WEBVTT

NOTE duration: "00:54:09.5640000"

NOTE language:en-us

NOTE Confidence: 0.83569926

 $00:00:00.000 \longrightarrow 00:00:01.810$ Everyone Jeannie Hendrickson I'm one

NOTE Confidence: 0.83569926

00:00:01.810 --> 00:00:04.511 of the Co directors of the enrichment

NOTE Confidence: 0.83569926

 $00:00:04.511 \longrightarrow 00:00:06.566$ program of the Yale Cooperative

NOTE Confidence: 0.83569926

 $00{:}06.566 \dashrightarrow 00{:}00{:}08.729$ Center of Excellence in Hematology.

NOTE Confidence: 0.83569926

 $00{:}00{:}08.730 \longrightarrow 00{:}00{:}11.257$ Very excited to have our first virtual

NOTE Confidence: 0.83569926

00:00:11.257 --> 00:00:13.695 speaker sponsored by the Yale Cooperative

NOTE Confidence: 0.83569926

 $00{:}00{:}13.695 \dashrightarrow 00{:}00{:}15.840$ Center of Excellence in Hematology,

NOTE Confidence: 0.83569926

00:00:15.840 --> 00:00:18.465 but hopefully broadcast to a lot of

NOTE Confidence: 0.83569926

 $00{:}00{:}18.465 \dashrightarrow 00{:}00{:}20.480$ the other cooperative centers of

NOTE Confidence: 0.83569926

 $00:00:20.480 \longrightarrow 00:00:22.946$ excellence in hematology across the US.

NOTE Confidence: 0.83569926

00:00:22.950 --> 00:00:25.362 Whether you're looking at us Live

NOTE Confidence: 0.83569926

 $00:00:25.362 \longrightarrow 00:00:28.245$ Today or virtually on the video that

NOTE Confidence: 0.83569926

00:00:28.245 --> 00:00:30.633 we will eventually post of Mirage.

NOTE Confidence: 0.83569926

00:00:30.640 --> 00:00:32.775 Talk, we're happy that you could join

 $00:00:32.775 \longrightarrow 00:00:34.932$ us today and we're extremely grateful

NOTE Confidence: 0.83569926

00:00:34.932 --> 00:00:37.278 to Doctor Moore of Sokolovsky for

NOTE Confidence: 0.83569926

00:00:37.278 --> 00:00:39.570 being our kind of inaugural speaker,

NOTE Confidence: 0.83569926

 $00:00:39.570 \longrightarrow 00:00:41.490$ virtually for the YCCEH she's a

NOTE Confidence: 0.83569926

 $00:00:41.490 \longrightarrow 00:00:43.258$ professor at the University of

NOTE Confidence: 0.83569926

00:00:43.258 --> 00:00:44.560 Massachusetts Medical Center,

NOTE Confidence: 0.83569926

00:00:44.560 --> 00:00:47.059 she has had quite a distinguished career,

NOTE Confidence: 0.83569926

 $00{:}00{:}47.060 \dashrightarrow 00{:}00{:}48.432$ really discovering fundamental insights

NOTE Confidence: 0.83569926

 $00:00:48.432 \longrightarrow 00:00:51.350$ into Areth row poesis in the process thereof.

NOTE Confidence: 0.83569926

00:00:51.350 --> 00:00:53.130 So again, we're very grateful.

NOTE Confidence: 0.83569926

 $00:00:53.130 \longrightarrow 00:00:55.629$ But she's our inaugural speaker this year.

NOTE Confidence: 0.83569926

 $00:00:55.630 \longrightarrow 00:00:59.200$ The way the web and R is going to work.

NOTE Confidence: 0.83569926

 $00:00:59.200 \longrightarrow 00:01:01.336$ She's going to give her talk.

NOTE Confidence: 0.83569926

 $00:01:01.340 \longrightarrow 00:01:03.839$ Then at the end of her talk,

NOTE Confidence: 0.83569926

 $00:01:03.840 \longrightarrow 00:01:05.036$ if you have questions.

 $00:01:05.036 \longrightarrow 00:01:07.194$ The questions in the chat or in

NOTE Confidence: 0.83569926

 $00:01:07.194 \longrightarrow 00:01:08.709$ the question and answer box.

NOTE Confidence: 0.83569926

 $00{:}01{:}08.710 \dashrightarrow 00{:}01{:}10.481$ I also think I have the option

NOTE Confidence: 0.83569926

 $00:01:10.481 \longrightarrow 00:01:11.780$ to allow you to talk,

NOTE Confidence: 0.83569926

 $00:01:11.780 \longrightarrow 00:01:13.724$ so if you put in the chat you

NOTE Confidence: 0.83569926

00:01:13.724 --> 00:01:15.367 would like to talk in person.

NOTE Confidence: 0.83569926

 $00{:}01{:}15.370 \dashrightarrow 00{:}01{:}16.645$ I can unmute your microphone

NOTE Confidence: 0.83569926

 $00:01:16.645 \longrightarrow 00:01:17.665$ and you can talk.

NOTE Confidence: 0.83569926

 $00:01:17.670 \longrightarrow 00:01:19.385$ So without further ado we will turn

NOTE Confidence: 0.83569926

00:01:19.385 --> 00:01:21.507 it over to Rob and thanks again Rob.

NOTE Confidence: 0.83569926

 $00:01:21.510 \longrightarrow 00:01:22.790$ We're excited to have you.

NOTE Confidence: 0.9007227

 $00:01:24.720 \longrightarrow 00:01:27.130$ Great, thank you so much.

NOTE Confidence: 0.9007227

00:01:27.130 --> 00:01:31.466 I'm truly honored to be invited to this

NOTE Confidence: 0.9007227

 $00:01:31.466 \longrightarrow 00:01:35.427$ forum and excited to tell you about

NOTE Confidence: 0.9007227

 $00:01:35.427 \longrightarrow 00:01:39.300$ the work that we've been doing so.

NOTE Confidence: 0.9007227

 $00{:}01{:}39.300 \dashrightarrow 00{:}01{:}41.538$ I will attempt to start straight away.

 $00{:}01{:}41.540 \dashrightarrow 00{:}01{:}44.168$ Here we go so.

NOTE Confidence: 0.9007227

 $00:01:44.170 \longrightarrow 00:01:47.628$ When we think about the cell cycle,

NOTE Confidence: 0.9007227

 $00:01:47.630 \longrightarrow 00:01:50.330$ we think about a generic program

NOTE Confidence: 0.9007227

 $00:01:50.330 \longrightarrow 00:01:53.308$ whose purpose is to generate more

NOTE Confidence: 0.9007227

 $00:01:53.308 \longrightarrow 00:01:56.028$ cells to increase cell number.

NOTE Confidence: 0.9007227

 $00:01:56.030 \longrightarrow 00:01:59.474$ But when we look at a tissue,

NOTE Confidence: 0.9007227

 $00:01:59.480 \longrightarrow 00:02:01.950$ the cells that are cycling

NOTE Confidence: 0.9007227

 $00:02:01.950 \longrightarrow 00:02:03.926$ I usually transient cell.

NOTE Confidence: 0.9007227

 $00:02:03.930 \longrightarrow 00:02:07.155$ So long term teacher residents

NOTE Confidence: 0.9007227

 $00:02:07.155 \longrightarrow 00:02:09.090$ like terminally differentiated

NOTE Confidence: 0.9007227

 $00:02:09.090 \longrightarrow 00:02:11.490$ cells or stem cells.

NOTE Confidence: 0.9007227

 $00:02:11.490 \longrightarrow 00:02:12.774$ Do not cycle.

NOTE Confidence: 0.9007227

 $00{:}02{:}12.774 \dashrightarrow 00{:}02{:}16.536$ So what does it mean that only transient

NOTE Confidence: 0.9007227

 $00:02:16.536 \longrightarrow 00:02:20.538$ cell states are undergoing cell cycle?

NOTE Confidence: 0.9007227

 $00:02:20.540 \longrightarrow 00:02:22.540$ These cells are continuously

 $00:02:22.540 \longrightarrow 00:02:25.540$ changing the genes that they express

NOTE Confidence: 0.9007227

 $00:02:25.622 \longrightarrow 00:02:28.484$ and our work suggests that they

NOTE Confidence: 0.9007227

 $00:02:28.484 \longrightarrow 00:02:30.392$ are also continuously changing

NOTE Confidence: 0.9007227

 $00:02:30.473 \longrightarrow 00:02:32.825$ the kind of cell cycle program

NOTE Confidence: 0.9007227

 $00:02:32.825 \longrightarrow 00:02:35.764$ that is expressed by these cells.

NOTE Confidence: 0.9007227

 $00:02:35.764 \longrightarrow 00:02:39.174$ It's likely that linear development.

NOTE Confidence: 0.9007227

 $00{:}02{:}39.180 --> 00{:}02{:}41.428$ Had really coevolved with

NOTE Confidence: 0.9007227

 $00:02:41.428 \longrightarrow 00:02:44.238$ modifications in the cell cycle,

NOTE Confidence: 0.9007227

 $00{:}02{:}44.240 \dashrightarrow 00{:}02{:}46.875$ so cell cycle programs probably

NOTE Confidence: 0.9007227

 $00:02:46.875 \longrightarrow 00:02:50.218$ adapted to specific tissue and cell

NOTE Confidence: 0.9007227

 $00{:}02{:}50.218 \mathrel{--}{>} 00{:}02{:}52.670$ cycles and developmental stage,

NOTE Confidence: 0.9007227

 $00:02:52.670 \longrightarrow 00:02:56.149$ and it is possible that in order

NOTE Confidence: 0.9007227

 $00:02:56.149 \longrightarrow 00:02:59.045$ to truly understand how a

NOTE Confidence: 0.9007227

 $00{:}02{:}59.045 \dashrightarrow 00{:}03{:}01.657$ developmental process is regulated,

NOTE Confidence: 0.9007227

 $00:03:01.660 \longrightarrow 00:03:04.900$ we need to understand the

NOTE Confidence: 0.9007227

 $00:03:04.900 \longrightarrow 00:03:08.140$ specifics of its cell cycle.

00:03:08.140 --> 00:03:10.605 So here we're looking at

NOTE Confidence: 0.9007227

 $00{:}03{:}10.605 \dashrightarrow 00{:}03{:}12.577$ the erythroid linear edge.

NOTE Confidence: 0.9007227

00:03:12.580 --> 00:03:15.040 The erythroid developmental trajectory

NOTE Confidence: 0.9007227

 $00:03:15.040 \longrightarrow 00:03:18.115$ has two phases earlier through

NOTE Confidence: 0.9007227

 $00:03:18.115 \longrightarrow 00:03:21.159$ pieces and terminal differentiation.

NOTE Confidence: 0.9007227

00:03:21.160 --> 00:03:23.939 What I'll show you today is that

NOTE Confidence: 0.9007227

 $00:03:23.939 \longrightarrow 00:03:26.466$ the cell cycle throughout this

NOTE Confidence: 0.9007227

00:03:26.466 --> 00:03:29.591 process varies in logs lockstep

NOTE Confidence: 0.9007227

 $00:03:29.591 \longrightarrow 00:03:32.378$ with differentiation stage both in

NOTE Confidence: 0.9007227

00:03:32.378 --> 00:03:34.850 terms of the cell cycle length,

NOTE Confidence: 0.9007227

 $00:03:34.850 \longrightarrow 00:03:38.860$ which here is represented vertically.

NOTE Confidence: 0.9007227

 $00:03:38.860 \longrightarrow 00:03:41.625$ And in terms of the ratio of

NOTE Confidence: 0.9007227

 $00{:}03{:}41.625 \dashrightarrow 00{:}03{:}44.429$ S phase to the gap phases.

NOTE Confidence: 0.9007227

 $00:03:44.430 \longrightarrow 00:03:49.155$ So how did we set out on this question?

NOTE Confidence: 0.9007227

 $00:03:49.160 \longrightarrow 00:03:51.790$ We started out by asking.

 $00:03:54.040 \longrightarrow 00:03:57.010$ One question and that was how is a recruit

NOTE Confidence: 0.82816005

 $00:03:57.010 \longrightarrow 00:03:59.089$ terminal differentiation activated?

NOTE Confidence: 0.82816005

 $00:03:59.090 \longrightarrow 00:04:01.813$ We know that in earlier it releases

NOTE Confidence: 0.82816005

 $00:04:01.813 \longrightarrow 00:04:04.399$ we have progenitors that are already

NOTE Confidence: 0.82816005

00:04:04.399 --> 00:04:07.087 committed to their way through drainage,

NOTE Confidence: 0.82816005

00:04:07.090 --> 00:04:10.386 but that are not expressing any of the

NOTE Confidence: 0.82816005

 $00:04:10.386 \longrightarrow 00:04:13.408$ jeans that are present in red cells.

NOTE Confidence: 0.82816005

 $00:04:13.410 \longrightarrow 00:04:16.068$ At some point these progenitors undergo

NOTE Confidence: 0.82816005

 $00:04:16.068 \longrightarrow 00:04:18.690$ a selfhacked decision that switches on

NOTE Confidence: 0.82816005

00:04:18.690 --> 00:04:21.406 this specific program of red cell genes,

NOTE Confidence: 0.82816005

 $00:04:21.410 \longrightarrow 00:04:25.505$ and so the question is how does that happen?

NOTE Confidence: 0.82816005

00:04:25.510 --> 00:04:28.312 Of course, many labs are addressing

NOTE Confidence: 0.82816005

 $00:04:28.312 \longrightarrow 00:04:31.794$ this question, and the angle that

NOTE Confidence: 0.82816005

 $00:04:31.794 \longrightarrow 00:04:34.974$ we had was to ask.

NOTE Confidence: 0.82816005

 $00:04:34.980 \longrightarrow 00:04:37.836$ Can we identify the cell in

NOTE Confidence: 0.82816005

 $00:04:37.836 \longrightarrow 00:04:39.740$ which this activation happens?

 $00:04:39.740 \longrightarrow 00:04:44.540$ Our model system is the mouse fetal liver.

NOTE Confidence: 0.82816005

00:04:44.540 --> 00:04:46.192 And and that was,

NOTE Confidence: 0.82816005

 $00:04:46.192 \longrightarrow 00:04:49.141$ we also have experiments that show you

NOTE Confidence: 0.82816005

00:04:49.141 --> 00:04:52.245 later on in the mouse adult bone marrow.

NOTE Confidence: 0.82816005

 $00:04:52.250 \longrightarrow 00:04:54.658$ The fetal liver is a great system for

NOTE Confidence: 0.82816005

 $00{:}04{:}54.658 \dashrightarrow 00{:}04{:}57.339$ working in original places because over 90%

NOTE Confidence: 0.82816005

 $00:04:57.340 \longrightarrow 00:05:00.628$ of the cells of the erythroid Lenny Edge.

NOTE Confidence: 0.82816005

 $00:05:00.630 \longrightarrow 00:05:04.356$ So we have two cells of his markers cities.

NOTE Confidence: 0.82816005

 $00:05:04.360 \longrightarrow 00:05:06.796$ Have anyone until 119 with just

NOTE Confidence: 0.82816005

 $00{:}05{:}06.796 \dashrightarrow 00{:}05{:}09.692$ these two markers we can divide the

NOTE Confidence: 0.82816005

 $00:05:09.692 \longrightarrow 00:05:12.478$ fetal liver into a number of subsets

NOTE Confidence: 0.82816005

 $00:05:12.558 \longrightarrow 00:05:15.288$ that form a developmental sequence.

NOTE Confidence: 0.82816005

 $00:05:15.290 \longrightarrow 00:05:18.722$ So we find that in the S node

NOTE Confidence: 0.82816005

00:05:18.722 --> 00:05:20.769 subset and S1 subset,

NOTE Confidence: 0.82816005

 $00:05:20.770 \longrightarrow 00:05:23.055$ that's where we see colony

 $00:05:23.055 \longrightarrow 00:05:23.969$ forming progenitors.

