120 \longrightarrow 00:28:22.277$ barcode and that's what you see here.

NOTE Confidence: 0.9614097

 $00:28:22.280 \longrightarrow 00:28:24.752$ So all the reads with the same barcode

 $00:28:24.752 \longrightarrow 00:28:26.987$ here in red belong to sell one,

NOTE Confidence: 0.9614097

 $00:28:26.990 \longrightarrow 00:28:28.970$ because this is the cell barcode

NOTE Confidence: 0.9614097

 $00:28:28.970 \longrightarrow 00:28:30.749$ of these cells and so on.

NOTE Confidence: 0.9614097

 $00:28:30.750 \longrightarrow 00:28:32.778$ So that all reads are grouped

NOTE Confidence: 0.9614097

 $00:28:32.778 \longrightarrow 00:28:34.130$ according to the value.

NOTE Confidence: 0.9614097

 $00:28:34.130 \longrightarrow 00:28:35.606$ Off the barcode.

NOTE Confidence: 0.9614097

 $00:28:35.606 \longrightarrow 00:28:38.558$ So obviously here there are some

NOTE Confidence: 0.9614097

 $00:28:38.558 \longrightarrow 00:28:41.356$ methodology to account for possible errors

NOTE Confidence: 0.9614097

 $00:28:41.356 \longrightarrow 00:28:44.948$ in the sequencing of the barcode so that.

NOTE Confidence: 0.9614097

00:28:44.950 --> 00:28:47.000 Barcodes are realized in a

NOTE Confidence: 0.9614097

 $00:28:47.000 \longrightarrow 00:28:49.050$ way that they have multiple,

NOTE Confidence: 0.9614097

 $00:28:49.050 \longrightarrow 00:28:50.280$ multiple different nucleotides,

NOTE Confidence: 0.9614097

 $00{:}28{:}50.280 \longrightarrow 00{:}28{:}53.560$ so that if you make one error only,

NOTE Confidence: 0.9614097

 $00:28:53.560 \longrightarrow 00:28:54.380$ you don't.

NOTE Confidence: 0.9614097

00:28:54.380 --> 00:28:57.660 You don't switch from one cell to another,

 $00:28:57.660 \longrightarrow 00:28:59.710$ but you need at least,

NOTE Confidence: 0.9614097

 $00:28:59.710 \longrightarrow 00:29:00.530$ for example,

NOTE Confidence: 0.9614097

 $00:29:00.530 \longrightarrow 00:29:02.580$ three errors in this sequencing.

NOTE Confidence: 0.9614097

 $00:29:02.580 \longrightarrow 00:29:05.331$ In the bar code to identify at

NOTE Confidence: 0.9614097

 $00:29:05.331 \longrightarrow 00:29:07.910$ the wrong self for the reader.

NOTE Confidence: 0.90901923

 $00:29:10.110 \longrightarrow 00:29:11.960$ The second part that is

NOTE Confidence: 0.90901923

 $00:29:11.960 \longrightarrow 00:29:13.810$ important is the so called.

NOTE Confidence: 0.90901923

 $00:29:13.810 \longrightarrow 00:29:16.770$ Umm I so this is not a while.

NOTE Confidence: 0.90901923

 $00{:}29{:}16.770 \longrightarrow 00{:}29{:}19.730$ The cell barcode is unique for each cell.

NOTE Confidence: 0.90901923

 $00:29:19.730 \longrightarrow 00:29:22.658$ The UMI is unique for each of the

NOTE Confidence: 0.90901923

00:29:22.658 --> 00:29:24.540 original molecule in your sample,

NOTE Confidence: 0.90901923

 $00:29:24.540 \longrightarrow 00:29:26.760$ and that's because there in the

NOTE Confidence: 0.90901923

 $00:29:26.760 \longrightarrow 00:29:27.870$ library preparation strategies.

NOTE Confidence: 0.90901923

 $00{:}29{:}27.870 \dashrightarrow 00{:}29{:}31.222$ This is A is a non legal nucleotide

NOTE Confidence: 0.90901923

 $00:29:31.222 \longrightarrow 00:29:34.896$ that is included is appended to the.

NOTE Confidence: 0.90901923

 $00:29:34.900 \longrightarrow 00:29:39.040$ Library during the cDNA.

 $00{:}29{:}39.040 \dashrightarrow 00{:}29{:}40.100$ Transgeneration before

NOTE Confidence: 0.90901923

00:29:40.100 --> 00:29:41.690 the amplification steps.

NOTE Confidence: 0.90901923

 $00:29:41.690 \longrightarrow 00:29:44.122$ So before the PCR.

NOTE Confidence: 0.90901923

 $00:29:44.122 \longrightarrow 00:29:47.162$ So that this means that.

NOTE Confidence: 0.90901923

 $00:29:47.170 \longrightarrow 00:29:49.678$ These can be used this stretch.

NOTE Confidence: 0.90901923

 $00:29:49.680 \longrightarrow 00:29:52.648$ This random bar code can be used to

NOTE Confidence: 0.90901923

00:29:52.648 --> 00:29:54.410 discriminate between PCR duplicates

NOTE Confidence: 0.90901923

 $00{:}29{:}54.410 \dashrightarrow 00{:}29{:}56.780$ and the real biological duplicates.

NOTE Confidence: 0.90901923

 $00{:}29{:}56.780 \dashrightarrow 00{:}29{:}59.966$ So in early seat you can expect to see

NOTE Confidence: 0.90901923

 $00:29:59.966 \longrightarrow 00:30:03.139$ two reads that are the same because

NOTE Confidence: 0.90901923

 $00:30:03.139 \longrightarrow 00:30:05.980$ they were derived from two copies,

NOTE Confidence: 0.90901923

 $00:30:05.980 \longrightarrow 00:30:07.231$ two different transcripts

NOTE Confidence: 0.90901923

 $00:30:07.231 \dashrightarrow 00:30:09.316$ transcribed from the same gene.

NOTE Confidence: 0.90901923

 $00:30:09.320 \longrightarrow 00:30:10.502$ So some genes,

NOTE Confidence: 0.90901923

 $00:30:10.502 \longrightarrow 00:30:12.472$ such as ribosomal the transcript

00:30:12.472 --> 00:30:13.920 of ribosomal proteins,

NOTE Confidence: 0.90901923

 $00:30:13.920 \longrightarrow 00:30:16.500$ are expected to be in the

NOTE Confidence: 0.90901923

 $00:30:16.500 \longrightarrow 00:30:18.630$ range of 1000 to 10.

NOTE Confidence: 0.90901923

00:30:18.630 --> 00:30:21.216 1000 copies in a single cell,

NOTE Confidence: 0.90901923

 $00:30:21.220 \longrightarrow 00:30:24.076$ so you can expect to have more

NOTE Confidence: 0.90901923

 $00:30:24.076 \longrightarrow 00:30:26.410$ molecules captured in your library,

NOTE Confidence: 0.90901923

 $00:30:26.410 \longrightarrow 00:30:28.948$ but these are true biological sequences

NOTE Confidence: 0.90901923

 $00:30:28.948 \longrightarrow 00:30:32.010$ because at the origin you have two

NOTE Confidence: 0.90901923

 $00:30:32.010 \longrightarrow 00:30:34.175$ discrete are different RNA molecules.

NOTE Confidence: 0.90901923

00:30:34.180 --> 00:30:37.018 This is different from a PCR

NOTE Confidence: 0.90901923

 $00:30:37.018 \longrightarrow 00:30:39.632$ duplicates because these are created

NOTE Confidence: 0.90901923

 $00:30:39.632 \longrightarrow 00:30:42.156$ during the amplification step.

NOTE Confidence: 0.90901923

00:30:42.160 --> 00:30:43.648 So that's why the,

NOTE Confidence: 0.90901923

 $00:30:43.648 \longrightarrow 00:30:44.020 \text{ UM},$

NOTE Confidence: 0.90901923

 $00:30:44.020 \longrightarrow 00:30:46.174$ I are important because this discrimination

NOTE Confidence: 0.90901923

00:30:46.174 --> 00:30:47.610 between biological duplicates and

 $00:30:47.664 \longrightarrow 00:30:49.579$ technical duplicates is really important.

NOTE Confidence: 0.90901923

00:30:49.580 --> 00:30:51.064 When you perform many

NOTE Confidence: 0.90901923

00:30:51.064 --> 00:30:52.177 rounds of amplification,

NOTE Confidence: 0.90901923

 $00:30:52.180 \longrightarrow 00:30:54.035$ and this happens when you

NOTE Confidence: 0.90901923

 $00:30:54.035 \longrightarrow 00:30:55.890$ have a low input material,

NOTE Confidence: 0.90901923

 $00{:}30{:}55.890 \dashrightarrow 00{:}30{:}58.110$ such as in some tricky libraries.

NOTE Confidence: 0.90901923

00:30:58.110 --> 00:31:00.822 When your sample you have a low amount

NOTE Confidence: 0.90901923

 $00:31:00.822 \longrightarrow 00:31:03.872$ of sample and this is the case in

NOTE Confidence: 0.90901923

00:31:03.872 --> 00:31:05.900 single cell approaches because again,

NOTE Confidence: 0.90901923

 $00:31:05.900 \longrightarrow 00:31:08.679$ you're starting from the amount of RNA

NOTE Confidence: 0.90901923

 $00{:}31{:}08.679 \dashrightarrow 00{:}31{:}11.358$ that is extracted from one single set.

NOTE Confidence: 0.90901923

 $00:31:11.360 \longrightarrow 00:31:13.940$ So you can imagine to have

NOTE Confidence: 0.90901923

 $00{:}31{:}13.940 --> 00{:}31{:}15.660$ a lot of amplification.

NOTE Confidence: 0.90901923

 $00:31:15.660 \longrightarrow 00:31:19.454$ Occurring in order to detect the gene.

NOTE Confidence: 0.90901923

 $00:31:19.460 \longrightarrow 00:31:21.580$ So this is the definition of the UMI

 $00:31:21.580 \longrightarrow 00:31:24.180$ is a randomized nucleotide sequence.

NOTE Confidence: 0.90901923

 $00:31:24.180 \longrightarrow 00:31:26.628$ Again depending on the library preparation

NOTE Confidence: 0.90901923

 $00:31:26.628 \longrightarrow 00:31:29.262$ and on the technique that you use

NOTE Confidence: 0.90901923

 $00:31:29.262 \longrightarrow 00:31:31.439$ that it can be 8 nucleotide longer.

NOTE Confidence: 0.90901923

00:31:31.440 --> 00:31:33.974 12 Nook tight long of the longest,

NOTE Confidence: 0.90901923

 $00:31:33.980 \longrightarrow 00:31:34.636$ the better.

NOTE Confidence: 0.90901923

 $00{:}31{:}34.636 \dashrightarrow 00{:}31{:}37.260$ It's incorporated into the C DNA and the

NOTE Confidence: 0.90901923

 $00:31:37.327 \longrightarrow 00:31:39.787$ initial steps of their native protocol.

NOTE Confidence: 0.90901923

 $00{:}31{:}39.790 \dashrightarrow 00{:}31{:}41.600$ So before the amplification step,

NOTE Confidence: 0.90901923

 $00:31:41.600 \longrightarrow 00:31:44.088$ so the goal of the UMI is to

NOTE Confidence: 0.90901923

 $00{:}31{:}44.088 \dashrightarrow 00{:}31{:}45.634$ distinguish between amplified copies

NOTE Confidence: 0.90901923

 $00:31:45.634 \longrightarrow 00:31:47.764$ of the same earning molecule.

NOTE Confidence: 0.90901923

 $00:31:47.770 \dashrightarrow 00:31:50.738$ Because these have the same C DNA sequence.

NOTE Confidence: 0.90901923

00:31:50.740 --> 00:31:53.076 But it is and they have the same,

NOTE Confidence: 0.90901923

 $00:31:53.080 \longrightarrow 00:31:53.457$ Umm,

NOTE Confidence: 0.90901923

00:31:53.457 --> 00:31:55.342 so they are technical duplicates

 $00:31:55.342 \longrightarrow 00:31:56.850$ and they are removed.

NOTE Confidence: 0.90901923

 $00:31:56.850 \longrightarrow 00:31:57.119$ Well,

NOTE Confidence: 0.90901923

 $00:31:57.119 \longrightarrow 00:31:59.002$ what you want to keep his reads

NOTE Confidence: 0.90901923

 $00{:}31{:}59.002 \dashrightarrow 00{:}32{:}00.310$ from separator marine molecules

NOTE Confidence: 0.90901923

 $00:32:00.310 \longrightarrow 00:32:02.085$ transcribed from the same gene?