NOTE Confidence: 0.82816005

 $00:05:23.970 \longrightarrow 00:05:27.578$ So this is where we see earlier with

NOTE Confidence: 0.82816005

 $00:05:27.578 \longrightarrow 00:05:30.830$ paresis and then in subsets as 22S5,

NOTE Confidence: 0.82816005

 $00:05:30.830 \longrightarrow 00:05:33.634$ we see progressively more

NOTE Confidence: 0.82816005

 $00:05:33.634 \longrightarrow 00:05:35.737$ differentiated erythroid precursors.

NOTE Confidence: 0.82816005

 $00:05:35.740 \longrightarrow 00:05:37.966$ And you can see this also here.

NOTE Confidence: 0.82816005

 $00:05:37.970 \longrightarrow 00:05:40.688$ The colonies that are formed by the S note

NOTE Confidence: 0.82816005

 $00:05:40.688 \longrightarrow 00:05:43.077$ cells and S1 cells are pretty similar.

NOTE Confidence: 0.82816005

 $00:05:43.080 \longrightarrow 00:05:46.616$ We wouldn't be able to tell them apart.

NOTE Confidence: 0.82816005

 $00:05:46.620 \longrightarrow 00:05:48.300$ But two important findings

NOTE Confidence: 0.82816005

 $00:05:48.300 \longrightarrow 00:05:51.200$ suggested to us over 10 years ago.

NOTE Confidence: 0.82816005

 $00:05:51.200 \longrightarrow 00:05:54.520$ Now that the S not see if you,

NOTE Confidence: 0.82816005

 $00:05:54.520 \longrightarrow 00:05:56.600$ we are really quite different

NOTE Confidence: 0.82816005

 $00:05:56.600 \longrightarrow 00:05:58.680$ to the those in S1.

NOTE Confidence: 0.82816005

 $00:05:58.680 \longrightarrow 00:06:00.966$ So the first finding was when

NOTE Confidence: 0.82816005

 $00:06:00.966 \longrightarrow 00:06:03.032$ we examined the fetal livers

 $00{:}06{:}03.032 \dashrightarrow 00{:}06{:}05.337$ of a preceptor knock out cells.

NOTE Confidence: 0.82816005

 $00{:}06{:}05.340 \dashrightarrow 00{:}06{:}08.668$ So here we're looking at two litter mates.

NOTE Confidence: 0.82816005

 $00:06:08.670 \longrightarrow 00:06:10.095$ This was published.

NOTE Confidence: 0.82816005

 $00:06:10.095 \longrightarrow 00:06:13.420$ The knockout was first published by Home

NOTE Confidence: 0.82816005

 $00{:}06{:}13.502 \dashrightarrow 00{:}06{:}16.670$ Grow in the Lodish lab back in 1995 and.

NOTE Confidence: 0.82816005

 $00:06:16.670 \longrightarrow 00:06:20.170$ When we did flow cytometry on the

NOTE Confidence: 0.82816005

 $00:06:20.170 \longrightarrow 00:06:23.308$ fetal livers of embryos from a.

NOTE Confidence: 0.82816005

 $00:06:23.310 \longrightarrow 00:06:26.061$ Some this knockout we found that whilst

NOTE Confidence: 0.82816005

 $00{:}06{:}26.061 \dashrightarrow 00{:}06{:}29.525$ in the wild type number we already see

NOTE Confidence: 0.82816005

 $00:06:29.525 \longrightarrow 00:06:32.420$ cells populating most of these subsets.

NOTE Confidence: 0.82816005

 $00:06:32.420 \longrightarrow 00:06:35.280$ This is Embedded Day 12.5.

NOTE Confidence: 0.82816005

 $00:06:35.280 \longrightarrow 00:06:36.844$ In the perception knockout,

NOTE Confidence: 0.82816005

 $00{:}06{:}36.844 \dashrightarrow 00{:}06{:}39.562$ we see an absolute block at the

NOTE Confidence: 0.82816005

 $00{:}06{:}39.562 \dashrightarrow 00{:}06{:}41.613$ transition from S No 2 S one,

NOTE Confidence: 0.82816005

 $00:06:41.620 \longrightarrow 00:06:44.420$ so that tells us that the transition

00:06:44.420 --> 00:06:47.400 is dependent on a preceptor signaling.

NOTE Confidence: 0.82816005

 $00{:}06{:}47.400 \dashrightarrow 00{:}06{:}50.304$ These few cells that you see over here

NOTE Confidence: 0.82816005

 $00{:}06{:}50.304 \dashrightarrow 00{:}06{:}53.057$ that tagline positive in the IP receptor

NOTE Confidence: 0.82816005

00:06:53.057 --> 00:06:55.800 knockout belong to the yolk SAC limit,

NOTE Confidence: 0.82816005

 $00:06:55.800 \longrightarrow 00:06:57.710$ and they're not part of

NOTE Confidence: 0.82816005

 $00{:}06{:}57.710 \dashrightarrow 00{:}06{:}58.474$ definitive erythropoiesis.

NOTE Confidence: 0.82816005

 $00{:}06{:}58.480 \dashrightarrow 00{:}07{:}00.598$ Now the second kind of experiment

NOTE Confidence: 0.82816005

 $00:07:00.598 \longrightarrow 00:07:03.255$ that we did that told us there's

NOTE Confidence: 0.82816005

 $00{:}07{:}03.255 \dashrightarrow 00{:}07{:}05.589$ something different about S1 and S

NOTE Confidence: 0.82816005

00:07:05.589 --> 00:07:08.029 Note was a cell cycle experiment,

NOTE Confidence: 0.82816005

 $00:07:08.030 \longrightarrow 00:07:11.150$ and here we have a cartoon that illustrates

NOTE Confidence: 0.82816005

 $00:07:11.150 \longrightarrow 00:07:13.478$ typical cell cycle experiment that I'll

NOTE Confidence: 0.82816005

00:07:13.478 --> 00:07:16.809 show you a number of times during my talk,

NOTE Confidence: 0.82816005 00:07:16.810 --> 00:07:17.336 so. NOTE Confidence: 0.82816005

 $00:07:17.336 \longrightarrow 00:07:19.440$ We take a mouse.

NOTE Confidence: 0.82816005

 $00:07:19.440 \longrightarrow 00:07:23.520$ In this case it's a pregnant female and

 $00:07:23.520 \longrightarrow 00:07:27.812$ injected with beyond you and then harvest

NOTE Confidence: 0.82816005

 $00{:}07{:}27.812 \to 00{:}07{:}30.987$ hematopoietic tissue 30 minutes later.

NOTE Confidence: 0.8135519

 $00:07:30.990 \longrightarrow 00:07:33.378$ What we find is 2 things.

NOTE Confidence: 0.8135519

 $00:07:33.380 \longrightarrow 00:07:36.159$ First, we find which cells are positive.

NOTE Confidence: 0.8135519

 $00:07:36.160 \longrightarrow 00:07:38.150$ For Bru, these cells have

NOTE Confidence: 0.8135519

 $00:07:38.150 \longrightarrow 00:07:39.344$ incorporated be audio,

NOTE Confidence: 0.8135519

 $00:07:39.350 \longrightarrow 00:07:42.526$ which is a finding analog into their DNA.

NOTE Confidence: 0.8135519

 $00:07:42.530 \longrightarrow 00:07:45.855$ So these cells are in S phase

NOTE Confidence: 0.8135519

 $00:07:45.855 \longrightarrow 00:07:49.710$ during the 30 minutes of the pulse.

NOTE Confidence: 0.8135519

 $00:07:49.710 \longrightarrow 00:07:51.742$ A second finding. Is.

NOTE Confidence: 0.8135519

 $00:07:51.742 \longrightarrow 00:07:55.309$ Allows us to determine the speed of

NOTE Confidence: 0.8135519

 $00:07:55.309 \longrightarrow 00:07:58.270$ aspects and so we can compare the

NOTE Confidence: 0.8135519

00:07:58.270 --> 00:08:01.807 level of the audio incorporation in

NOTE Confidence: 0.8135519

 $00:08:01.807 \longrightarrow 00:08:05.047$ the cells of different populations.

NOTE Confidence: 0.8135519

 $00:08:05.050 \longrightarrow 00:08:07.876$ Cells that have incorporated less beardi.

 $00:08:07.880 \longrightarrow 00:08:09.848$ You must be synthesizing.

NOTE Confidence: 0.8135519

 $00{:}08{:}09.848 \dashrightarrow 00{:}08{:}12.800$ DNA slower and have a longer

NOTE Confidence: 0.8135519

00:08:12.891 --> 00:08:15.441 essays than cells that incorporate

NOTE Confidence: 0.8135519

 $00:08:15.441 \longrightarrow 00:08:18.540$ the audio at a faster pace,

NOTE Confidence: 0.8135519

 $00:08:18.540 \longrightarrow 00:08:21.245$ and we've confirmed that with

NOTE Confidence: 0.8135519

 $00:08:21.245 \longrightarrow 00:08:23.950$ direct experiments that look that

NOTE Confidence: 0.8135519

 $00:08:24.042 \longrightarrow 00:08:26.874$ use a double family impulse to

NOTE Confidence: 0.8135519

00:08:26.874 --> 00:08:29.630 Measure S phase duration directly.

NOTE Confidence: 0.8135519

 $00{:}08{:}29.630 \dashrightarrow 00{:}08{:}31.933$ And so when we did this experiment

NOTE Confidence: 0.8135519

 $00:08:31.933 \longrightarrow 00:08:34.449$ in the mouse fetal liver here we're

NOTE Confidence: 0.8135519

 $00{:}08{:}34.449 \dashrightarrow 00{:}08{:}37.066$ looking at cells from each of the

NOTE Confidence: 0.8135519

 $00:08:37.066 \longrightarrow 00:08:39.579$ subsets and at the cell cycle status.

NOTE Confidence: 0.8135519

 $00:08:39.580 \longrightarrow 00:08:44.158$ We found 2 interesting things first.

NOTE Confidence: 0.8135519

 $00:08:44.160 \longrightarrow 00:08:47.358$ Whilst about 60% of the cells

NOTE Confidence: 0.8135519

 $00:08:47.358 \longrightarrow 00:08:51.550$ in S nought so these cells are.

NOTE Confidence: 0.8135519

 $00:08:51.550 \longrightarrow 00:08:53.328$ In S phase, at any one time.

 $00:08:53.330 \longrightarrow 00:08:55.990$ So this is a highly replicative tissue.

NOTE Confidence: 0.8135519

 $00:08:55.990 \longrightarrow 00:08:58.356$ When we look at S1 over here,

NOTE Confidence: 0.8135519

 $00:08:58.360 \longrightarrow 00:09:02.890$ nearly all of the cells, 90% in this case.

NOTE Confidence: 0.8135519

 $00:09:02.890 \longrightarrow 00:09:05.305$ Are in S phase of the cycle.

NOTE Confidence: 0.8135519

 $00:09:05.310 \longrightarrow 00:09:08.748$ So that's interesting finding number one.

NOTE Confidence: 0.8135519

 $00:09:08.750 \longrightarrow 00:09:11.330$ And the second finding was that

NOTE Confidence: 0.8135519

 $00:09:11.330 \longrightarrow 00:09:14.409$ the speed of S phase is about

NOTE Confidence: 0.8135519

 $00:09:14.409 \longrightarrow 00:09:16.770$ 50% faster in S phase.

NOTE Confidence: 0.8135519

00:09:16.770 --> 00:09:21.329 Cells that are in S1 compared with S phase

NOTE Confidence: 0.8135519

 $00:09:21.329 \dashrightarrow 00:09:24.934$ cells in the preceding as node subset.

NOTE Confidence: 0.8135519

 $00:09:24.940 \longrightarrow 00:09:27.080$ And so a number of.

NOTE Confidence: 0.8135519

 $00:09:27.080 \longrightarrow 00:09:30.192$ We've done a lot of work on this

NOTE Confidence: 0.8135519

 $00{:}09{:}30.192 \dashrightarrow 00{:}09{:}33.069$ and I'll give you the summary.

NOTE Confidence: 0.8135519

 $00:09:33.070 \longrightarrow 00:09:36.689$ The way that we've interpreted our data.

NOTE Confidence: 0.8135519

 $00:09:36.690 \longrightarrow 00:09:40.461$ Is that the transition from S note to S1

 $00:09:40.461 \longrightarrow 00:09:44.403$ can only happen in S phase of the cycle.

NOTE Confidence: 0.8135519

 $00:09:44.410 \longrightarrow 00:09:47.338$ And this is based on a number of

NOTE Confidence: 0.8135519

 $00:09:47.338 \longrightarrow 00:09:50.046$ experiments where we have arrested as space,

NOTE Confidence: 0.8135519

 $00:09:50.050 \longrightarrow 00:09:51.925$ either genetically or using drugs

NOTE Confidence: 0.8135519

00:09:51.925 --> 00:09:53.425 that inhibit DNA polymerases.

NOTE Confidence: 0.8135519

 $00:09:53.430 \longrightarrow 00:09:55.310$ And when we do that,

NOTE Confidence: 0.8135519

 $00:09:55.310 \longrightarrow 00:09:57.560$ we totally prevent the transition

NOTE Confidence: 0.8135519

 $00:09:57.560 \longrightarrow 00:09:59.810$ from S note to S1.

NOTE Confidence: 0.8135519

 $00:09:59.810 \longrightarrow 00:10:00.170$ And.

NOTE Confidence: 0.8135519

 $00:10:00.170 \longrightarrow 00:10:02.330$ What we prevent isn't simply the

NOTE Confidence: 0.8135519

 $00{:}10{:}02.330 \dashrightarrow 00{:}10{:}04.098$ upregulating I population of city 71,

NOTE Confidence: 0.8135519

 $00:10:04.100 \longrightarrow 00:10:06.424$ which is the marker of this transition,

NOTE Confidence: 0.8135519

 $00:10:06.430 \longrightarrow 00:10:08.422$ but all of the events that

NOTE Confidence: 0.8135519

 $00:10:08.422 \longrightarrow 00:10:09.750$ are associated with it,

NOTE Confidence: 0.8135519

 $00:10:09.750 \longrightarrow 00:10:12.648$ which is the induction activation of

NOTE Confidence: 0.8135519

 $00:10:12.648 \longrightarrow 00:10:14.580$ the array through transcriptional.

 $00:10:14.580 \longrightarrow 00:10:16.988$ Program their research differentiation

NOTE Confidence: 0.8135519

 $00:10:16.988 \longrightarrow 00:10:17.590$ program.

NOTE Confidence: 0.8739649

 $00:10:19.750 \longrightarrow 00:10:22.526$ The second thing that we found and I

NOTE Confidence: 0.8739649

00:10:22.526 --> 00:10:25.409 will talk about that a bit more later,

NOTE Confidence: 0.8739649

 $00:10:25.410 \longrightarrow 00:10:28.641$ running the talk is that S phase at the

NOTE Confidence: 0.8739649

 $00:10:28.641 \longrightarrow 00:10:31.534$ time of this transition is much shorter

NOTE Confidence: 0.8739649

 $00:10:31.534 \longrightarrow 00:10:34.639$ than S phase of preceding cycles.

NOTE Confidence: 0.8739649

 $00{:}10{:}34.640 \dashrightarrow 00{:}10{:}39.661$ OK. And that the actual length of S

NOTE Confidence: 0.8739649

 $00:10:39.661 \longrightarrow 00:10:43.249$ phase is really only about four hours,

NOTE Confidence: 0.8739649

 $00:10:43.250 \longrightarrow 00:10:47.597$ which is pretty short for MA million S phase.

NOTE Confidence: 0.83275175

 $00:10:49.690 \longrightarrow 00:10:52.280$ Now what else is happening at the

NOTE Confidence: 0.83275175

 $00:10:52.280 \longrightarrow 00:10:54.954$ time of this suite at the time

NOTE Confidence: 0.83275175

 $00{:}10{:}54.954 \dashrightarrow 00{:}10{:}57.500$ of transition from S note to S1,

NOTE Confidence: 0.83275175

 $00:10:57.500 \longrightarrow 00:10:59.796$ it turns out that there is a time

NOTE Confidence: 0.83275175

00:10:59.796 --> 00:11:01.814 when we see reconfiguration of

 $00:11:01.814 \longrightarrow 00:11:04.562$ chromating at the beta globin locus.