NOTE Confidence: 0.90901923

 $00:32:02.090 \longrightarrow 00:32:03.824$ Because these will have the same

NOTE Confidence: 0.90901923

 $00:32:03.824 \longrightarrow 00:32:06.088$ C DNA but will have a different.

NOTE Confidence: 0.90901923

00:32:06.090 --> 00:32:06.413 Umm,

NOTE Confidence: 0.90901923

 $00:32:06.413 \longrightarrow 00:32:08.351$ I so these are biological duplicates

NOTE Confidence: 0.90901923

 $00:32:08.351 \longrightarrow 00:32:10.398$ and they are kept so they are.

NOTE Confidence: 0.90901923

 $00:32:10.400 \longrightarrow 00:32:13.538$ My is a method to reduce

NOTE Confidence: 0.90901923

 $00:32:13.538 \longrightarrow 00:32:15.107$ the amplification noise.

NOTE Confidence: 0.90901923

 $00:32:15.110 \longrightarrow 00:32:16.710$ This is a graphical example

NOTE Confidence: 0.90901923

 $00:32:16.710 \longrightarrow 00:32:17.670$ of the importance,

NOTE Confidence: 0.90901923

 $00:32:17.670 \longrightarrow 00:32:19.416$ so this is an example where

 $00:32:19.416 \longrightarrow 00:32:21.190$ you have a reference sequence,

NOTE Confidence: 0.90901923

 $00:32:21.190 \longrightarrow 00:32:23.750$ so this is a region of a gene,

NOTE Confidence: 0.90901923

 $00:32:23.750 \longrightarrow 00:32:25.670$ for example, and in your experiment,

NOTE Confidence: 0.90901923

 $00:32:25.670 \longrightarrow 00:32:27.272$ for example in the same cell

NOTE Confidence: 0.90901923

 $00:32:27.272 \longrightarrow 00:32:28.340$ you get 10 reads

NOTE Confidence: 0.97816813

 $00:32:28.404 \longrightarrow 00:32:29.829$ with identical sequence,

NOTE Confidence: 0.97816813

 $00:32:29.830 \longrightarrow 00:32:32.710$ and so that they align to the same region.

NOTE Confidence: 0.97816813

 $00:32:32.710 \longrightarrow 00:32:35.270$ So if we assume that they are all

NOTE Confidence: 0.97816813

 $00:32:35.270 \dashrightarrow 00:32:37.170$ PCR duplicates, we have to remove

NOTE Confidence: 0.97816813

 $00:32:37.170 \longrightarrow 00:32:39.430$ all of them and keep only one.

NOTE Confidence: 0.97816813

 $00:32:39.430 \longrightarrow 00:32:41.698$ And that means that when we calculate

NOTE Confidence: 0.97816813

 $00:32:41.698 \longrightarrow 00:32:44.389$ the abundance of the gene, if we don't.

NOTE Confidence: 0.97816813

 $00:32:44.389 \longrightarrow 00:32:47.142$ Remove the duplicate. We will say this.

NOTE Confidence: 0.97816813

 $00:32:47.142 \longrightarrow 00:32:49.590$ Gina is his account of 10.

NOTE Confidence: 0.97816813

 $00:32:49.590 \longrightarrow 00:32:52.271$ After the duplication we would say that

NOTE Confidence: 0.97816813

00:32:52.271 --> 00:32:55.378 the gene has account of one because by

00:32:55.378 --> 00:32:58.253 by using this approach we assume that

NOTE Confidence: 0.97816813

 $00:32:58.253 \dashrightarrow 00:33:01.013$ all the duplicates are PCR duplicates.

NOTE Confidence: 0.97816813

 $00:33:01.020 \longrightarrow 00:33:03.468$ If we include the UM eyes,

NOTE Confidence: 0.97816813

 $00:33:03.470 \longrightarrow 00:33:05.098$ we can separate technical

NOTE Confidence: 0.97816813

 $00{:}33{:}05.098 \dashrightarrow 00{:}33{:}06.319$ from biological duplicates.

NOTE Confidence: 0.97816813

 $00:33:06.320 \longrightarrow 00:33:09.983$ So we can use the Umm I hear different.

NOTE Confidence: 0.97816813

 $00:33:09.990 \longrightarrow 00:33:12.252$ Umm eyes are different colors in

NOTE Confidence: 0.97816813

 $00:33:12.252 \longrightarrow 00:33:14.560$ order to group technical duplicates.

NOTE Confidence: 0.97816813

 $00:33:14.560 \longrightarrow 00:33:15.368$ For example,

NOTE Confidence: 0.97816813

00:33:15.368 --> 00:33:18.600 these four at these three and these two,

NOTE Confidence: 0.97816813

 $00{:}33{:}18.600 \dashrightarrow 00{:}33{:}21.018$ but we keep the biological duplicates.

NOTE Confidence: 0.97816813

 $00:33:21.020 \longrightarrow 00:33:22.640$ So in the end,

NOTE Confidence: 0.97816813

 $00:33:22.640 \longrightarrow 00:33:24.260$ instead of collapsing everything,

NOTE Confidence: 0.97816813

00:33:24.260 --> 00:33:26.666 we can keep four reads because

NOTE Confidence: 0.97816813

00:33:26.666 --> 00:33:28.700 they having four different mice,

 $00:33:28.700 \longrightarrow 00:33:31.082$ they probably correspond to four different

NOTE Confidence: 0.97816813

 $00{:}33{:}31.082 \dashrightarrow 00{:}33{:}33.140$ original molecules in our sample.

NOTE Confidence: 0.97642732

 $00:33:38.540 \longrightarrow 00:33:43.246$ Is everything clear? Do you? Hear me

NOTE Confidence: 0.97642732

00:33:43.246 --> 00:33:45.150 I don't have interaction. Yes, yes.

NOTE Confidence: 0.99074006

 $00:33:47.220 \longrightarrow 00:33:47.900 \text{ Yes, OK.}$

NOTE Confidence: 0.963889

 $00:33:50.020 \longrightarrow 00:33:52.540$ OK, so that's why you use the cell

NOTE Confidence: 0.963889

 $00:33:52.540 \longrightarrow 00:33:55.268$ barcode to identify the cell you use it.

NOTE Confidence: 0.963889

 $00:33:55.270 \longrightarrow 00:33:57.388$ Umm, I to remove technical duplicates

NOTE Confidence: 0.963889

 $00{:}33{:}57.388 \dashrightarrow 00{:}33{:}59.800$ and that's why instead of counter matrix

NOTE Confidence: 0.963889

 $00:33:59.800 \longrightarrow 00:34:01.984$ you can find also instead of number

NOTE Confidence: 0.963889

 $00:34:02.046 \dashrightarrow 00:34:04.494$ of reads you can find in single cell

NOTE Confidence: 0.963889

 $00:34:04.494 \longrightarrow 00:34:06.354$ experiments the number of UM eyes,

NOTE Confidence: 0.963889

 $00:34:06.354 \longrightarrow 00:34:07.909$ because basically what you are

NOTE Confidence: 0.963889

 $00{:}34{:}07.909 \dashrightarrow 00{:}34{:}09.699$ doing you are collapsing reads,

NOTE Confidence: 0.963889

 $00:34:09.700 \longrightarrow 00:34:11.350$ the transcribed so mapping to

NOTE Confidence: 0.963889

 $00:34:11.350 \longrightarrow 00:34:13.640$ the same gene and with the same.

 $00:34:13.640 \longrightarrow 00:34:17.880$ Umm I. And after you do all these

NOTE Confidence: 0.963889

 $00:34:17.880 \longrightarrow 00:34:19.611$ steps that you can, uh,

NOTE Confidence: 0.963889

00:34:19.611 --> 00:34:21.597 you can arrive to your account

NOTE Confidence: 0.963889

 $00:34:21.597 \longrightarrow 00:34:23.479$ metrics in the single cell.

NOTE Confidence: 0.963889

 $00{:}34{:}23.480 \dashrightarrow 00{:}34{:}25.230$ It's called digital expression matrix,

NOTE Confidence: 0.963889

 $00:34:25.230 \longrightarrow 00:34:28.520$ because it represents the number of reads

NOTE Confidence: 0.963889

00:34:28.520 --> 00:34:32.378 mapping to 1 gene in each of your cells.

NOTE Confidence: 0.963889

 $00:34:32.380 \longrightarrow 00:34:34.288$ And the other all sequence data

NOTE Confidence: 0.963889

 $00:34:34.288 \longrightarrow 00:34:36.403$ are always end in the balcony

NOTE Confidence: 0.963889

00:34:36.403 --> 00:34:38.348 seeking the fast queue format.

NOTE Confidence: 0.963889

 $00{:}34{:}38.350 \dashrightarrow 00{:}34{:}40.800$ So that's how you receive your sequence.

NOTE Confidence: 0.963889

 $00:34:40.800 \longrightarrow 00:34:42.204$ One of these steps,

NOTE Confidence: 0.963889

 $00:34:42.204 \longrightarrow 00:34:44.310$ in order to quantify the expression,

NOTE Confidence: 0.963889

 $00:34:44.310 \longrightarrow 00:34:47.190$ is that you align not the UMI and the bar

NOTE Confidence: 0.963889

 $00:34:47.261 \longrightarrow 00:34:49.925$ code because those are only technical,

 $00:34:49.930 \longrightarrow 00:34:50.632$ but you.

NOTE Confidence: 0.963889

 $00:34:50.632 \longrightarrow 00:34:52.387$ You align the read corresponding

NOTE Confidence: 0.963889

 $00:34:52.387 \longrightarrow 00:34:53.790$ to your C DNA.

NOTE Confidence: 0.963889

00:34:53.790 --> 00:34:56.058 The alignment tool for single cell

NOTE Confidence: 0.963889

 $00:34:56.058 \longrightarrow 00:34:58.890$ RNA seek are on most all are the

NOTE Confidence: 0.963889

 $00:34:58.890 \longrightarrow 00:35:01.509$ same as the one used for bulk RNA.

NOTE Confidence: 0.963889

 $00:35:01.510 \longrightarrow 00:35:02.330$ Seek a.

NOTE Confidence: 0.963889

 $00:35:02.330 \longrightarrow 00:35:03.560$ So here again,

NOTE Confidence: 0.963889

 $00{:}35{:}03.560 {\:\dashrightarrow\:} 00{:}35{:}05.522$ you see that there are multiple

NOTE Confidence: 0.963889

 $00:35:05.522 \longrightarrow 00:35:07.377$ options and multiple align alignment

NOTE Confidence: 0.963889

 $00{:}35{:}07.377 \dashrightarrow 00{:}35{:}09.317$ tools for different applications.

NOTE Confidence: 0.963889

 $00:35:09.320 \longrightarrow 00:35:10.472$ So for example,

NOTE Confidence: 0.963889

 $00:35:10.472 \longrightarrow 00:35:13.160$ here you see the years of publication.

NOTE Confidence: 0.963889

 $00:35:13.160 \longrightarrow 00:35:14.580$ It's not really updated.

NOTE Confidence: 0.963889

 $00:35:14.580 \longrightarrow 00:35:17.174$ The methods that you see in red

NOTE Confidence: 0.963889

00:35:17.174 --> 00:35:19.508 are the ones that were developed

 $00{:}35{:}19.508 \dashrightarrow 00{:}35{:}21.230$ specifically for any seeker,

NOTE Confidence: 0.963889

 $00{:}35{:}21.230 \dashrightarrow 00{:}35{:}24.278$ and the star that you see here was

NOTE Confidence: 0.963889

 $00:35:24.278 \longrightarrow 00:35:26.987$ developed like it was released in 2012.

NOTE Confidence: 0.963889

 $00:35:26.990 \longrightarrow 00:35:30.131$ So almost ten years ago is one of the

NOTE Confidence: 0.963889

 $00:35:30.131 \longrightarrow 00:35:32.457$ standard alignment tools for back.

NOTE Confidence: 0.963889

 $00:35:32.460 \longrightarrow 00:35:35.309$ Kearney seek, we saw this with Everett.

NOTE Confidence: 0.963889

 $00:35:35.310 \longrightarrow 00:35:37.340$ I think two weeks ago.

NOTE Confidence: 0.963889

 $00:35:37.340 \longrightarrow 00:35:39.788$ It's also the most common tool.