NOTE Confidence: 0.83275175

 $00:11:04.570 \longrightarrow 00:11:07.315$ We see a change in the timing of replication

NOTE Confidence: 0.83275175

 $00:11:07.315 \longrightarrow 00:11:10.149$ of the locals histone tail modifications.

NOTE Confidence: 0.83275175

 $00:11:10.150 \longrightarrow 00:11:13.158$ We see a loss in DNA methylation beginning

NOTE Confidence: 0.83275175

 $00:11:13.158 \longrightarrow 00:11:16.294$ at the time of this switch and more

NOTE Confidence: 0.83275175

00:11:16.294 --> 00:11:19.287 recent work from Dark Hexes Lab done by.

NOTE Confidence: 0.83275175

 $00{:}11{:}19.290 \dashrightarrow 00{:}11{:}22.212$ Rob Bakery and others have shown

NOTE Confidence: 0.83275175

00:11:22.212 --> 00:11:25.728 that eight acsec and using tiled see,

NOTE Confidence: 0.83275175

 $00{:}11{:}25.730 \dashrightarrow 00{:}11{:}28.820$ we see either changes in chromatin

NOTE Confidence: 0.83275175

00:11:28.820 --> 00:11:30.880 Accessibility promoter enhancer Contacts

NOTE Confidence: 0.83275175

 $00{:}11{:}30.951 \dashrightarrow 00{:}11{:}33.146$ that begin with this transition,

NOTE Confidence: 0.83275175

 $00:11:33.150 \longrightarrow 00:11:36.120$ so this is clearly a key

NOTE Confidence: 0.83275175

00:11:36.120 --> 00:11:37.110 developmental switch.

NOTE Confidence: 0.81380343

 $00{:}11{:}40.210 \dashrightarrow 00{:}11{:}43.899$ I haven't explained a color scheme here.

NOTE Confidence: 0.81380343

 $00:11:43.900 \longrightarrow 00:11:47.320$ What we think is happening is

NOTE Confidence: 0.81380343

 $00:11:47.320 \longrightarrow 00:11:50.324$ that CF uer undergoing expansion

 $00:11:50.324 \longrightarrow 00:11:53.990$ whilst in the S North subset.

NOTE Confidence: 0.81380343

 $00{:}11{:}53.990 \dashrightarrow 00{:}11{:}58.142$ And then the very last generation of CFUE

NOTE Confidence: 0.81380343

 $00:11:58.142 \longrightarrow 00:12:02.476$ starts its life in the S note subset in G1.

NOTE Confidence: 0.81380343

 $00:12:02.480 \longrightarrow 00:12:05.798$ When it enters this specialized short space,

NOTE Confidence: 0.81380343

 $00:12:05.800 \longrightarrow 00:12:09.229$ it is at it up. Regulates city 71.

NOTE Confidence: 0.81380343

 $00:12:09.229 \longrightarrow 00:12:11.700$ And it is at that point that

NOTE Confidence: 0.81380343

 $00:12:11.783 \longrightarrow 00:12:13.589$ it undergoes commitment.

NOTE Confidence: 0.81380343

 $00:12:13.590 \longrightarrow 00:12:14.962$ The progeny of DCF.

NOTE Confidence: 0.81380343

 $00:12:14.962 \longrightarrow 00:12:17.330$ UE will no longer be safe UE.

NOTE Confidence: 0.81380343

00:12:17.330 --> 00:12:19.160 They will be priority through

NOTE Confidence: 0.81380343

 $00:12:19.160 \longrightarrow 00:12:22.324$ blast in the race for blast that

NOTE Confidence: 0.81380343

 $00:12:22.324 \longrightarrow 00:12:24.217$ undergo terminal differentiation.

NOTE Confidence: 0.81380343

 $00:12:24.220 \longrightarrow 00:12:27.100$ So when we asked next is is this

NOTE Confidence: 0.81380343

00:12:27.100 --> 00:12:30.168 CFU E2E TD transition true sweet?

NOTE Confidence: 0.81380343

 $00:12:30.170 \longrightarrow 00:12:33.354$ So it's all very well and good if

 $00:12:33.354 \longrightarrow 00:12:36.896$ we take all of us not cells and all

NOTE Confidence: 0.81380343

 $00:12:36.896 \longrightarrow 00:12:40.368$ of this one sells and compare them,

NOTE Confidence: 0.81380343

 $00{:}12{:}40.370 \dashrightarrow 00{:}12{:}42.680$ large differences suggest to switch but

NOTE Confidence: 0.81380343

 $00:12:42.680 \longrightarrow 00:12:45.188$ is not is a heterogeneous population

NOTE Confidence: 0.81380343

 $00:12:45.188 \longrightarrow 00:12:48.748$ of cells and by taking all of them

NOTE Confidence: 0.81380343

 $00:12:48.831 \longrightarrow 00:12:52.089$ together we could be masking incremental

NOTE Confidence: 0.81380343

00:12:52.089 --> 00:12:54.261 changes within this population.

NOTE Confidence: 0.81380343

 $00:12:54.270 \longrightarrow 00:12:57.320$ The problem with addressing this

NOTE Confidence: 0.81380343

 $00{:}12{:}57.320 \dashrightarrow 00{:}13{:}01.560$ question was that we really had no

NOTE Confidence: 0.81380343

00:13:01.560 --> 00:13:05.354 reliable way of taking apart this subset.

NOTE Confidence: 0.81380343

00:13:05.360 --> 00:13:07.256 And in fact,

NOTE Confidence: 0.81380343

00:13:07.256 --> 00:13:09.784 the entire trajectory starting

NOTE Confidence: 0.81380343

 $00{:}13{:}09.784 \dashrightarrow 00{:}13{:}12.434$ with hematopoietic stem cells

NOTE Confidence: 0.81380343

 $00:13:12.434 \longrightarrow 00:13:16.340$ and ending at this point where

NOTE Confidence: 0.81380343

00:13:16.340 --> 00:13:18.293 terminal differentiation starts,

NOTE Confidence: 0.81380343

00:13:18.300 --> 00:13:20.888 this trajectory was really

 $00{:}13{:}20.888 {\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}} 00{:}13{:}22.829$ only partially understood,

NOTE Confidence: 0.81380343

 $00:13:22.830 \longrightarrow 00:13:26.883$ and so about four years ago the

NOTE Confidence: 0.81380343

00:13:26.883 --> 00:13:31.637 technology of single cell RNA SEQ had

NOTE Confidence: 0.81380343

 $00:13:31.637 \longrightarrow 00:13:34.533$ advanced massively by microfluidic.

NOTE Confidence: 0.81380343

 $00:13:34.540 \longrightarrow 00:13:35.884$ Approaches were introduced by

NOTE Confidence: 0.81380343

 $00:13:35.884 \longrightarrow 00:13:37.228$ a number of labs,

NOTE Confidence: 0.81380343

 $00:13:37.230 \longrightarrow 00:13:40.310$ including the lab of a long climb.

NOTE Confidence: 0.81380343

00:13:40.310 --> 00:13:42.476 And we were very fortunate in

NOTE Confidence: 0.81380343

 $00:13:42.476 \longrightarrow 00:13:44.944$ that he agreed to collaborate with

NOTE Confidence: 0.81380343

 $00:13:44.944 \longrightarrow 00:13:46.836$ us on this question.

NOTE Confidence: 0.81380343

 $00{:}13{:}46.840 \dashrightarrow 00{:}13{:}49.206$ And so we took kit positive cells

NOTE Confidence: 0.81380343

 $00{:}13{:}49.206 \dashrightarrow 00{:}13{:}51.652$ from the bone marrow or from fetal

NOTE Confidence: 0.81380343

 $00{:}13{:}51.652 \dashrightarrow 00{:}13{:}54.142$ liver and we also took kid positive

NOTE Confidence: 0.81380343

00:13:54.142 --> 00:13:56.816 cells from the bone marrow of mice

NOTE Confidence: 0.81380343

00:13:56.816 --> 00:13:58.948 that were injected with Ipoh.

00:13:58.948 --> 00:14:02.140 Although I will not discuss that here.

NOTE Confidence: 0.81380343

 $00{:}14{:}02.140 \dashrightarrow 00{:}14{:}05.452$ And we've undertaken single cell RNA

NOTE Confidence: 0.81380343

 $00:14:05.452 \longrightarrow 00:14:08.187$ sequencing on these projectors and

NOTE Confidence: 0.81380343

00:14:08.187 --> 00:14:11.246 what you're looking at here are two

NOTE Confidence: 0.81380343

 $00:14:11.246 \longrightarrow 00:14:13.985$ D projections of K nearest neighbor

NOTE Confidence: 0.81380343

 $00{:}14{:}13.985 \dashrightarrow 00{:}14{:}16.655$ graphs of gene expression in the

NOTE Confidence: 0.81380343

 $00:14:16.660 \longrightarrow 00:14:21.000$ fetal liver and in the bone marrow.

NOTE Confidence: 0.81380343

00:14:21.000 --> 00:14:23.988 Topologically, these graphs are very similar.

NOTE Confidence: 0.81380343

 $00:14:23.990 \longrightarrow 00:14:26.978$ Each dot is a single cell,

NOTE Confidence: 0.81380343

 $00:14:26.980 \longrightarrow 00:14:29.578$ and the proximity of dots suggests

NOTE Confidence: 0.81380343

 $00{:}14{:}29.578 \dashrightarrow 00{:}14{:}32.933$ a proximity in terms of their

NOTE Confidence: 0.81380343

 $00{:}14{:}32.933 \to 00{:}14{:}35.246$ transcriptome similarity transcriptomes.

NOTE Confidence: 0.81380343

 $00:14:35.250 \longrightarrow 00:14:37.812$ And what you can see is that

NOTE Confidence: 0.81380343

00:14:37.812 --> 00:14:39.503 these transcriptomes are form

NOTE Confidence: 0.81380343

00:14:39.503 --> 00:14:41.057 one continuous structure.

NOTE Confidence: 0.81380343

 $00{:}14{:}41.060 \dashrightarrow 00{:}14{:}42.736$ It's a branching structure.

00:14:42.736 --> 00:14:46.269 And in the fetal liver and bone marrow,

NOTE Confidence: 0.81380343

 $00{:}14{:}46.270 \dashrightarrow 00{:}14{:}49.420$ the branches are pretty similar.

NOTE Confidence: 0.81380343

00:14:49.420 --> 00:14:51.688 Except that here we see a very

NOTE Confidence: 0.81380343

00:14:51.688 --> 00:14:53.678 large bulge compared with a much

NOTE Confidence: 0.81380343

00:14:53.678 --> 00:14:55.263 smaller bulge in the marrow.

NOTE Confidence: 0.81380343

00:14:55.270 --> 00:14:57.545 This bulge in fact contains the CFUE,

NOTE Confidence: 0.81380343

 $00:14:57.550 \longrightarrow 00:14:59.170$ as I will show you.

NOTE Confidence: 0.8530163

 $00:15:01.880 \longrightarrow 00:15:06.250$ I won't dwell on it today, but.

NOTE Confidence: 0.8530163

 $00:15:06.250 \longrightarrow 00:15:09.148$ We've used GNU algorithm that was

NOTE Confidence: 0.8530163

 $00:15:09.148 \longrightarrow 00:15:12.100$ developed by the client laboratory,

NOTE Confidence: 0.8530163

 $00:15:12.100 \longrightarrow 00:15:14.605$ especially Caleb Weinreb and some

NOTE Confidence: 0.8530163

 $00{:}15{:}14.605 \dashrightarrow 00{:}15{:}17.947$ Wallach in the client lab called

NOTE Confidence: 0.8530163

00:15:17.947 --> 00:15:20.179 Population Balance analysis.

NOTE Confidence: 0.8530163

 $00:15:20.180 \longrightarrow 00:15:22.410$ And this algorithm allowed us

NOTE Confidence: 0.8530163

 $00:15:22.410 \longrightarrow 00:15:25.246$ to assign each cell within this

 $00:15:25.246 \longrightarrow 00:15:27.836$ structure with a fate probability.

NOTE Confidence: 0.8530163

 $00:15:27.840 \longrightarrow 00:15:31.193$ In fact, with a set of seven

NOTE Confidence: 0.8530163

00:15:31.193 --> 00:15:32.630 self check probabilities,

NOTE Confidence: 0.8530163

 $00:15:32.630 \longrightarrow 00:15:36.291$ which told us what is the probability

NOTE Confidence: 0.8530163

 $00:15:36.291 \longrightarrow 00:15:40.479$ of each cell to ultimately attain a cell

NOTE Confidence: 0.8530163

00:15:40.479 --> 00:15:45.610 fate in one of these seven branches and that?

NOTE Confidence: 0.8530163

 $00:15:45.610 \longrightarrow 00:15:48.274$ Really can be the result of our analysis

NOTE Confidence: 0.8530163

 $00:15:48.274 \longrightarrow 00:15:51.137$ can be collapsed into this structure,

NOTE Confidence: 0.8530163

 $00{:}15{:}51.140 \dashrightarrow 00{:}15{:}53.120$ which is a hierarchical structure,

NOTE Confidence: 0.8530163

 $00:15:53.120 \longrightarrow 00:15:54.696$ not unlike the classical

NOTE Confidence: 0.8530163

00:15:54.696 --> 00:15:55.878 structure of hematopoiesis.

NOTE Confidence: 0.8530163

 $00:15:55.880 \longrightarrow 00:15:57.855$ The main difference is that

NOTE Confidence: 0.8530163

 $00:15:57.855 \longrightarrow 00:15:59.830$ we don't see discrete stages.

NOTE Confidence: 0.8530163

 $00:15:59.830 \longrightarrow 00:16:03.094$ We see a continuum which is meant to

NOTE Confidence: 0.8530163

 $00:16:03.094 \longrightarrow 00:16:05.757$ be represented by this kind of cloud.

NOTE Confidence: 0.80456686

 $00:16:08.910 \longrightarrow 00:16:11.678$ And one more point that I'd like to

 $00:16:11.678 \longrightarrow 00:16:13.976$ make is subsequent subsequent work

NOTE Confidence: 0.80456686

00:16:13.976 --> 00:16:17.525 of the client lab together with Luca

NOTE Confidence: 0.80456686

 $00:16:17.611 \longrightarrow 00:16:20.481$ Biosca Slab looking at single cell RNA

NOTE Confidence: 0.80456686

00:16:20.481 --> 00:16:23.620 seq of human marrow showed that the

NOTE Confidence: 0.80456686

 $00:16:23.620 \longrightarrow 00:16:25.995$ structure and topology is obtained

NOTE Confidence: 0.80456686

 $00:16:25.995 \longrightarrow 00:16:28.989$ from human bone marrow is actually very

NOTE Confidence: 0.80456686

 $00:16:28.989 \longrightarrow 00:16:32.227$ similar to that of the mouse and in

NOTE Confidence: 0.80456686

 $00:16:32.227 \longrightarrow 00:16:36.460$ terms of gene expression for each gene.

NOTE Confidence: 0.80456686

 $00:16:36.460 \longrightarrow 00:16:37.522$ Steam is aro.

NOTE Confidence: 0.80456686

 $00{:}16{:}37.522 \dashrightarrow 00{:}16{:}39.646$ We see a very similar pattern

NOTE Confidence: 0.80456686

 $00:16:39.646 \longrightarrow 00:16:42.156$ in the mouse and in the human,

NOTE Confidence: 0.80456686

 $00:16:42.160 \longrightarrow 00:16:45.975$ which are represented here as mirror images.

NOTE Confidence: 0.80456686

 $00:16:45.980 \longrightarrow 00:16:48.199$ And so we can conclude that the

NOTE Confidence: 0.80456686

00:16:48.199 --> 00:16:51.227 mouse is a pretty good model for

NOTE Confidence: 0.80456686

00:16:51.227 --> 00:16:53.227 human hematopoiesis in general.

 $00:16:53.230 \longrightarrow 00:16:56.128$ Of course, that we know of some

NOTE Confidence: 0.80456686

00:16:56.128 --> 00:16:58.069 very clear differences as well.