NOTE Confidence: 0.963889

 $00:35:39.790 \longrightarrow 00:35:42.226$ The default tools in many single

NOTE Confidence: 0.963889

00:35:42.226 --> 00:35:43.038 cell pipelines.

NOTE Confidence: 0.963889

 $00:35:43.040 \longrightarrow 00:35:45.735$ So almost all of them will use

NOTE Confidence: 0.963889

00:35:45.735 --> 00:35:48.329 star or high SAT or another.

NOTE Confidence: 0.963889

00:35:48.330 --> 00:35:49.506 Ernie Caecum, splines,

NOTE Confidence: 0.963889

00:35:49.506 --> 00:35:51.466 aware aligner tool in order

NOTE Confidence: 0.963889

 $00:35:51.466 \longrightarrow 00:35:53.219$ to perform the alignment,

 $00:35:53.220 \longrightarrow 00:35:55.662$ so this is not so different

NOTE Confidence: 0.963889

00:35:55.662 --> 00:35:57.290 from the balcony sick.

NOTE Confidence: 0.963889

00:35:57.290 --> 00:35:57.700 Also,

NOTE Confidence: 0.963889

 $00:35:57.700 \longrightarrow 00:35:59.750$ the alignment output that you

NOTE Confidence: 0.963889

 $00:35:59.750 \longrightarrow 00:36:02.526$ receive will be a bum file, so.

NOTE Confidence: 0.963889

 $00{:}36{:}02.526 \dashrightarrow 00{:}36{:}05.018$ This is a file where each original

NOTE Confidence: 0.963889

 $00:36:05.018 \longrightarrow 00:36:06.528$ reader containers the information

NOTE Confidence: 0.963889

 $00:36:06.528 \longrightarrow 00:36:09.097$ on the alignment so it contains the.

NOTE Confidence: 0.963889

 $00:36:09.100 \longrightarrow 00:36:10.900$ This file contains the coordinate,

NOTE Confidence: 0.963889

 $00:36:10.900 \longrightarrow 00:36:13.054$ so the chromosome and the genomic

NOTE Confidence: 0.963889

 $00{:}36{:}13.054 \dashrightarrow 00{:}36{:}14.490$ coordinator of the alignment,

NOTE Confidence: 0.963889

 $00:36:14.490 \longrightarrow 00:36:16.583$ and you need to use this file

NOTE Confidence: 0.963889

 $00{:}36{:}16.583 \dashrightarrow 00{:}36{:}18.672$ in order to calculate the number

NOTE Confidence: 0.963889

 $00:36:18.672 \longrightarrow 00:36:21.276$ of reads that map to each gene

NOTE Confidence: 0.963889

 $00:36:21.353 \longrightarrow 00:36:22.739$ or each transcript.

NOTE Confidence: 0.963889

 $00:36:22.740 \longrightarrow 00:36:24.882$ So also this is not different

 $00:36:24.882 \longrightarrow 00:36:27.049$ from the bunker and a secret.

NOTE Confidence: 0.963889

 $00:36:27.050 \longrightarrow 00:36:28.980$ The only difference is for

NOTE Confidence: 0.963889

 $00:36:28.980 \longrightarrow 00:36:31.450$ example you can have a different

NOTE Confidence: 0.963889

 $00:36:31.450 \longrightarrow 00:36:33.745$ band files for each cell.

NOTE Confidence: 0.963889

 $00:36:33.750 \longrightarrow 00:36:35.660$ Instead of only one bonfire.

NOTE Confidence: 0.95616823

 $00:36:38.160 \longrightarrow 00:36:40.680$ OK, so we what we covered so far is the

NOTE Confidence: 0.95616823

00:36:40.751 --> 00:36:43.330 first data preprocessing, so again we

NOTE Confidence: 0.95616823

 $00{:}36{:}43.330 \dashrightarrow 00{:}36{:}45.940$ have cell barcode you MI and the RNA.

NOTE Confidence: 0.95616823

 $00:36:45.940 \longrightarrow 00:36:48.292$ You cluster cell according to your cluster

NOTE Confidence: 0.95616823

 $00:36:48.292 \longrightarrow 00:36:50.799$ reads according to the cell you simplify you,

NOTE Confidence: 0.95616823

 $00{:}36{:}50.800 \dashrightarrow 00{:}36{:}52.558$ you remove technical duplicates and you

NOTE Confidence: 0.95616823

 $00:36:52.558 \longrightarrow 00:36:54.679$ arrive to your gene expression matrix.

NOTE Confidence: 0.95616823

 $00{:}36{:}54.680 \dashrightarrow 00{:}36{:}56.228$ Your digital expression matrix.

NOTE Confidence: 0.95616823

 $00:36:56.228 \longrightarrow 00:36:58.550$ Now a big difference between account

NOTE Confidence: 0.95616823

 $00:36:58.616 \longrightarrow 00:37:00.936$ data that you can obtain it back versus

 $00:37:00.936 \longrightarrow 00:37:02.777$ single cell is what you see here.

NOTE Confidence: 0.95616823

 $00:37:02.780 \dashrightarrow 00:37:05.700$ So this is a typical account matrix from

NOTE Confidence: 0.95616823

 $00:37:05.700 \longrightarrow 00:37:08.835$ a balcony sick and you can see the number.

NOTE Confidence: 0.95616823

 $00:37:08.840 \longrightarrow 00:37:12.818$ Are very high and rarely you see zero values.

NOTE Confidence: 0.95616823

 $00:37:12.820 \longrightarrow 00:37:14.806$ The single cell RNA seek are.

NOTE Confidence: 0.95616823

 $00:37:14.810 \longrightarrow 00:37:17.798$ These is what you obtain most of the time.

NOTE Confidence: 0.95616823

 $00:37:17.800 \longrightarrow 00:37:20.456$ I would say this is a very good.

NOTE Confidence: 0.95616823

 $00:37:20.460 \longrightarrow 00:37:21.676$ It is very high.

NOTE Confidence: 0.95616823

 $00:37:21.676 \dashrightarrow 00:37:24.769$ Is an example with a low amount of zeros.

NOTE Confidence: 0.95616823

 $00:37:24.770 \longrightarrow 00:37:28.460$ So what you can see is that the numbers are

NOTE Confidence: 0.95616823

 $00:37:28.550 \longrightarrow 00:37:31.894$ lower and most of the values are zeros.

NOTE Confidence: 0.95616823

 $00:37:31.900 \longrightarrow 00:37:34.820$ So the fact that you have lower counts,

NOTE Confidence: 0.95616823

 $00:37:34.820 \longrightarrow 00:37:37.298$ it means that in all your analysis

NOTE Confidence: 0.95616823

 $00:37:37.298 \longrightarrow 00:37:39.627$ you will have a higher contribution

NOTE Confidence: 0.95616823

00:37:39.627 --> 00:37:42.413 of noise and this will bring you

NOTE Confidence: 0.95616823

 $00{:}37{:}42.489 \dashrightarrow 00{:}37{:}45.069$ to a higher uncertainty in results.

 $00:37:45.070 \longrightarrow 00:37:47.625$ And if this is a big problem,

NOTE Confidence: 0.95616823

 $00:37:47.630 \longrightarrow 00:37:49.814$ it means that when you choose

NOTE Confidence: 0.95616823

 $00:37:49.814 \longrightarrow 00:37:50.906$ among different pipelines,

NOTE Confidence: 0.95616823

 $00:37:50.910 \longrightarrow 00:37:54.036$ you will have very different results.

NOTE Confidence: 0.95616823

 $00:37:54.040 \longrightarrow 00:37:56.176$ And but the origin of these is that.

NOTE Confidence: 0.966423

00:37:58.560 --> 00:37:59.910 Your original values,

NOTE Confidence: 0.966423

 $00:37:59.910 \longrightarrow 00:38:02.160$ your original quantification of expression

NOTE Confidence: 0.966423

 $00:38:02.160 \longrightarrow 00:38:04.714$ values were generally very low and so

NOTE Confidence: 0.966423

 $00:38:04.714 \longrightarrow 00:38:06.790$ the contribution of noise is higher.

NOTE Confidence: 0.966423

 $00:38:06.790 \dashrightarrow 00:38:09.662$ So this problem is one of the main

NOTE Confidence: 0.966423

00:38:09.662 --> 00:38:12.301 problem in single cell RNA seek and

NOTE Confidence: 0.966423

 $00:38:12.301 \dashrightarrow 00:38:15.419$ at the moment is kind of unavoidable.

NOTE Confidence: 0.966423

 $00{:}38{:}15.420 \dashrightarrow 00{:}38{:}18.138$ I would say the second probably

NOTE Confidence: 0.966423

 $00:38:18.138 \longrightarrow 00:38:20.580$ is you have several zeros.

NOTE Confidence: 0.966423

 $00:38:20.580 \longrightarrow 00:38:24.408$ And some of these zeros are.

 $00:38:24.410 \longrightarrow 00:38:26.420$ Real zeros, meaning that in fact

NOTE Confidence: 0.966423

 $00:38:26.420 \longrightarrow 00:38:28.790$ sell the gene is not expressed,

NOTE Confidence: 0.966423

 $00:38:28.790 \longrightarrow 00:38:30.640$ so this corresponds to through

NOTE Confidence: 0.966423

 $00:38:30.640 \longrightarrow 00:38:32.120$ biological zeros they represent

NOTE Confidence: 0.966423

 $00:38:32.120 \longrightarrow 00:38:33.900$ the true lack of expression,

NOTE Confidence: 0.966423

 $00:38:33.900 \longrightarrow 00:38:35.904$ but many times the zeros represent

NOTE Confidence: 0.966423

 $00:38:35.904 \longrightarrow 00:38:37.920$ a technical lack of detection,

NOTE Confidence: 0.966423

 $00:38:37.920 \longrightarrow 00:38:39.740$ meaning that the gene was

NOTE Confidence: 0.966423

00:38:39.740 --> 00:38:41.196 present in your cell,

NOTE Confidence: 0.966423

 $00:38:41.200 \longrightarrow 00:38:44.120$ but it was not detected because it was.

NOTE Confidence: 0.966423

 $00{:}38{:}44.120 \dashrightarrow 00{:}38{:}46.675$ It was not captured by your Beda,

NOTE Confidence: 0.966423

00:38:46.680 --> 00:38:49.326 and so you don't have a way to see

NOTE Confidence: 0.966423

 $00:38:49.326 \dashrightarrow 00:38:52.040$ your gene because you didn't detect

NOTE Confidence: 0.966423

00:38:52.040 --> 00:38:54.380 it in your library preparation.

NOTE Confidence: 0.966423

00:38:54.380 --> 00:38:55.072 And obviously,

NOTE Confidence: 0.966423

00:38:55.072 --> 00:38:57.494 in methods where you have a a

 $00:38:57.494 \longrightarrow 00:38:59.797$ low coverage inside each cell,

NOTE Confidence: 0.966423

 $00:38:59.800 \longrightarrow 00:39:01.730$ the probability of these technical

NOTE Confidence: 0.966423

 $00:39:01.730 \longrightarrow 00:39:03.274$ detection lack of detection.

NOTE Confidence: 0.966423

 $00:39:03.280 \longrightarrow 00:39:05.210$ This is also called dropout

NOTE Confidence: 0.966423

 $00:39:05.210 \longrightarrow 00:39:06.754$ effect is very high,

NOTE Confidence: 0.966423

 $00:39:06.760 \longrightarrow 00:39:10.243$ so I think in the 10X approaches the dropout.

NOTE Confidence: 0.966423

 $00:39:10.250 \longrightarrow 00:39:13.362$ If you can expect your jeans to be

NOTE Confidence: 0.966423

 $00:39:13.362 \longrightarrow 00:39:15.680$ not detected with 80% of probability.

NOTE Confidence: 0.966423

 $00:39:15.680 \longrightarrow 00:39:17.655$ Obviously this depends also on

NOTE Confidence: 0.966423

 $00:39:17.655 \longrightarrow 00:39:20.013$ whether the gene is highly expressed

NOTE Confidence: 0.966423

 $00:39:20.013 \longrightarrow 00:39:21.853$ or as low expression level.

NOTE Confidence: 0.966423

 $00:39:21.860 \longrightarrow 00:39:25.076$ So if a gene has high expression level.