NOTE Confidence: 0.80456686

00:16:58.070 --> 00:17:00.582 So now we were in a position to

NOTE Confidence: 0.80456686

00:17:00.582 --> 00:17:03.308 look at the erythroid trajectory,

NOTE Confidence: 0.80456686

 $00:17:03.310 \longrightarrow 00:17:05.054$ starting with multipotential progenitors

NOTE Confidence: 0.80456686

00:17:05.054 --> 00:17:07.670 in black and continuing along the

NOTE Confidence: 0.80456686

 $00:17:07.736 \longrightarrow 00:17:10.034$ array thread branch with the color

NOTE Confidence: 0.80456686

00:17:10.034 --> 00:17:12.340 representing every thread fate probability.

NOTE Confidence: 0.80456686

 $00{:}17{:}12.340 \dashrightarrow 00{:}17{:}15.777$ We can use this probability to align

NOTE Confidence: 0.80456686

00:17:15.777 --> 00:17:19.280 the cells along a linear axis starting

NOTE Confidence: 0.80456686

 $00:17:19.280 \longrightarrow 00:17:23.308$ with MPP and ending with the end of ETD.

NOTE Confidence: 0.80456686

 $00:17:23.310 \longrightarrow 00:17:28.670$ And just to see that things look good.

NOTE Confidence: 0.80456686

 $00{:}17{:}28.670 \dashrightarrow 00{:}17{:}31.829$ You can look at cells that we know our

NOTE Confidence: 0.80456686

 $00:17:31.829 \longrightarrow 00:17:33.296$ President Multipotential progenitor's

NOTE Confidence: 0.80456686

 $00:17:33.296 \longrightarrow 00:17:36.929$ like cities 34 gotta one which is

NOTE Confidence: 0.80456686

 $00:17:36.929 \longrightarrow 00:17:39.580$ expressed by the entire array thread

 $00:17:39.580 \longrightarrow 00:17:43.118$ branch and Alpha globin which is induced.

NOTE Confidence: 0.80456686

 $00{:}17{:}43.118 \dashrightarrow 00{:}17{:}46.838$ Only with the activation of

NOTE Confidence: 0.80456686

 $00:17:46.838 \longrightarrow 00:17:49.070$ Arethra terminal differentiation.

NOTE Confidence: 0.80456686

 $00:17:49.070 \longrightarrow 00:17:52.798$ In order to be able to do experiments

NOTE Confidence: 0.80456686

 $00:17:52.798 \longrightarrow 00:17:54.717$ with transcriptome information we

NOTE Confidence: 0.80456686

 $00:17:54.717 \longrightarrow 00:17:57.860$ needed a way of learning how to

NOTE Confidence: 0.80456686

 $00:17:57.860 \longrightarrow 00:18:00.197$ isolate cells from specific regions

NOTE Confidence: 0.80456686

 $00{:}18{:}00.197 \dashrightarrow 00{:}18{:}03.342$ of our single cell RNA SEQ graph.

NOTE Confidence: 0.80456686

 $00{:}18{:}03.342 \dashrightarrow 00{:}18{:}06.436$ And so we've developed a fax approach

NOTE Confidence: 0.80456686

 $00:18:06.436 \longrightarrow 00:18:09.497$ that gives us five populations and then

NOTE Confidence: 0.80456686

 $00{:}18{:}09.497 \dashrightarrow 00{:}18{:}13.040$ we sorted each of these five populations,

NOTE Confidence: 0.80456686

 $00:18:13.040 \longrightarrow 00:18:16.267$ repeated the single cell RNA SEQ work,

NOTE Confidence: 0.80456686

 $00{:}18{:}16.270 \dashrightarrow 00{:}18{:}19.096$ and then projected them onto our.

NOTE Confidence: 0.80456686

 $00:18:19.100 \dashrightarrow 00:18:22.173$ Original map and what you can see

NOTE Confidence: 0.80456686

 $00:18:22.173 \longrightarrow 00:18:24.862$ and what's relevant to today's talk

 $00:18:24.862 \longrightarrow 00:18:27.872$ is that the P1 and P2 subpopulations

NOTE Confidence: 0.80456686

 $00{:}18{:}27.962 \dashrightarrow 00{:}18{:}30.277$ project pretty cleanly into this

NOTE Confidence: 0.80456686

00:18:30.277 --> 00:18:33.141 very narrow neck at the beginning

NOTE Confidence: 0.80456686

 $00:18:33.141 \longrightarrow 00:18:36.928$ of the urethra branch and then into

NOTE Confidence: 0.80456686

 $00:18:36.928 \longrightarrow 00:18:40.570$ this sort of bulge that follows up.

NOTE Confidence: 0.80456686

00:18:40.570 --> 00:18:43.702 And so we now have a way of isolating

NOTE Confidence: 0.80456686

00:18:43.702 --> 00:18:45.937 cells that correspond to these

NOTE Confidence: 0.80456686

 $00:18:45.937 \longrightarrow 00:18:48.187$ two regions of the graph.

NOTE Confidence: 0.80456686

 $00{:}18{:}48.190 \dashrightarrow 00{:}18{:}51.067$ And the P5 population is also pretty

NOTE Confidence: 0.80456686

00:18:51.067 --> 00:18:53.932 good at giving us the multipotential

NOTE Confidence: 0.80456686

 $00{:}18{:}53.932 \dashrightarrow 00{:}18{:}56.512$ progenitor cells right at the

NOTE Confidence: 0.80456686

00:18:56.512 --> 00:18:59.318 beginning of the erythroid branch.

NOTE Confidence: 0.80456686

 $00:18:59.320 \longrightarrow 00:19:01.740$ So with these three subpopulations,

NOTE Confidence: 0.80456686

 $00:19:01.740 \longrightarrow 00:19:06.458$ we can isolate cells from the entire.

NOTE Confidence: 0.80456686

00:19:06.460 --> 00:19:12.494 If we throw brunch and so now we're ready to

NOTE Confidence: 0.80456686

 $00:19:12.494 \longrightarrow 00:19:17.739$ do some assays and we find that P1 and P2.

 $00:19:17.740 \longrightarrow 00:19:19.870$ Almost my stroke of luck.

NOTE Confidence: 0.80456686

 $00{:}19{:}19.870 \dashrightarrow 00{:}19{:}25.455$ Kivas populations at the highly enriched

NOTE Confidence: 0.80456686

 $00:19:25.455 \longrightarrow 00:19:28.690$ for CFUE. In fact, P1 contains.

NOTE Confidence: 0.80456686

 $00:19:28.690 \longrightarrow 00:19:32.336$ Almost all of the CFO is some

NOTE Confidence: 0.80456686

 $00:19:32.336 \longrightarrow 00:19:35.744$ small number also present in P2.

NOTE Confidence: 0.80456686

 $00:19:35.750 \longrightarrow 00:19:39.530$ And P2 is the only subpopulation that

NOTE Confidence: 0.80456686

 $00:19:39.530 \longrightarrow 00:19:43.850$ contains BFUE, so P2 is from the neck.

NOTE Confidence: 0.80456686

 $00{:}19{:}43.850 \dashrightarrow 00{:}19{:}46.550$ Here represents cells with be

NOTE Confidence: 0.80456686

 $00:19:46.550 \longrightarrow 00:19:48.170$ a few potential.

NOTE Confidence: 0.80456686

 $00:19:48.170 \dashrightarrow 00:19:52.566$ BF uer colonies that are multifocal either.

NOTE Confidence: 0.80456686

 $00:19:52.570 \longrightarrow 00:19:54.450$ Small bunches of small foci.

NOTE Confidence: 0.80456686

 $00{:}19{:}54.450 \dashrightarrow 00{:}19{:}57.274$ Deezer called late be a few E and

NOTE Confidence: 0.80456686

 $00:19:57.274 \longrightarrow 00:20:00.186$ we see them around day four of.

NOTE Confidence: 0.80456686

 $00:20:00.190 \longrightarrow 00:20:03.094$ Culture or like might contain much

NOTE Confidence: 0.80456686

00:20:03.094 --> 00:20:06.032 larger column they might have might

00:20:06.032 --> 00:20:08.786 give rise to much larger colonies

NOTE Confidence: 0.80456686

 $00:20:08.786 \longrightarrow 00:20:09.704$ after about

NOTE Confidence: 0.789408

 $00:20:09.792 \longrightarrow 00:20:11.676$ a week or even 10 days.

NOTE Confidence: 0.789408

 $00:20:11.680 \longrightarrow 00:20:15.216$ See if you eat, give rise to 1.

NOTE Confidence: 0.789408

 $00:20:15.220 \longrightarrow 00:20:17.430$ Focus of colonies that contain

NOTE Confidence: 0.789408

 $00:20:17.430 \longrightarrow 00:20:19.640$ around 30 differentiated red cells,

NOTE Confidence: 0.789408

 $00:20:19.640 \longrightarrow 00:20:24.057$ about two to three days after plating.

NOTE Confidence: 0.789408

 $00:20:24.060 \longrightarrow 00:20:25.890$ OK, so we now have.

NOTE Confidence: 0.8126656

 $00{:}20{:}28.350 \dashrightarrow 00{:}20{:}30.865$ Pretty complete set of tools

NOTE Confidence: 0.8126656

 $00:20:30.865 \longrightarrow 00:20:32.877$ to do our investigation.

NOTE Confidence: 0.8126656

 $00{:}20{:}32.880 \dashrightarrow 00{:}20{:}35.690$ We can look at multipotential

NOTE Confidence: 0.8126656

 $00{:}20{:}35.690 \dashrightarrow 00{:}20{:}37.938$ progenitors BFUS&CFUS at the

NOTE Confidence: 0.8126656

 $00:20:37.938 \longrightarrow 00:20:40.763$ transcriptome levels and we've given

NOTE Confidence: 0.8126656

 $00{:}20{:}40.763 \dashrightarrow 00{:}20{:}42.947$ them transcriptome related names.

NOTE Confidence: 0.8126656

 $00{:}20{:}42.950 \longrightarrow 00{:}20{:}45.704$ You can correlate them with faith

NOTE Confidence: 0.8126656

 $00:20:45.704 \longrightarrow 00:20:48.190$ assays and isolate them by fax.

 $00:20:48.190 \longrightarrow 00:20:51.925$ And so we are in a position to ask,

NOTE Confidence: 0.8126656

 $00{:}20{:}51.930 \dashrightarrow 00{:}20{:}55.682$ are we looking at a true switch when

NOTE Confidence: 0.8126656

00:20:55.682 --> 00:20:58.586 we transition from S Note 2 S one?

NOTE Confidence: 0.8126656

00:20:58.590 --> 00:21:01.502 Is this a few ITA ET transition

NOTE Confidence: 0.8126656

00:21:01.502 --> 00:21:02.750 at truth Switch?

NOTE Confidence: 0.8126656

 $00:21:02.750 \longrightarrow 00:21:04.906$ And so here we are looking at

NOTE Confidence: 0.8126656

 $00:21:04.906 \longrightarrow 00:21:06.489$ genes that are differentially

NOTE Confidence: 0.8126656

 $00:21:06.489 \longrightarrow 00:21:09.409$ expressed during the linear access.

NOTE Confidence: 0.8126656

 $00:21:09.410 \longrightarrow 00:21:12.469$ The linear suit I'm going from MPP

NOTE Confidence: 0.8126656

 $00{:}21{:}12.469 \dashrightarrow 00{:}21{:}14.211$ to terminal differentiation and

NOTE Confidence: 0.8126656

 $00{:}21{:}14.211 \dashrightarrow 00{:}21{:}16.365$ they arrange arrange story in terms

NOTE Confidence: 0.8126656

 $00:21:16.365 \longrightarrow 00:21:19.070$ of the peak expression along this.

NOTE Confidence: 0.8126656

00:21:19.070 --> 00:21:21.245 Access and without any really

NOTE Confidence: 0.8126656

 $00:21:21.245 \longrightarrow 00:21:23.898$ fancy analysis you could see that

NOTE Confidence: 0.8126656

 $00:21:23.898 \longrightarrow 00:21:26.280$ they form kind of three cohorts.

 $00:21:26.280 \longrightarrow 00:21:29.297$ There is a cohort of gene expression

NOTE Confidence: 0.8126656

 $00:21:29.297 \longrightarrow 00:21:32.210$ that happens during a very rapid change.

NOTE Confidence: 0.8126656

 $00:21:32.210 \longrightarrow 00:21:35.610$ Many streams are being switched on or off.

NOTE Confidence: 0.8126656

00:21:35.610 --> 00:21:38.935 Then we enter a period of relative

NOTE Confidence: 0.8126656

00:21:38.935 --> 00:21:42.134 stability of the ceep progenitors of

NOTE Confidence: 0.8126656

 $00{:}21{:}42.134 \dashrightarrow 00{:}21{:}46.047$ correspond functionality to see a few E.

NOTE Confidence: 0.8126656

 $00:21:46.050 \longrightarrow 00:21:48.768$ Jeans and not many genes of

NOTE Confidence: 0.8126656

 $00:21:48.768 \longrightarrow 00:21:50.580$ turning on or off.

NOTE Confidence: 0.8126656

 $00{:}21{:}50.580 \rightarrow 00{:}21{:}52.794$ Although you can see that there

NOTE Confidence: 0.8126656

 $00:21:52.794 \longrightarrow 00:21:54.830$ is a progressive slow change

NOTE Confidence: 0.8126656

 $00:21:54.830 \longrightarrow 00:21:57.265$ and this probably represents an

NOTE Confidence: 0.8126656

 $00:21:57.265 \longrightarrow 00:21:59.213$ amplification stage where there

NOTE Confidence: 0.8126656

 $00:21:59.290 \longrightarrow 00:22:01.450$ is little transcriptome change.

NOTE Confidence: 0.8126656

 $00:22:01.450 \longrightarrow 00:22:04.650$ And then we see.

NOTE Confidence: 0.8126656

00:22:04.650 --> 00:22:07.402 Rapid change or in fact I should say

NOTE Confidence: 0.8126656

 $00:22:07.402 \longrightarrow 00:22:10.717$ about sharp change from the CFD program

 $00:22:10.717 \longrightarrow 00:22:12.757$ to terminal differentiation program.

NOTE Confidence: 0.8126656

 $00:22:12.760 \longrightarrow 00:22:14.945$ Very few cells expressed genes

NOTE Confidence: 0.8126656

00:22:14.945 --> 00:22:16.693 of both terminal differentiation

NOTE Confidence: 0.8126656

 $00:22:16.693 \longrightarrow 00:22:18.310$ and sea Fury program.

NOTE Confidence: 0.8126656

 $00:22:18.310 \longrightarrow 00:22:20.669$ So that tells us that we're looking

NOTE Confidence: 0.8126656

 $00:22:20.669 \longrightarrow 00:22:23.440$ at a sharp transcriptional switch.

NOTE Confidence: 0.8126656

 $00:22:23.440 \longrightarrow 00:22:25.570$ So the answer is yes,

NOTE Confidence: 0.8126656

00:22:25.570 --> 00:22:27.600 the transition from this Cepheus

NOTE Confidence: 0.8126656

00:22:27.600 --> 00:22:29.224 Stage 2 terminal differentiation

NOTE Confidence: 0.8126656

 $00{:}22{:}29.224 \dashrightarrow 00{:}22{:}31.548$ is a sharp transcriptional switch.

NOTE Confidence: 0.8126656

 $00:22:31.550 \longrightarrow 00:22:35.886$ So what is the context of that switch?

NOTE Confidence: 0.8126656

 $00:22:35.890 \longrightarrow 00:22:37.852$ And we're in the position to

NOTE Confidence: 0.8126656

 $00:22:37.852 \longrightarrow 00:22:39.610$ look at that as well.

NOTE Confidence: 0.8126656

 $00:22:39.610 \longrightarrow 00:22:41.300$ This is a busy slide,

NOTE Confidence: 0.8126656

 $00:22:41.300 \longrightarrow 00:22:43.996$ but let me take you through it slowly.

 $00:22:44.000 \longrightarrow 00:22:46.415$ So if we look at the medial

NOTE Confidence: 0.8126656

 $00{:}22{:}46.415 --> 00{:}22{:}48.060 \ \mathrm{medium \ panel \ first \ in \ red},$

NOTE Confidence: 0.8126656

 $00:22:48.060 \longrightarrow 00:22:50.756$ we're looking at the expression of CD 71.

NOTE Confidence: 0.8126656

 $00:22:50.760 \longrightarrow 00:22:52.664$ This is the market we used by

NOTE Confidence: 0.8126656

 $00:22:52.664 \longrightarrow 00:22:55.254$ fax and we can see that there is

NOTE Confidence: 0.8126656

 $00:22:55.254 \longrightarrow 00:22:57.465$ a gradual increase in cities of

NOTE Confidence: 0.8126656

 $00:22:57.465 \longrightarrow 00:22:59.209$ 71 throughout the trajectory.

NOTE Confidence: 0.8126656

 $00:22:59.210 \longrightarrow 00:23:01.576$ But at the time of the switch

NOTE Confidence: 0.8126656

00:23:01.576 --> 00:23:02.590 to terminal differentiation,

NOTE Confidence: 0.8126656

00:23:02.590 --> 00:23:04.956 this becomes a very rapid up regulation,

NOTE Confidence: 0.8126656

 $00:23:04.960 \longrightarrow 00:23:07.536$ and so the upregulation of CD 71.

NOTE Confidence: 0.8126656

 $00:23:07.540 \longrightarrow 00:23:10.330$ Which we previously took as a

NOTE Confidence: 0.8126656

 $00{:}23{:}10.330 \dashrightarrow 00{:}23{:}13.250$ marker of activation of the switch.

NOTE Confidence: 0.8126656

 $00:23:13.250 \longrightarrow 00:23:14.966$ Acts as a marker of that,

NOTE Confidence: 0.8126656

 $00:23:14.970 \longrightarrow 00:23:18.449$ also at the single cell RNA level.

NOTE Confidence: 0.8126656

 $00:23:18.450 \longrightarrow 00:23:21.124$ When we look at either cells of

00:23:21.124 --> 00:23:23.841 his markers here we're looking at

NOTE Confidence: 0.8126656

00:23:23.841 --> 00:23:26.326 Ipoh receptor expression in blue.

NOTE Confidence: 0.8126656

00:23:26.330 --> 00:23:28.505 EPO receptor is expressed pretty

NOTE Confidence: 0.8126656

 $00:23:28.505 \longrightarrow 00:23:31.425$ early on in the trajectory in

NOTE Confidence: 0.8126656

 $00:23:31.425 \longrightarrow 00:23:33.417$ increases gradually subsequently.

NOTE Confidence: 0.8126656

 $00:23:33.420 \longrightarrow 00:23:35.988$ We can now look at transcription

NOTE Confidence: 0.8126656

00:23:35.988 --> 00:23:39.366 factors and we see in Grey gotta one

NOTE Confidence: 0.8126656

 $00:23:39.366 \longrightarrow 00:23:43.000$ is high initially and then is downregulated.

NOTE Confidence: 0.8126656

 $00:23:43.000 \longrightarrow 00:23:46.787$ Gotta sorry got it too in grey.

NOTE Confidence: 0.8126656

00:23:46.790 --> 00:23:49.508 Gotta one is low initially in

NOTE Confidence: 0.8126656

 $00{:}23{:}49.508 \dashrightarrow 00{:}23{:}51.854$ multipotential parameters and then is

NOTE Confidence: 0.8126656

 $00:23:51.854 \longrightarrow 00:23:54.584$ expressed induced early in the trajectory.

NOTE Confidence: 0.8126656

 $00{:}23{:}54.590 \dashrightarrow 00{:}23{:}57.635$ I'm sorry Ann is maintained at pretty

NOTE Confidence: 0.8126656

 $00:23:57.635 \longrightarrow 00:24:00.100$ high levels throughout the trajectory.

NOTE Confidence: 0.8126656

00:24:00.100 --> 00:24:02.668 Maybe going up a little bit

 $00:24:02.668 \longrightarrow 00:24:05.610$ at the time of the switch.

NOTE Confidence: 0.8359557

00:24:05.610 --> 00:24:06.838 Generally speaking,

NOTE Confidence: 0.8359557

 $00:24:06.838 \longrightarrow 00:24:09.908$ none of the key transcriptional

NOTE Confidence: 0.8359557

 $00:24:09.908 \longrightarrow 00:24:12.549$ regulators that we know of.

NOTE Confidence: 0.8359557

 $00:24:12.550 \longrightarrow 00:24:15.655$ Reporters of the timing of

NOTE Confidence: 0.8359557

 $00:24:15.655 \longrightarrow 00:24:19.390$ the switch from CFUE to ETD.

NOTE Confidence: 0.8359557

 $00:24:19.390 \longrightarrow 00:24:21.385$ When we look at the cell cycle,

NOTE Confidence: 0.8359557

 $00:24:21.390 \longrightarrow 00:24:23.090$ however, we see something that

NOTE Confidence: 0.8359557

 $00{:}24{:}23.090 \dashrightarrow 00{:}24{:}25.148$ does seem to correlate very well

NOTE Confidence: 0.8359557

 $00:24:25.148 \longrightarrow 00:24:26.906$ with the timing of the switch.

NOTE Confidence: 0.8359557

 $00:24:26.910 \longrightarrow 00:24:29.976$ So what we're looking at here each

NOTE Confidence: 0.8359557

 $00{:}24{:}29.976 \longrightarrow 00{:}24{:}32.419$ each color denotes the average

NOTE Confidence: 0.8359557

 $00:24:32.419 \longrightarrow 00:24:36.066$ expression of genes in each that are

NOTE Confidence: 0.8359557

 $00{:}24{:}36.066 \to 00{:}24{:}38.737$ characteristic of each cell cycle phase,

NOTE Confidence: 0.8359557

 $00:24:38.740 \longrightarrow 00:24:40.628$ either S Phase G,

NOTE Confidence: 0.8359557

00:24:40.628 --> 00:24:42.516 2MG1S and so on,

 $00:24:42.520 \longrightarrow 00:24:45.824$ and there is very little difference there.

NOTE Confidence: 0.8359557

00:24:45.830 --> 00:24:47.722 Sensually, flat or uninteresting

NOTE Confidence: 0.8359557

 $00:24:47.722 \longrightarrow 00:24:50.087$ for most of the trajectory.

NOTE Confidence: 0.8359557

 $00:24:50.090 \longrightarrow 00:24:53.120$ And this really tells us that

NOTE Confidence: 0.8359557

 $00:24:53.120 \longrightarrow 00:24:55.140$ cells are cycling asynchronously

NOTE Confidence: 0.8359557

00:24:55.231 --> 00:24:57.756 through most of the trajectory.

NOTE Confidence: 0.8359557

00:24:57.760 --> 00:25:01.252 But as we approach the time of the switch,

NOTE Confidence: 0.8359557

 $00:25:01.260 \longrightarrow 00:25:03.210$ which is this dashed line,

NOTE Confidence: 0.8359557

 $00:25:03.210 \longrightarrow 00:25:05.751$ you can see the formation of a

NOTE Confidence: 0.8359557

00:25:05.751 --> 00:25:08.260 number of peaks starting with G1,

NOTE Confidence: 0.8359557

 $00:25:08.260 \longrightarrow 00:25:11.100 S$ and then S in red and orange

NOTE Confidence: 0.8359557

 $00:25:11.100 \longrightarrow 00:25:12.540$ and then G2NG2M.

NOTE Confidence: 0.8359557

 $00:25:12.540 \longrightarrow 00:25:15.634$ So what we have here in fact

NOTE Confidence: 0.8359557

 $00:25:15.634 \longrightarrow 00:25:17.740$ is the cell cycle.

NOTE Confidence: 0.8359557

 $00:25:17.740 \longrightarrow 00:25:23.160$ And the first peak that is formed is S phase.

 $00:25:23.160 \longrightarrow 00:25:26.984$ And so it appears that the earliest event

NOTE Confidence: 0.8359557

 $00{:}25{:}26.984 \dashrightarrow 00{:}25{:}31.250$ at the Switch from Seaview to ET D is

NOTE Confidence: 0.8359557

 $00:25:31.250 \longrightarrow 00:25:35.116$ marked by cells in S phase of the cycle.

NOTE Confidence: 0.8359557

 $00:25:35.120 \longrightarrow 00:25:38.340$ So this confirms our earlier functional data.

NOTE Confidence: 0.8359557

00:25:38.340 --> 00:25:41.850 That activation of the TD happens

NOTE Confidence: 0.8359557

00:25:41.850 --> 00:25:45.460 during S phase of the cycle.

NOTE Confidence: 0.8359557

 $00:25:45.460 \longrightarrow 00:25:48.916$ And So what we asked next is OK.

NOTE Confidence: 0.8359557

 $00:25:48.920 \longrightarrow 00:25:51.810$ Transcription factors are not good.

NOTE Confidence: 0.8359557

00:25:51.810 --> 00:25:53.370 Taught don't really report

NOTE Confidence: 0.8359557

 $00:25:53.370 \longrightarrow 00:25:55.320$ the timing of this switch.

NOTE Confidence: 0.8359557

00:25:55.320 --> 00:25:57.270 At least their expression doesn't.

NOTE Confidence: 0.8359557

00:25:57.270 --> 00:25:59.540 It's quite possible that post

NOTE Confidence: 0.8359557

 $00{:}25{:}59.540 {\:{\circ}{\circ}{\circ}}> 00{:}26{:}00.902$ transcriptional post translational

NOTE Confidence: 0.8359557

 $00:26:00.902 \longrightarrow 00:26:02.806$ modifications of these do correlate

NOTE Confidence: 0.8359557

 $00:26:02.806 \longrightarrow 00:26:04.672$ with the timing of this switch,

NOTE Confidence: 0.8359557

 $00:26:04.680 \longrightarrow 00:26:07.350$ and that's an open question.

 $00:26:07.350 \longrightarrow 00:26:08.970 \text{ Um}$?

NOTE Confidence: 0.8359557

 $00:26:08.970 \longrightarrow 00:26:11.535$ Can we find something else

NOTE Confidence: 0.8359557

 $00:26:11.535 \longrightarrow 00:26:13.587$ that might tell us?

NOTE Confidence: 0.8359557

 $00:26:13.590 \longrightarrow 00:26:16.628$ Something about the timing of the switch.

NOTE Confidence: 0.8359557

 $00:26:16.630 \longrightarrow 00:26:19.843$ So to do that we went back to the

NOTE Confidence: 0.8359557

 $00:26:19.843 \longrightarrow 00:26:23.138$ jeans that are expressed during this.

NOTE Confidence: 0.8359557

00:26:23.140 --> 00:26:26.100 See if you E program and we asked

NOTE Confidence: 0.8359557

 $00:26:26.100 \longrightarrow 00:26:28.884$ whether there are the slow progressive

NOTE Confidence: 0.8359557

00:26:28.884 --> 00:26:31.818 change that happens during this time,

NOTE Confidence: 0.8359557

 $00:26:31.820 \longrightarrow 00:26:34.858$ which streams are changing during that time?

NOTE Confidence: 0.8359557

 $00:26:34.860 \longrightarrow 00:26:36.940$ Which teams change their expression

NOTE Confidence: 0.8359557

 $00:26:36.940 \longrightarrow 00:26:40.174$ in a way that is correlated with

NOTE Confidence: 0.8359557

 $00{:}26{:}40.174 \dashrightarrow 00{:}26{:}42.859$ progression along suit of time?

NOTE Confidence: 0.8359557

 $00:26:42.860 \longrightarrow 00:26:48.400$ And when we did that, the top five go.

NOTE Confidence: 0.8359557

 $00:26:48.400 \longrightarrow 00:26:50.992$ Terms that we got were essentially

 $00:26:50.992 \longrightarrow 00:26:54.229$ all to do with DNA replication.

NOTE Confidence: 0.8359557

 $00:26:54.230 \longrightarrow 00:26:58.118$ The cell cycle, S phase, and so on.

NOTE Confidence: 0.8359557

00:26:58.118 --> 00:27:00.548 And here are some examples.

NOTE Confidence: 0.8359557

 $00:27:00.550 \longrightarrow 00:27:03.158$ We're looking at cycling

NOTE Confidence: 0.8359557

00:27:03.158 --> 00:27:06.418 8 two cycling E1 R&R.

NOTE Confidence: 0.8359557

 $00:27:06.420 \longrightarrow 00:27:06.921$ Units.

NOTE Confidence: 0.8359557

 $00:27:06.921 \longrightarrow 00:27:08.925$ Proteins that are associated

NOTE Confidence: 0.8359557

 $00:27:08.925 \longrightarrow 00:27:11.430$ with the origin of replication.

NOTE Confidence: 0.8359557

 $00{:}27{:}11.430 \dashrightarrow 00{:}27{:}14.503$ All of these are ramping up their

NOTE Confidence: 0.8359557

 $00:27:14.503 \longrightarrow 00:27:16.351$ expression throughout the trajectory

NOTE Confidence: 0.8359557

00:27:16.351 --> 00:27:18.586 right through the BFUE&CFU stage

NOTE Confidence: 0.8359557

 $00{:}27{:}18.586 \dashrightarrow 00{:}27{:}22.312$ and reach a peak at the time of the

NOTE Confidence: 0.8359557

 $00{:}27{:}22.312 \dashrightarrow 00{:}27{:}26.840$ transcription of switch from CF UE2ET D.

NOTE Confidence: 0.8359557

00:27:26.840 --> 00:27:30.968 Now what does that mean functionally?

NOTE Confidence: 0.8359557

 $00:27:30.970 \longrightarrow 00:27:33.682$ So to understand the significance of

NOTE Confidence: 0.8359557

 $00:27:33.682 \longrightarrow 00:27:35.933$ this really quite impressive ramping

00:27:35.933 --> 00:27:38.544 up in cell cycle X gene expression,

NOTE Confidence: 0.8359557

 $00:27:38.550 \longrightarrow 00:27:41.497$ we went back to a functional experiment.

NOTE Confidence: 0.8359557

 $00:27:41.500 \longrightarrow 00:27:45.042$ So here we're looking at the same

NOTE Confidence: 0.8359557

 $00:27:45.042 \longrightarrow 00:27:48.031$ old experiment where we take a

NOTE Confidence: 0.8359557

 $00:27:48.031 \longrightarrow 00:27:50.326$ mouse injected with beyond you

NOTE Confidence: 0.8359557

 $00:27:50.326 \longrightarrow 00:27:53.252$ and then check the cell cycle

NOTE Confidence: 0.8359557

 $00:27:53.252 \longrightarrow 00:27:56.120$ status and the speed of space.

NOTE Confidence: 0.8359557

00:27:56.120 --> 00:27:59.296 But now we were armed with some more

NOTE Confidence: 0.8359557

 $00{:}27{:}59.296 \dashrightarrow 00{:}28{:}01.709$ information about early erythropoiesis.

NOTE Confidence: 0.8395177

 $00{:}28{:}01.710 \dashrightarrow 00{:}28{:}05.574$ We used the slow upregulation of CD 71

NOTE Confidence: 0.8395177

 $00{:}28{:}05.574 \dashrightarrow 00{:}28{:}10.479$ as a way of measuring sudo time by fax.

NOTE Confidence: 0.8395177

 $00:28:10.480 \longrightarrow 00:28:14.290$ And we were able to also.

NOTE Confidence: 0.8395177

00:28:14.290 --> 00:28:17.674 Staying for the P1 and P2

NOTE Confidence: 0.8395177

00:28:17.674 --> 00:28:19.930 subpopulations which mark there

NOTE Confidence: 0.8395177

00:28:20.031 --> 00:28:23.097 be a few Ian CF Louise subsets.

 $00:28:23.100 \longrightarrow 00:28:25.612$ And so we sort of these cells and

NOTE Confidence: 0.8395177

 $00{:}28{:}25.612 {\:{\circ}{\circ}{\circ}}>00{:}28{:}28.192$ looked at the beardi you incorporation

NOTE Confidence: 0.8395177

 $00{:}28{:}28.192 \dashrightarrow 00{:}28{:}31.000$ in here we're looking at individual

NOTE Confidence: 0.8395177

 $00:28:31.076 \longrightarrow 00:28:33.710$ cells Bru positive and Bru negative.