NOTE Confidence: 0.966423

 $00{:}39{:}25.080 {\:{\mbox{--}}\!>}\ 00{:}39{:}27.060$ Capability to be detected at least

NOTE Confidence: 0.966423

 $00:39:27.060 \longrightarrow 00:39:28.860$ with one molecule is higher,

NOTE Confidence: 0.966423

 $00:39:28.860 \longrightarrow 00:39:30.930$ but jeans with low expression levels,

 $00:39:30.930 \longrightarrow 00:39:32.302$ for example transcription factors,

NOTE Confidence: 0.966423

 $00:39:32.302 \longrightarrow 00:39:33.674$ will rarely be detected,

NOTE Confidence: 0.966423

 $00:39:33.680 \longrightarrow 00:39:36.080$ but most of the times it will be

NOTE Confidence: 0.966423

 $00:39:36.080 \longrightarrow 00:39:38.148$ because of a detection problem,

NOTE Confidence: 0.966423

 $00:39:38.150 \longrightarrow 00:39:40.214$ not because they are not expressed

NOTE Confidence: 0.966423

 $00:39:40.214 \longrightarrow 00:39:41.246$ in the cell.

NOTE Confidence: 0.966423

 $00:39:41.250 \longrightarrow 00:39:43.170$ And also this is inherent problem

NOTE Confidence: 0.966423

 $00:39:43.170 \longrightarrow 00:39:45.379$ with a single cell data analysis.

NOTE Confidence: 0.966423

 $00:39:45.380 \longrightarrow 00:39:47.810$ So it's very important to.

NOTE Confidence: 0.966423

 $00:39:47.810 \longrightarrow 00:39:48.290$ Doodle

NOTE Confidence: 0.89605373

 $00{:}39{:}50.780 --> 00{:}39{:}51.730$ uh no.

NOTE Confidence: 0.97740066

 $00:39:54.800 \longrightarrow 00:39:57.747$ No, yes, so now we wouldn't be

NOTE Confidence: 0.97740066

 $00:39:57.747 \longrightarrow 00:40:01.358$ ready at the end of the of the time.

NOTE Confidence: 0.97740066

 $00:40:01.360 \longrightarrow 00:40:03.850$ So one thing we could do is I I could

NOTE Confidence: 0.97740066

 $00{:}40{:}03.925 \dashrightarrow 00{:}40{:}06.217$ continue and finish the next time.

NOTE Confidence: 0.9750521

 $00{:}40{:}09.040 \dashrightarrow 00{:}40{:}10.660$ With the remaining of the analysis

00:40:10.660 --> 00:40:12.280 steps, sure, yeah, I think Tom,

NOTE Confidence: 0.9750521

00:40:12.280 --> 00:40:13.630 it's your own judgment to

NOTE Confidence: 0.9750521

 $00:40:13.630 \longrightarrow 00:40:14.980$ how you want to proceed.

NOTE Confidence: 0.9750521

00:40:14.980 --> 00:40:17.410 Like do you think it is a natural stuff?

NOTE Confidence: 0.9750521

00:40:17.410 --> 00:40:19.146 Then you can stop if you think

NOTE Confidence: 0.9750521

00:40:19.146 --> 00:40:21.190 you want to cover 5 more minutes,

NOTE Confidence: 0.9750521

 $00:40:21.190 \longrightarrow 00:40:22.810$ go ahead and do that so.

NOTE Confidence: 0.8701443

 $00{:}40{:}24.210 \dashrightarrow 00{:}40{:}26.937$ I can give you like a sort of anticipation

NOTE Confidence: 0.8701443

 $00:40:26.937 \longrightarrow 00:40:29.130$ on the on the following steps.

NOTE Confidence: 0.8701443

 $00:40:29.130 \longrightarrow 00:40:33.106$ So uhm, many of these steps that.

NOTE Confidence: 0.8701443

00:40:33.110 --> 00:40:36.334 I mean, many, many of these steps II

NOTE Confidence: 0.8701443

 $00:40:36.334 \longrightarrow 00:40:38.856$ took inspiration from this review that

NOTE Confidence: 0.8701443

 $00{:}40{:}38.856 \dashrightarrow 00{:}40{:}41.930$ was recently published in a true method.

NOTE Confidence: 0.8701443

 $00:40:41.930 \longrightarrow 00:40:44.450$ So it covers the main trials.

NOTE Confidence: 0.8701443

 $00:40:44.450 \longrightarrow 00:40:47.084$ So the successes and also the

 $00:40:47.084 \longrightarrow 00:40:48.840$ limitations of the computational

NOTE Confidence: 0.8701443

 $00{:}40{:}48.913 \dashrightarrow 00{:}40{:}51.121$ methods for the single cell RNA

NOTE Confidence: 0.8701443

 $00:40:51.121 \longrightarrow 00:40:53.994$ seek analysis and so next time we'll

NOTE Confidence: 0.8701443

 $00:40:53.994 \longrightarrow 00:40:56.204$ cover the key preprocessing steps.

NOTE Confidence: 0.8701443

 $00:40:56.210 \longrightarrow 00:40:59.150$ We have seen this the molecular counting,

NOTE Confidence: 0.8701443

 $00:40:59.150 \longrightarrow 00:41:00.718$ but we will see.

NOTE Confidence: 0.8701443

00:41:00.718 --> 00:41:03.930 So how we can do quality control?

NOTE Confidence: 0.8701443

 $00:41:03.930 \longrightarrow 00:41:06.426$ Remove Excel said that are suspicious,

NOTE Confidence: 0.8701443

 $00{:}41{:}06.430 {\:\dashrightarrow\:} 00{:}41{:}09.146$ for example because they are dying or

NOTE Confidence: 0.8701443

 $00:41:09.146 \longrightarrow 00:41:11.714$ because they represent the empty droplets

NOTE Confidence: 0.8701443

 $00{:}41{:}11.714 \dashrightarrow 00{:}41{:}13.939$ or because they represented tablets.

NOTE Confidence: 0.8701443

00:41:13.940 --> 00:41:16.698 So doublets occur when you didn't really

NOTE Confidence: 0.8701443

 $00:41:16.698 \longrightarrow 00:41:19.359$ manage to separate physically the cells.