NOTE Confidence: 0.8395177

 $00:28:33.710 \longrightarrow 00:28:36.993$ We arrange them along the CD 71

NOTE Confidence: 0.8395177

 $00{:}28{:}36.993 \dashrightarrow 00{:}28{:}40.370$ expression suit of time and if I did

NOTE Confidence: 0.8395177

 $00:28:40.370 \longrightarrow 00:28:43.520$ this sort of time into 14 different

NOTE Confidence: 0.8395177

00:28:43.520 --> 00:28:46.465 Gates 7 seven percentile gates.

NOTE Confidence: 0.8395177

 $00:28:46.470 \longrightarrow 00:28:49.566$ And then we can look at each of

NOTE Confidence: 0.8395177

 $00:28:49.566 \longrightarrow 00:28:52.162$ these gates and analyze cell cycle

NOTE Confidence: 0.8395177

 $00{:}28{:}52.162 \dashrightarrow 00{:}28{:}55.390$ status as well as S phase speed.

NOTE Confidence: 0.8395177

 $00:28:55.390 \longrightarrow 00:28:57.916$ So the first really quite clear.

NOTE Confidence: 0.7805582

 $00:29:00.680 \longrightarrow 00:29:02.865$ Finding is that cells in

NOTE Confidence: 0.7805582

 $00:29:02.865 \longrightarrow 00:29:05.050$ S phase of this cycle.

NOTE Confidence: 0.7805582

 $00:29:05.050 \longrightarrow 00:29:06.454$ Increased markedly with progression

NOTE Confidence: 0.7805582

 $00:29:06.454 \longrightarrow 00:29:08.560$ along the earlier we throw trajectory,

 $00:29:08.560 \longrightarrow 00:29:11.008$ so maybe 20% of this other INS phase

NOTE Confidence: 0.7805582

 $00{:}29{:}11.008 \dashrightarrow 00{:}29{:}13.829$ at the early parts of the trajectory,

NOTE Confidence: 0.7805582

 $00:29:13.830 \longrightarrow 00:29:15.580$ and as we approach this,

NOTE Confidence: 0.7805582

 $00:29:15.580 \longrightarrow 00:29:18.002$ which essentially all the cells are in

NOTE Confidence: 0.7805582

 $00:29:18.002 \longrightarrow 00:29:20.846$ space and you could see this right here.

NOTE Confidence: 0.7805582

 $00:29:20.850 \longrightarrow 00:29:24.180$ So at the time of this which nearly all the

NOTE Confidence: 0.7805582

00:29:24.257 --> 00:29:27.506 cells are in a space where is around here,

NOTE Confidence: 0.7805582

 $00:29:27.510 \longrightarrow 00:29:30.948$ most of the cells are not.

NOTE Confidence: 0.7805582

 $00:29:30.950 \longrightarrow 00:29:33.715$ When we look at S phase speed,

NOTE Confidence: 0.7805582

 $00:29:33.720 \longrightarrow 00:29:35.690$ we see there is there.

NOTE Confidence: 0.7805582

 $00:29:35.690 \longrightarrow 00:29:37.230$ There is an increment.

NOTE Confidence: 0.7805582

 $00:29:37.230 \longrightarrow 00:29:39.540$ There is an increase in the

NOTE Confidence: 0.7805582

 $00:29:39.618 \longrightarrow 00:29:41.618$ speed of West phase early,

NOTE Confidence: 0.7805582

00:29:41.620 --> 00:29:44.406 but then it stays quite stable until

NOTE Confidence: 0.7805582

 $00:29:44.406 \longrightarrow 00:29:47.150$ the point of the switch to ATD.

 $00:29:47.150 \longrightarrow 00:29:50.310$ And so this quite stable speed of essays.

NOTE Confidence: 0.7805582

 $00{:}29{:}50.310 --> 00{:}29{:}51.711 \ \mathrm{In \ other \ words},$

NOTE Confidence: 0.7805582

00:29:51.711 --> 00:29:54.046 quite stable S faced length

NOTE Confidence: 0.7805582

 $00:29:54.046 \longrightarrow 00:29:56.238$ can't explain the change in

NOTE Confidence: 0.7805582

 $00:29:56.238 \longrightarrow 00:29:58.584$ the number of cells in space.

NOTE Confidence: 0.7805582

 $00:29:58.590 \longrightarrow 00:30:01.214$ And so our interpretation.

NOTE Confidence: 0.7805582

 $00:30:01.214 \longrightarrow 00:30:04.494$ Is that what's happening is?

NOTE Confidence: 0.7805582

00:30:04.500 --> 00:30:08.124 Shortening in G and in the G1 phase.

NOTE Confidence: 0.7805582

00:30:08.130 --> 00:30:08.906 Of course,

NOTE Confidence: 0.7805582

 $00:30:08.906 \longrightarrow 00:30:10.846$ this massive increase in the

NOTE Confidence: 0.7805582

00:30:10.846 --> 00:30:13.535 number of S phase cells explains

NOTE Confidence: 0.7805582

 $00:30:13.535 \longrightarrow 00:30:16.415$ why S phase genes are increased

NOTE Confidence: 0.7805582

00:30:16.415 --> 00:30:18.120 throughout the trajectory.

NOTE Confidence: 0.84984

 $00:30:20.630 \longrightarrow 00:30:22.946$ And we suspect that the reason

NOTE Confidence: 0.84984

 $00:30:22.946 \longrightarrow 00:30:25.530$ for that is G1 shortening,

NOTE Confidence: 0.84984

 $00:30:25.530 \longrightarrow 00:30:28.372$ and so as a proportion the number

 $00{:}30{:}28.372 \dashrightarrow 00{:}30{:}31.310$ of cells in S phase increases.

NOTE Confidence: 0.84984

00:30:31.310 --> 00:30:34.326 The later we are in the Seaview stage

NOTE Confidence: 0.84984

 $00:30:34.326 \longrightarrow 00:30:37.539$ as we approach the actual switch.

NOTE Confidence: 0.84984

 $00:30:37.540 \longrightarrow 00:30:39.772$ G1 is pretty short.

NOTE Confidence: 0.84984

 $00:30:39.772 \dashrightarrow 00:30:43.120$ The switch itself we think involves

NOTE Confidence: 0.84984

 $00:30:43.230 \longrightarrow 00:30:47.550$ S phase shortening. So.

NOTE Confidence: 0.84984

 $00:30:47.550 \longrightarrow 00:30:51.030$ To summarize what I've told you so far.

NOTE Confidence: 0.84984

 $00{:}30{:}51.030 \dashrightarrow 00{:}30{:}54.450$ We use single cell RNA sequencing

NOTE Confidence: 0.84984

 $00:30:54.450 \longrightarrow 00:30:56.730$ to identify the erythroid

NOTE Confidence: 0.84984

 $00:30:56.828 \longrightarrow 00:31:00.498$ developmental trajectory in the mouse.

NOTE Confidence: 0.84984

 $00{:}31{:}00.500 \dashrightarrow 00{:}31{:}03.896$ We were able to match specific

NOTE Confidence: 0.84984

 $00{:}31{:}03.896 \dashrightarrow 00{:}31{:}07.633$ stages that are identified based on

NOTE Confidence: 0.84984

 $00{:}31{:}07.633 \dashrightarrow 00{:}31{:}10.373$ transcriptomes to fax populations

NOTE Confidence: 0.84984

 $00:31:10.373 \longrightarrow 00:31:13.113$ and to functional subsets.

NOTE Confidence: 0.84984

 $00:31:13.120 \longrightarrow 00:31:15.912$ Functional progenitors based on

00:31:15.912 --> 00:31:18.704 confirmation potential and using

NOTE Confidence: 0.84984

 $00:31:18.704 \longrightarrow 00:31:22.037$ these tools we began to analyze.

NOTE Confidence: 0.84984

 $00:31:22.040 \longrightarrow 00:31:23.592$ The factors that control

NOTE Confidence: 0.84984

 $00:31:23.592 \longrightarrow 00:31:25.920$ the switch from CFUE to ET.

NOTE Confidence: 0.84984

 $00:31:25.920 \longrightarrow 00:31:29.028$ We found that this is a

NOTE Confidence: 0.84984

 $00:31:29.028 \longrightarrow 00:31:30.582$ true transcriptional switch.

NOTE Confidence: 0.84984

 $00:31:30.590 \longrightarrow 00:31:35.310$ And that there is no real clear change

NOTE Confidence: 0.84984

 $00:31:35.310 \longrightarrow 00:31:38.502$ in transcription factor levels that

NOTE Confidence: 0.84984

 $00{:}31{:}38.502 \dashrightarrow 00{:}31{:}42.294$ reports the timing of this switch.

NOTE Confidence: 0.84984

 $00:31:42.300 \longrightarrow 00:31:45.660$ By contrast, we do see really quite

NOTE Confidence: 0.84984

 $00{:}31{:}45.660 \dashrightarrow 00{:}31{:}48.550$ marked changes in the cell cycle.

NOTE Confidence: 0.84984

 $00:31:48.550 \longrightarrow 00:31:54.230$ Initially we see a gradual shortening in G1.

NOTE Confidence: 0.84984

 $00:31:54.230 \longrightarrow 00:31:57.070$ And at the time of the switch we

NOTE Confidence: 0.84984

 $00:31:57.070 \longrightarrow 00:32:00.676$ see a further shortening in S phase.

NOTE Confidence: 0.84984

 $00:32:00.680 \longrightarrow 00:32:03.088$ So that at the time of this which

NOTE Confidence: 0.84984

 $00:32:03.088 \longrightarrow 00:32:05.526$ we have a very short cell cycle,

 $00:32:05.530 \longrightarrow 00:32:07.125$ our measurements indicate that this

NOTE Confidence: 0.84984

00:32:07.125 --> 00:32:09.399 cell cycle is about 6 hours long,

NOTE Confidence: 0.84984

 $00:32:09.400 \longrightarrow 00:32:13.194$ with S phase being only four hours.

NOTE Confidence: 0.84984

 $00:32:13.200 \longrightarrow 00:32:13.837$ So.

NOTE Confidence: 0.84984

00:32:13.837 --> 00:32:18.933 What we next asked his first of all,

NOTE Confidence: 0.84984

 $00{:}32{:}18.940 \dashrightarrow 00{:}32{:}21.250$ what regulates this really quite

NOTE Confidence: 0.84984

00:32:21.250 --> 00:32:24.070 dramatic remodeling of the cell cycle?

NOTE Confidence: 0.84984

 $00:32:24.070 \longrightarrow 00:32:26.410$ And the second question is,

NOTE Confidence: 0.84984

 $00:32:26.410 \longrightarrow 00:32:28.740$ is this cell cycle remodeling

NOTE Confidence: 0.84984

 $00:32:28.740 \longrightarrow 00:32:30.604$ relevant to linear development?

NOTE Confidence: 0.84984

 $00:32:30.610 \longrightarrow 00:32:33.536$ Does it play a role in these

NOTE Confidence: 0.84984

 $00:32:33.536 \longrightarrow 00:32:35.750$ important cell fate decisions?

NOTE Confidence: 0.84984

 $00:32:35.750 \dashrightarrow 00:32:39.478$ For example, this switch from CFUE to ETD.

NOTE Confidence: 0.84984

00:32:39.480 --> 00:32:44.808 Is it correlate or does it determine it?

NOTE Confidence: 0.84984

 $00:32:44.810 \longrightarrow 00:32:46.738$ And so to begin to look at that.

 $00:32:49.280 \longrightarrow 00:32:51.776$ Just before I get to that,

NOTE Confidence: 0.885927

 $00:32:51.780 \longrightarrow 00:32:55.272$ I just wanted to show you some of the

NOTE Confidence: 0.885927

 $00:32:55.272 \longrightarrow 00:32:57.881$ expression of cell cycle regulators

NOTE Confidence: 0.885927

 $00:32:57.881 \longrightarrow 00:33:00.551$ during the original trajectory and

NOTE Confidence: 0.885927

 $00:33:00.551 \longrightarrow 00:33:03.270$ what's quite interesting is that.

NOTE Confidence: 0.885927

 $00{:}33{:}03.270 \dashrightarrow 00{:}33{:}05.646$ Our different shifting shape of the

NOTE Confidence: 0.885927

 $00{:}33{:}05.646 \dashrightarrow 00{:}33{:}07.865$ cell cycle is probably regulated

NOTE Confidence: 0.885927

 $00:33:07.865 \longrightarrow 00:33:10.655$ through changing cell cycle regulators.

NOTE Confidence: 0.885927

00:33:10.660 --> 00:33:13.831 And of course we have no idea

NOTE Confidence: 0.885927

 $00:33:13.831 \longrightarrow 00:33:16.668$ how that happens at this point,

NOTE Confidence: 0.885927

 $00:33:16.670 \longrightarrow 00:33:19.436$ but we know that for example,

NOTE Confidence: 0.885927

 $00:33:19.440 \longrightarrow 00:33:22.224$ the dominant E2F four transcription factor

NOTE Confidence: 0.885927

00:33:22.224 --> 00:33:25.907 during most of the trajectory is E2F four,

NOTE Confidence: 0.885927

 $00:33:25.910 \longrightarrow 00:33:29.592$ but at the time of the switch

NOTE Confidence: 0.885927

 $00:33:29.592 \longrightarrow 00:33:33.060$ to ETD it becomes E2F2.

NOTE Confidence: 0.885927

 $00:33:33.060 \longrightarrow 00:33:35.180$ Other regulators, for example,

 $00:33:35.180 \longrightarrow 00:33:39.918$ when we look at the cycling dies cycling D2,

NOTE Confidence: 0.885927

 $00:33:39.920 \longrightarrow 00:33:41.872$ is present early on.

NOTE Confidence: 0.885927

00:33:41.872 --> 00:33:43.824 But it is gradually

NOTE Confidence: 0.885927

 $00:33:43.824 \longrightarrow 00:33:45.530$ downregulated whilst cycling.

NOTE Confidence: 0.885927

00:33:45.530 --> 00:33:49.436 D3 takes over at the time of this switch

NOTE Confidence: 0.885927

 $00{:}33{:}49.436 \dashrightarrow 00{:}33{:}53.210$ so it is quite possible that these.

NOTE Confidence: 0.885927

 $00:33:53.210 \longrightarrow 00:33:54.503$ Part of them.

NOTE Confidence: 0.885927

 $00:33:54.503 \longrightarrow 00:33:59.649$ So how do I that is able to generate these

NOTE Confidence: 0.885927

00:33:59.649 --> 00:34:04.339 quite different shapes of the cell cycle?

NOTE Confidence: 0.885927

 $00:34:04.340 \longrightarrow 00:34:07.098$ So the first thing that we asked

NOTE Confidence: 0.885927

 $00:34:07.098 \longrightarrow 00:34:10.084$ is what are the mechanisms that

NOTE Confidence: 0.885927

 $00:34:10.084 \longrightarrow 00:34:12.939$ underlie this very short space?

NOTE Confidence: 0.885927

 $00:34:12.940 \longrightarrow 00:34:14.980$ And there are two ways of

NOTE Confidence: 0.885927

 $00{:}34{:}14.980 \dashrightarrow 00{:}34{:}16.340$ getting a short space.

NOTE Confidence: 0.885927

 $00:34:16.340 \longrightarrow 00:34:19.329$ One is to have more origins of

 $00:34:19.329 \longrightarrow 00:34:21.554$ replication and the other is

NOTE Confidence: 0.885927

 $00:34:21.554 \longrightarrow 00:34:24.116$ to have folks that move faster.

NOTE Confidence: 0.885927

 $00{:}34{:}24.120 \dashrightarrow 00{:}34{:}27.108$ We know from model organisms that

NOTE Confidence: 0.885927

 $00:34:27.108 \longrightarrow 00:34:29.720$ have extremely short as phase.

NOTE Confidence: 0.885927

 $00:34:29.720 \longrightarrow 00:34:32.933$ Is that the way they manage to

NOTE Confidence: 0.885927

 $00{:}34{:}32.933 \dashrightarrow 00{:}34{:}35.592$ replicate the genome very fast is

NOTE Confidence: 0.885927

 $00:34:35.592 \longrightarrow 00:34:38.364$ by having all of the origins of

NOTE Confidence: 0.885927

00:34:38.457 --> 00:34:41.430 replication firing synchronously,

NOTE Confidence: 0.885927

 $00:34:41.430 \longrightarrow 00:34:44.478$ and they're all very closely spaced.