NOTE Confidence: 0.8701443

 $00:41:19.360 \longrightarrow 00:41:21.808$ So there for example in the

NOTE Confidence: 0.8701443

00:41:21.808 --> 00:41:24.359 same droplet you have two cells,

NOTE Confidence: 0.8701443

 $00:41:24.360 \longrightarrow 00:41:27.174$ or for some reason the cell barcode

 $00{:}41{:}27.174 \dashrightarrow 00{:}41{:}29.778$ of two different cells was shared.

NOTE Confidence: 0.8701443

00:41:29.780 --> 00:41:31.548 For some technical problem,

NOTE Confidence: 0.8701443

 $00:41:31.548 \longrightarrow 00:41:34.200$ so we'll see methods to remove.

NOTE Confidence: 0.8701443

00:41:34.200 --> 00:41:37.072 Dying cell and those who tablets then there

NOTE Confidence: 0.8701443

 $00:41:37.072 \longrightarrow 00:41:39.719$ are problems related to the normalization.

NOTE Confidence: 0.8701443

00:41:39.720 --> 00:41:42.107 So how to consider how to consider

NOTE Confidence: 0.8701443

 $00:41:42.107 \longrightarrow 00:41:44.745$ the fact that you have a different

NOTE Confidence: 0.8701443

 $00{:}41{:}44.745 \dashrightarrow 00{:}41{:}47.049$ read different number of reads in

NOTE Confidence: 0.8701443

 $00:41:47.125 \longrightarrow 00:41:50.212$ different cells and this is a problem

NOTE Confidence: 0.8701443

 $00:41:50.212 \longrightarrow 00:41:52.326$ because the biologically speaking you

NOTE Confidence: 0.8701443

 $00{:}41{:}52.326 \rightarrow 00{:}41{:}55.077$ expect the cell of different types to

NOTE Confidence: 0.8701443

00:41:55.077 --> 00:41:57.835 have a different amount over in Asia,

NOTE Confidence: 0.8701443

 $00{:}41{:}57.840 \dashrightarrow 00{:}42{:}00.493$ so expect some cells you have more

NOTE Confidence: 0.8701443

 $00:42:00.493 \longrightarrow 00:42:02.570$ any molecules than other cells,

NOTE Confidence: 0.8701443

 $00:42:02.570 \longrightarrow 00:42:04.760$ but most of the methods.

 $00:42:04.760 \longrightarrow 00:42:07.644$ Assume that you needed to have to

NOTE Confidence: 0.8701443

 $00{:}42{:}07.644 \dashrightarrow 00{:}42{:}10.956$ have from each cell the same number of

NOTE Confidence: 0.8701443

 $00:42:10.956 \longrightarrow 00:42:14.160$ reads or UMI. And then we will see how.

NOTE Confidence: 0.8701443

 $00:42:14.160 \longrightarrow 00:42:16.720$ So how to remove a jeans that are

NOTE Confidence: 0.8701443

 $00:42:16.720 \longrightarrow 00:42:18.519$ not important in the analysis?

NOTE Confidence: 0.8701443

 $00{:}42{:}18.520 \dashrightarrow 00{:}42{:}20.440$ This is very important because as

NOTE Confidence: 0.8701443

 $00{:}42{:}20.440 \dashrightarrow 00{:}42{:}22.856$ you can imagine in single cell you

NOTE Confidence: 0.8701443

 $00:42:22.856 \longrightarrow 00:42:24.998$ have thousands of genes and also

NOTE Confidence: 0.8701443

 $00:42:24.998 \longrightarrow 00:42:26.220$ thousands of cells are.

NOTE Confidence: 0.8701443

00:42:26.220 --> 00:42:28.677 So your account matrix is very highly

NOTE Confidence: 0.8701443

 $00{:}42{:}28.677 \dashrightarrow 00{:}42{:}31.004$ dimensional and so all of these methods

NOTE Confidence: 0.8701443

00:42:31.004 --> 00:42:33.217 try to reduce the number of cells

NOTE Confidence: 0.8701443

00:42:33.217 --> 00:42:35.251 are keeping only the high quality

NOTE Confidence: 0.8701443

 $00:42:35.251 \longrightarrow 00:42:37.678$ sales but also the number of genes.

NOTE Confidence: 0.8701443

00:42:37.678 --> 00:42:39.438 So reducing like the dimensionality

NOTE Confidence: 0.8701443

 $00:42:39.438 \longrightarrow 00:42:40.628$ of of your data.

 $00:42:45.560 \longrightarrow 00:42:46.360$ Leash.

NOTE Confidence: 0.9874245

 $00{:}42{:}47.930 \dashrightarrow 00{:}42{:}50.898$ That sounds a mazing. I look forward to

NOTE Confidence: 0.9874245

 $00:42:50.900 \longrightarrow 00:42:53.140$ next week. Yeah. And also next week

NOTE Confidence: 0.9874245

00:42:53.140 --> 00:42:55.415 when you see the downstream analysis

NOTE Confidence: 0.9874245

 $00:42:55.415 \longrightarrow 00:42:58.313$ that for example class ring for single

NOTE Confidence: 0.9874245

 $00:42:58.381 \longrightarrow 00:43:01.051$ cell approaches and also trajectory

NOTE Confidence: 0.9874245

 $00:43:01.051 \longrightarrow 00:43:03.187$ possibly also trajectory estimation.

NOTE Confidence: 0.93677676

00:43:04.840 --> 00:43:07.045 Yeah, thanks so much and nothing really.

NOTE Confidence: 0.93677676

 $00:43:07.050 \longrightarrow 00:43:09.493$ Want to comment. Is your your slides

NOTE Confidence: 0.93677676

 $00:43:09.493 \longrightarrow 00:43:12.073$ look very beautiful and I wish all my

NOTE Confidence: 0.93677676

 $00{:}43{:}12.073 \dashrightarrow 00{:}43{:}14.290$ slides and possibly on people in my life.

NOTE Confidence: 0.93677676

 $00:43:14.290 \longrightarrow 00:43:16.495$ There's as well looks as nice when

NOTE Confidence: 0.93677676

 $00{:}43{:}16.500 \dashrightarrow 00{:}43{:}19.036 \; I \; try \; and \; try \; to \; put \; a \; course$

NOTE Confidence: 0.93677676

 $00:43:19.036 \longrightarrow 00:43:21.216$ on this so it's kind of a

NOTE Confidence: 0.93677676

 $00:43:21.220 \longrightarrow 00:43:23.796$ maybe we should use your slides as template.