NOTE Confidence: 0.885927

00:34:44.480 --> 00:34:47.918 So having efficient firing of origins

NOTE Confidence: 0.885927

 $00{:}34{:}47.918 \dashrightarrow 00{:}34{:}51.250$ of replication would clearly be one

NOTE Confidence: 0.885927

 $00:34:51.250 \longrightarrow 00:34:53.610$ mechanism that has a president.

NOTE Confidence: 0.885927

00:34:53.610 --> 00:34:57.327 At the time that we were doing this work,

NOTE Confidence: 0.885927

 $00:34:57.330 \longrightarrow 00:34:59.320$ we started to collaborate with

NOTE Confidence: 0.885927

 $00{:}34{:}59.320 \dashrightarrow 00{:}35{:}01.870$ Nick Rind at UMass Medical School.

NOTE Confidence: 0.885927

 $00:35:01.870 \longrightarrow 00:35:04.348$ Who is studies replication in yeast?

 $00:35:04.350 \longrightarrow 00:35:07.646$ And we through discussion with him for that.

NOTE Confidence: 0.885927

 $00:35:07.650 \longrightarrow 00:35:10.555$ That is likely we will find because

NOTE Confidence: 0.885927

 $00:35:10.555 \longrightarrow 00:35:14.321$ there was really no precedent for folks

NOTE Confidence: 0.885927

00:35:14.321 --> 00:35:16.757 speed being regulated physiologically.

NOTE Confidence: 0.885927

00:35:16.760 --> 00:35:19.316 But so to approach this question,

NOTE Confidence: 0.885927

 $00:35:19.320 \longrightarrow 00:35:21.450$ we learned from the rind.

NOTE Confidence: 0.885927

 $00:35:21.450 \longrightarrow 00:35:24.000$ Leiber technique called DNA combing here.

NOTE Confidence: 0.885927

 $00:35:24.000 \longrightarrow 00:35:25.278$ You take cells,

NOTE Confidence: 0.885927

00:35:25.278 --> 00:35:27.408 pulse them with finding analogs.

NOTE Confidence: 0.885927

 $00{:}35{:}27.410 \dashrightarrow 00{:}35{:}29.858$ We pass them with two distinct

NOTE Confidence: 0.885927

 $00{:}35{:}29.858 \dashrightarrow 00{:}35{:}32.420$ finding analogs that we could stay

NOTE Confidence: 0.885927

 $00:35:32.420 \longrightarrow 00:35:34.958$ in with two different colors during

NOTE Confidence: 0.885927

 $00{:}35{:}34.958 \dashrightarrow 00{:}35{:}37.629$ the pulse with bio deoxy uridine,

NOTE Confidence: 0.885927

00:35:37.630 --> 00:35:42.208 we were, we are able to follow.

NOTE Confidence: 0.885927

 $00{:}35{:}42.210 \dashrightarrow 00{:}35{:}45.540$ Into a incorporation of Iodo.

 $00:35:45.540 \longrightarrow 00:35:47.163$ The that by.

NOTE Confidence: 0.885927

 $00:35:47.163 \longrightarrow 00:35:49.868$ Later on stretching DNA fibers

NOTE Confidence: 0.885927

 $00:35:49.868 \longrightarrow 00:35:52.339$ along a cover sleep,

NOTE Confidence: 0.885927

 $00:35:52.340 \longrightarrow 00:35:56.524$ the green regions are the regions that were

NOTE Confidence: 0.885927

 $00:35:56.524 \longrightarrow 00:36:00.010$ replicating at the time of the iota pals.

NOTE Confidence: 0.885927

 $00:36:00.010 \longrightarrow 00:36:01.864$ Then we followed that 10 minutes

NOTE Confidence: 0.885927

 $00:36:01.864 \longrightarrow 00:36:03.790$ later with a pass of chloro,

NOTE Confidence: 0.885927

 $00{:}36{:}03.790 --> 00{:}36{:}04.192$ uh.

NOTE Confidence: 0.885927

 $00{:}36{:}04.192 \dashrightarrow 00{:}36{:}07.006$ Deoxy uridine and here we see the

NOTE Confidence: 0.885927

 $00:36:07.006 \longrightarrow 00:36:09.863$ red regions are being labeled that

NOTE Confidence: 0.885927

 $00{:}36{:}09.863 \dashrightarrow 00{:}36{:}12.815$ this is where Clara gets incorporated

NOTE Confidence: 0.885927

 $00:36:12.902 \longrightarrow 00:36:15.654$ and by doing that we get both the

NOTE Confidence: 0.885927

 $00:36:15.654 \longrightarrow 00:36:18.340$ speed of the fork and its direction.

NOTE Confidence: 0.885927

 $00{:}36{:}18.340 \dashrightarrow 00{:}36{:}21.076$ Ality because we know that green

NOTE Confidence: 0.885927

 $00:36:21.076 \longrightarrow 00:36:22.900$ replication proceeds read replication

NOTE Confidence: 0.885927

 $00{:}36{:}22.968 \dashrightarrow 00{:}36{:}25.504$ and with that we can place the origins.

 $00:36:25.510 \longrightarrow 00:36:28.296$ So here we have a fork moving

NOTE Confidence: 0.885927

 $00:36:28.296 \longrightarrow 00:36:29.490$ in One Direction,

NOTE Confidence: 0.885927

 $00:36:29.490 \longrightarrow 00:36:31.665$ another fork in another service

NOTE Confidence: 0.885927

00:36:31.665 --> 00:36:33.840 must be a replication bubble

NOTE Confidence: 0.885927

 $00:36:33.921 \longrightarrow 00:36:35.806$ with origin in the center.

NOTE Confidence: 0.885927

 $00:36:35.810 \longrightarrow 00:36:37.702$ And with this approach.

NOTE Confidence: 0.885927

 $00:36:37.702 \longrightarrow 00:36:41.560$ We discovered it was actually no difference.

NOTE Confidence: 0.885927

00:36:41.560 --> 00:36:43.965 No significant difference in the

NOTE Confidence: 0.885927

 $00:36:43.965 \longrightarrow 00:36:46.370$ distance between origins of replication,

NOTE Confidence: 0.8463134

 $00{:}36{:}46.370 \dashrightarrow 00{:}36{:}48.860$ but there was a marked difference

NOTE Confidence: 0.8463134

 $00{:}36{:}48.860 \dashrightarrow 00{:}36{:}52.139$ in the speed of replication Forks.

NOTE Confidence: 0.8463134

 $00{:}36{:}52.140 \dashrightarrow 00{:}36{:}55.325$ So on average we're looking

NOTE Confidence: 0.8463134

 $00:36:55.325 \longrightarrow 00:36:58.510$ globally in the genome here.

NOTE Confidence: 0.8463134

 $00{:}36{:}58.510 \dashrightarrow 00{:}37{:}01.470$ The replication folks in S1

NOTE Confidence: 0.8463134

 $00:37:01.470 \longrightarrow 00:37:05.029$ move at 50% faster speed than

 $00:37:05.029 \longrightarrow 00:37:07.994$ replication folks in S note,

NOTE Confidence: 0.8463134

 $00:37:08.000 \longrightarrow 00:37:12.110$ and that really entirely accounts for

NOTE Confidence: 0.8463134

 $00:37:12.110 \longrightarrow 00:37:16.690$ this speed of four S8 shortening.

NOTE Confidence: 0.8463134

00:37:16.690 --> 00:37:19.434 And So what might be regulating that?

NOTE Confidence: 0.8463134

 $00:37:19.440 \longrightarrow 00:37:22.584$ And is it really relevant to self it?

NOTE Confidence: 0.8463134

 $00:37:22.590 \longrightarrow 00:37:25.726$ Well, the answer is still not fully clear,

NOTE Confidence: 0.8463134

 $00:37:25.730 \longrightarrow 00:37:27.776$ but we know of examples where

NOTE Confidence: 0.8463134

 $00:37:27.776 \longrightarrow 00:37:29.678$ esfe shortening is at least

NOTE Confidence: 0.8463134

 $00:37:29.678 \longrightarrow 00:37:32.018$ associated with cell fate decisions.

NOTE Confidence: 0.8463134

00:37:32.020 --> 00:37:33.980 Here we're looking at gastrulation,

NOTE Confidence: 0.8463134

 $00{:}37{:}33.980 \dashrightarrow 00{:}37{:}36.878$ in mammals where we know that

NOTE Confidence: 0.8463134

 $00:37:36.878 \longrightarrow 00:37:39.348$ there is dramatic space shortening

NOTE Confidence: 0.8463134

 $00:37:39.348 \longrightarrow 00:37:42.456$ from 7 hours to 2 1/2 hours.

NOTE Confidence: 0.8463134

 $00:37:42.460 \longrightarrow 00:37:45.240$ We know more recent examples

NOTE Confidence: 0.8463134

00:37:45.240 --> 00:37:48.020 running Yale from Shank Xingguo,

NOTE Confidence: 0.8463134

 $00:37:48.020 \longrightarrow 00:37:49.688$ where ultrafast cycles.

 $00:37:51.710 \longrightarrow 00:37:54.888$ Mark the cells that are most likely

NOTE Confidence: 0.8364228

 $00:37:54.888 \longrightarrow 00:37:57.738$ two week program into I PS cells,

NOTE Confidence: 0.8364228

00:37:57.740 --> 00:38:00.757 so this is clearly worth following up.

NOTE Confidence: 0.8364228

 $00:38:00.760 \longrightarrow 00:38:03.940$ So what might be regulating

NOTE Confidence: 0.8364228

 $00:38:03.940 \longrightarrow 00:38:05.848$ as they shortening?

NOTE Confidence: 0.8364228

 $00:38:05.850 \longrightarrow 00:38:09.986$ We looked at one key regulator P 57.

NOTE Confidence: 0.8364228

 $00:38:09.990 \longrightarrow 00:38:15.678$ Keep two. This is a CD K inhibitor.

NOTE Confidence: 0.8364228

00:38:15.680 --> 00:38:18.284 An IT regulates all it inhibits all

NOTE Confidence: 0.8364228

 $00:38:18.284 \longrightarrow 00:38:21.856$ city case, except I think City K 6.

NOTE Confidence: 0.8364228

00:38:21.860 --> 00:38:25.388 Um? What we found is it that

NOTE Confidence: 0.8364228

 $00:38:25.388 \longrightarrow 00:38:28.820$ it is present in S, not cells,

NOTE Confidence: 0.8364228

 $00:38:28.820 \longrightarrow 00:38:32.420$ but is rapidly downregulated in S1.

NOTE Confidence: 0.8364228

 $00:38:32.420 \longrightarrow 00:38:34.928$ And here you can see that,

NOTE Confidence: 0.8364228

00:38:34.930 --> 00:38:37.185 unusually, it's expressing S phase

NOTE Confidence: 0.8364228

 $00:38:37.185 \longrightarrow 00:38:39.960$ of those cells rather than in G1,

00:38:39.960 --> 00:38:42.000 suggesting it play some kind

NOTE Confidence: 0.8364228

 $00:38:42.000 \longrightarrow 00:38:44.570$ of role in S phase here.

NOTE Confidence: 0.8364228

00:38:44.570 --> 00:38:47.496 Looking at our Western and at Q.

NOTE Confidence: 0.8364228

00:38:47.500 --> 00:38:50.440 PCR, which both indicated the same thing,

NOTE Confidence: 0.8364228

 $00:38:50.440 \longrightarrow 00:38:53.366$ and so we looked at the P57.

NOTE Confidence: 0.8364228

 $00:38:53.370 \longrightarrow 00:38:55.042$ Keep two deficient embryos

NOTE Confidence: 0.8364228

 $00:38:55.042 \longrightarrow 00:38:57.132$ is in the imprinted gene,

NOTE Confidence: 0.8364228

 $00:38:57.140 \longrightarrow 00:39:00.972$ so we can look at the heterozygous and

NOTE Confidence: 0.8364228

 $00{:}39{:}00.972 \dashrightarrow 00{:}39{:}03.850$ have essentially a knockout phenotype.

NOTE Confidence: 0.8364228

 $00:39:03.850 \longrightarrow 00:39:07.186$ And we see that these mice are anemic.

NOTE Confidence: 0.8364228

00:39:07.190 --> 00:39:09.698 They die in the prenatal stage.

NOTE Confidence: 0.8364228

 $00:39:09.700 \longrightarrow 00:39:11.790$ I have multiple developmental abnormalities.

NOTE Confidence: 0.8364228

 $00:39:11.790 \longrightarrow 00:39:14.298$ We found that they were anemic.

NOTE Confidence: 0.8364228

 $00:39:14.300 \longrightarrow 00:39:16.736$ They had fewer cells in the fetal

NOTE Confidence: 0.8364228

 $00:39:16.736 \longrightarrow 00:39:20.032$ liver and when we looked at the

NOTE Confidence: 0.8364228

 $00:39:20.032 \longrightarrow 00:39:22.208$ differentiation they had trouble

 $00:39:22.208 \longrightarrow 00:39:24.048$ generating differentiated and we

NOTE Confidence: 0.8364228

 $00:39:24.048 \longrightarrow 00:39:26.414$ throw blasts from the early CF you.

NOTE Confidence: 0.8364228

00:39:26.420 --> 00:39:29.976 So what's going on here Weekly looked

NOTE Confidence: 0.8364228

 $00:39:29.976 \longrightarrow 00:39:33.037$ thought to look at the S phase.

NOTE Confidence: 0.8364228

 $00{:}39{:}33.040 \dashrightarrow 00{:}39{:}35.230$ So here we're looking at S

NOTE Confidence: 0.8364228

 $00:39:35.230 \longrightarrow 00:39:36.690$ phase again in CFUE.

NOTE Confidence: 0.8364228

 $00:39:36.690 \longrightarrow 00:39:39.090$ It is maintained as along as

NOTE Confidence: 0.8364228

 $00:39:39.090 \longrightarrow 00:39:41.689$ phase and we in wild type.

NOTE Confidence: 0.8364228

 $00{:}39{:}41.690 \dashrightarrow 00{:}39{:}44.210$ Projectors see shortening at the

NOTE Confidence: 0.8364228

 $00:39:44.210 \dashrightarrow 00:39:47.729$ time of the switch from C FE2ET D.

NOTE Confidence: 0.8364228

 $00:39:47.730 \longrightarrow 00:39:49.992$ And here we're looking at RC71

NOTE Confidence: 0.8364228

 $00:39:49.992 \longrightarrow 00:39:52.928$ so that I'm in the wild type

NOTE Confidence: 0.8364228

 $00{:}39{:}52.928 \rightarrow 00{:}39{:}55.153$ and in knock out littermate and

NOTE Confidence: 0.8364228

00:39:55.153 --> 00:39:58.799 what you can see is that S phase

NOTE Confidence: 0.8364228

 $00:39:58.799 \longrightarrow 00:40:00.579$ speed is consistently faster.

00:40:00.580 --> 00:40:03.210 Prematurely fast in the CF,

NOTE Confidence: 0.8364228

00:40:03.210 --> 00:40:06.360 UE of the P57 knockout embryos,

NOTE Confidence: 0.8364228

 $00:40:06.360 \longrightarrow 00:40:10.560$ so we have a premature shortening of space.

NOTE Confidence: 0.8180986

00:40:12.590 --> 00:40:14.450 When we did DNA combing,

NOTE Confidence: 0.8180986

 $00:40:14.450 \longrightarrow 00:40:17.236$ we found that the folks were moving

NOTE Confidence: 0.8180986

00:40:17.236 --> 00:40:20.068 faster in their knockout in S not

NOTE Confidence: 0.8180986

 $00{:}40{:}20.068 \dashrightarrow 00{:}40{:}22.408$ fork speed was already almost as

NOTE Confidence: 0.8180986

 $00:40:22.488 \longrightarrow 00:40:24.984$ fast as it would be in the wild

NOTE Confidence: 0.8180986

 $00{:}40{:}24.984 \dashrightarrow 00{:}40{:}28.060$ types of in the water plasma cells.

NOTE Confidence: 0.8180986

 $00:40:28.060 \longrightarrow 00:40:31.534$ And in the X one of the P57 deficient

NOTE Confidence: 0.8180986

00:40:31.534 --> 00:40:33.769 embryo S1 cells will break,

NOTE Confidence: 0.8180986

 $00:40:33.770 \longrightarrow 00:40:35.402$ virtually breaking the speed

NOTE Confidence: 0.8180986

 $00:40:35.402 \longrightarrow 00:40:37.034$ limit on fork speed,

NOTE Confidence: 0.8180986

 $00:40:37.040 \longrightarrow 00:40:39.889$ and so we have very fast folks.

NOTE Confidence: 0.8180986

00:40:39.890 --> 00:40:44.126 What's the significance of that functionally?

NOTE Confidence: 0.8180986

 $00:40:44.130 \longrightarrow 00:40:45.390$ Anemia is 1,

00:40:45.390 --> 00:40:48.330 but why exactly do we get anemia?

NOTE Confidence: 0.8180986

 $00:40:48.330 \longrightarrow 00:40:51.431$ We didn't find that out until we

NOTE Confidence: 0.8180986

00:40:51.431 --> 00:40:55.330 looked at CF self renewal in the dish.

NOTE Confidence: 0.8180986

 $00:40:55.330 \longrightarrow 00:40:59.738$ So it turns out that CF UE can

NOTE Confidence: 0.8180986

 $00{:}40{:}59.738 \dashrightarrow 00{:}41{:}03.847$ undergo self renewal in the dish

NOTE Confidence: 0.8180986

 $00{:}41{:}03.847 \dashrightarrow 00{:}41{:}08.155$ for quite prolonged periods of time.

NOTE Confidence: 0.8180986

 $00:41:08.160 \longrightarrow 00:41:11.928$ Up to a month for adult.

NOTE Confidence: 0.8180986

 $00:41:11.930 \longrightarrow 00:41:15.538$ See a few ehad is documented in the

NOTE Confidence: 0.8180986

00:41:15.538 --> 00:41:19.294 literature in our hands up to about 2 weeks.

NOTE Confidence: 0.8180986

00:41:19.300 --> 00:41:21.316 And this contrasts with CF you,

NOTE Confidence: 0.8180986

 $00:41:21.320 \longrightarrow 00:41:23.888$ even they differentiate their form rec

NOTE Confidence: 0.8180986

 $00:41:23.888 \longrightarrow 00:41:27.167$ cells within a matter of two to three days.

NOTE Confidence: 0.8180986

 $00:41:27.170 \longrightarrow 00:41:29.823$ And what stops a fuse from differentiating

NOTE Confidence: 0.8180986

00:41:29.823 --> 00:41:32.659 it keeps them in itself for in

NOTE Confidence: 0.8180986

 $00:41:32.659 \longrightarrow 00:41:34.283$ your state are glucocorticoids.

00:41:34.290 --> 00:41:37.998 And so when we placed glucocorticoid

NOTE Confidence: 0.8180986

 $00{:}41{:}37.998 \dashrightarrow 00{:}41{:}41.410$ 57 knock hard to safely.

NOTE Confidence: 0.8180986

 $00:41:41.410 \longrightarrow 00:41:44.100$ In this self renewal cocktail.

NOTE Confidence: 0.8180986

 $00:41:44.100 \longrightarrow 00:41:47.262$ We found that they failed to

NOTE Confidence: 0.8180986

00:41:47.262 --> 00:41:49.370 undergo efficient self renewal.

NOTE Confidence: 0.8180986

 $00:41:49.370 \longrightarrow 00:41:51.908$ And so that is very likely

NOTE Confidence: 0.8180986

 $00:41:51.908 \longrightarrow 00:41:54.360$ the reason for the anemia.

NOTE Confidence: 0.8180986

 $00:41:54.360 \longrightarrow 00:41:56.808$ So for some reason they fail

NOTE Confidence: 0.8180986

 $00:41:56.808 \longrightarrow 00:41:58.440$ to sell from you,

NOTE Confidence: 0.8180986

 $00:41:58.440 \longrightarrow 00:42:01.192$ and the reason we can clear when we

NOTE Confidence: 0.8180986

 $00{:}42{:}01.192 \dashrightarrow 00{:}42{:}04.204$ looked at the expression of P57 in cells

NOTE Confidence: 0.8180986

 $00:42:04.204 \longrightarrow 00:42:07.010$ in the presence of glucocorticoids.

NOTE Confidence: 0.8180986

00:42:07.010 --> 00:42:09.458 Here we're looking at using Dex,

NOTE Confidence: 0.8180986

 $00{:}42{:}09.460 \dashrightarrow 00{:}42{:}11.500$ which is a synthetic glucocorticoid,

NOTE Confidence: 0.8180986

 $00:42:11.500 \longrightarrow 00:42:14.436$ so cells express P57 and then P 57

NOTE Confidence: 0.8180986

 $00{:}42{:}14.436 \dashrightarrow 00{:}42{:}17.354$ isn't used further by DEX and so it

 $00:42:17.354 \longrightarrow 00:42:19.333$ seems that dex and glucocorticoids

NOTE Confidence: 0.8180986

 $00{:}42{:}19.333 \dashrightarrow 00{:}42{:}22.267$ in general probably work at least

NOTE Confidence: 0.8180986

 $00:42:22.267 \longrightarrow 00:42:24.768$ in part by inducing P.

NOTE Confidence: 0.8180986 00:42:24.768 --> 00:42:25.282 57.

NOTE Confidence: 0.8180986

 $00{:}42{:}25.282 \rightarrow 00{:}42{:}27.852$ Inhibiting Assface CK activity and

NOTE Confidence: 0.8180986

 $00{:}42{:}27.852 \dashrightarrow 00{:}42{:}30.996$ that in turn allows a stabilizes

NOTE Confidence: 0.8180986

 $00:42:30.996 \longrightarrow 00:42:33.521$ and long essays and promotes

NOTE Confidence: 0.8180986

00:42:33.521 --> 00:42:36.519 the safe UE self renewal state.

NOTE Confidence: 0.8180986

 $00:42:36.520 \longrightarrow 00:42:39.178$ So here we see a connection

NOTE Confidence: 0.8180986

 $00{:}42{:}39.178 \dashrightarrow 00{:}42{:}42.317$ between along S phase and self

NOTE Confidence: 0.8180986

 $00:42:42.317 \longrightarrow 00:42:45.487$ renewal or persistence of a

NOTE Confidence: 0.8180986

 $00{:}42{:}45.487 \dashrightarrow 00{:}42{:}47.389$ particular transcriptional state.

NOTE Confidence: 0.8180986

00:42:47.390 --> 00:42:50.786 Suggesting that maybe a fast S

NOTE Confidence: 0.8180986

 $00:42:50.786 \longrightarrow 00:42:53.050$ phase is somehow destabilizing

NOTE Confidence: 0.8180986

 $00:42:53.144 \longrightarrow 00:42:55.649$ to transcriptional program.

 $00:42:55.650 \longrightarrow 00:42:59.406$ Now we were able to rescue.

NOTE Confidence: 0.8180986

00:42:59.410 --> 00:43:01.374 The situation by adding

NOTE Confidence: 0.8180986

 $00:43:01.374 \longrightarrow 00:43:03.829$ to the knockout cells P.

NOTE Confidence: 0.8180986

00:43:03.830 --> 00:43:07.034 57 knockout cells acidic A2 inhibiting

NOTE Confidence: 0.8180986

 $00{:}43{:}07.034 \dashrightarrow 00{:}43{:}10.679$ drugs so this will reduce CD K

NOTE Confidence: 0.8180986

00:43:10.679 --> 00:43:13.024 activity will inhibit CK activity

NOTE Confidence: 0.8180986

00:43:13.024 --> 00:43:16.757 in S phase cells and you can see

NOTE Confidence: 0.8180986

 $00:43:16.757 \longrightarrow 00:43:19.444$ that compared to the city 57.

NOTE Confidence: 0.8180986

 $00:43:19.444 \longrightarrow 00:43:21.654$ Knock ourselves the knockout cells

NOTE Confidence: 0.8180986

 $00:43:21.654 \longrightarrow 00:43:24.683$ treated with the drug almost completely

NOTE Confidence: 0.8180986

 $00{:}43{:}24.683 \dashrightarrow 00{:}43{:}27.398$ resume normal self renewal activity.

NOTE Confidence: 0.57940215

 $00:43:29.500 \longrightarrow 00:43:34.495$ And so, um. You can we have a

NOTE Confidence: 0.57940215

 $00:43:34.495 \longrightarrow 00:43:36.736$ bit more data here, so yeah,

NOTE Confidence: 0.57940215

 $00:43:36.736 \longrightarrow 00:43:39.720$ so here we're looking at wild type cells.

NOTE Confidence: 0.57940215

 $00:43:39.720 \longrightarrow 00:43:41.580$ We can take this paradigm,

NOTE Confidence: 0.57940215

 $00:43:41.580 \longrightarrow 00:43:42.980$ feather and say, well,

 $00:43:42.980 \longrightarrow 00:43:45.690$ OK we have CF uses long essays.

NOTE Confidence: 0.57940215

 $00:43:45.690 \longrightarrow 00:43:47.178$ Stable self renewal can

NOTE Confidence: 0.57940215

 $00:43:47.178 \longrightarrow 00:43:49.038$ make it even more stable.

NOTE Confidence: 0.57940215

00:43:49.040 --> 00:43:51.581 Can we enhance the sea of yourself

NOTE Confidence: 0.57940215

 $00{:}43{:}51.581 \dashrightarrow 00{:}43{:}53.919$ on your potential by adding city

NOTE Confidence: 0.57940215

 $00:43:53.919 \longrightarrow 00:43:56.265$ K inhibitors to the medium and

NOTE Confidence: 0.57940215

00:43:56.265 --> 00:43:57.987 prolonging S phase even more?

NOTE Confidence: 0.57940215

 $00{:}43{:}57.990 \dashrightarrow 00{:}43{:}59.970$ And that indeed happens so you

NOTE Confidence: 0.57940215

 $00{:}43{:}59.970 \dashrightarrow 00{:}44{:}02.245$ can see that compared to control

NOTE Confidence: 0.57940215

 $00:44:02.245 \longrightarrow 00:44:04.021$ cells undergoing self renewal

NOTE Confidence: 0.57940215

 $00:44:04.021 \longrightarrow 00:44:05.353$ in just dexamethasone.

NOTE Confidence: 0.57940215

 $00:44:05.360 \longrightarrow 00:44:08.488$ When we add the city K2 inhibitor with,

NOTE Confidence: 0.57940215

 $00:44:08.490 \longrightarrow 00:44:10.440$ these cells are completely blocked.

NOTE Confidence: 0.57940215

 $00:44:10.440 \longrightarrow 00:44:12.990$ They don't up regulator 119.

NOTE Confidence: 0.57940215

 $00:44:12.990 \longrightarrow 00:44:16.063$ When the S phase is slower and

00:44:16.063 --> 00:44:19.240 we can amplify them much further,

NOTE Confidence: 0.57940215

 $00:44:19.240 \longrightarrow 00:44:22.576$ so in red at the cells that have

NOTE Confidence: 0.57940215

 $00:44:22.576 \longrightarrow 00:44:25.990$ sydicate 2 inhibitors added on so we

NOTE Confidence: 0.57940215

 $00:44:25.990 \longrightarrow 00:44:29.829$ can amplify the CFL stage even further.

NOTE Confidence: 0.57940215

 $00:44:29.830 \longrightarrow 00:44:32.710$ And clearly this may have some

NOTE Confidence: 0.57940215

 $00:44:32.710 \longrightarrow 00:44:33.670$ translational applications.

NOTE Confidence: 0.57940215

00:44:33.670 --> 00:44:36.556 Maybe Syndicate two inhibitors will assist,

NOTE Confidence: 0.57940215

 $00:44:36.560 \longrightarrow 00:44:39.580$ or perhaps replace glucocorticoids in

NOTE Confidence: 0.57940215

00:44:39.580 --> 00:44:43.080 therapeutic approaches that target the CFUE.

NOTE Confidence: 0.57940215

 $00:44:43.080 \longrightarrow 00:44:45.485$ But it also for fundamental

NOTE Confidence: 0.57940215

00:44:45.485 --> 00:44:47.409 biology point of view.

NOTE Confidence: 0.57940215

 $00:44:47.410 \longrightarrow 00:44:50.278$ It tells us that stabilizing and

NOTE Confidence: 0.57940215

 $00:44:50.278 \longrightarrow 00:44:53.179$ prolonging S phase delays the switch.

 $00{:}44{:}55.740 \dashrightarrow 00{:}44{:}58.232$ So I will. I'm running a little

NOTE Confidence: 0.831401939999999

 $00:44:58.232 \longrightarrow 00:45:01.510$ bit out of time so I will quickly

NOTE Confidence: 0.831401939999999

 $00:45:01.510 \longrightarrow 00:45:04.106$ summarize what we what I've shown

 $00:45:04.106 \longrightarrow 00:45:07.194$ you in the second part of the talk.

NOTE Confidence: 0.831401939999999

 $00:45:07.200 \longrightarrow 00:45:09.170$ See if you self renewal.

NOTE Confidence: 0.831401939999999

 $00:45:09.170 \longrightarrow 00:45:12.280$ Depends on a long space.

NOTE Confidence: 0.831401939999999

 $00:45:12.280 \longrightarrow 00:45:14.920$ And when that is.

NOTE Confidence: 0.831401939999999

00:45:14.920 --> 00:45:17.035 Impaired, for example,

NOTE Confidence: 0.831401939999999

 $00:45:17.035 \longrightarrow 00:45:20.560$ in the P57 knockout mouse.

NOTE Confidence: 0.831401939999999

 $00:45:20.560 \longrightarrow 00:45:22.360$ There are insufficient cycles of

NOTE Confidence: 0.831401939999999

 $00{:}45{:}22.360 \rightarrow 00{:}45{:}24.868$ self renewal, and that causes an emia.

NOTE Confidence: 0.831401939999999

 $00:45:24.868 \longrightarrow 00:45:29.078$ And we can rescue that and in fact enhance.

NOTE Confidence: 0.831401939999999

 $00{:}45{:}29.080 \dashrightarrow 00{:}45{:}32.120$ See if you see few suffering you even

NOTE Confidence: 0.831401939999999

00:45:32.120 --> 00:45:35.441 in wild type progenitors by inhibiting

NOTE Confidence: 0.831401939999999

 $00{:}45{:}35.441 \dashrightarrow 00{:}45{:}38.536$ SDK activity and prolonging essays.

NOTE Confidence: 0.831401939999999

 $00:45:38.540 \longrightarrow 00:45:41.360$ So it appears that exercise shortening

NOTE Confidence: 0.831401939999999

00:45:41.360 --> 00:45:44.380 may be causally related to the switch,

NOTE Confidence: 0.831401939999999

 $00:45:44.380 \longrightarrow 00:45:46.740$ although the underlying mechanism

 $00:45:46.740 \longrightarrow 00:45:49.690$ of course isn't clear yet.

NOTE Confidence: 0.831401939999999

 $00:45:49.690 \longrightarrow 00:45:53.460$ And then in the last few minutes of my talk,

NOTE Confidence: 0.831401939999999

 $00:45:53.460 \longrightarrow 00:45:57.036$ I'll take just five minutes to tell you

NOTE Confidence: 0.831401939999999

 $00:45:57.036 \longrightarrow 00:46:00.259$ knew story that isn't yet published.

NOTE Confidence: 0.831401939999999

 $00:46:00.260 \longrightarrow 00:46:03.278$ Again, that seems to highlight the

NOTE Confidence: 0.831401939999999

 $00:46:03.278 \longrightarrow 00:46:06.567$ importance of the cycle in this

NOTE Confidence: 0.831401939999999

 $00{:}46{:}06.567 \dashrightarrow 00{:}46{:}08.939$ time in terminal differentiation.

NOTE Confidence: 0.831401939999999

 $00:46:08.940 \longrightarrow 00:46:11.369$ So we know that E praeceptor becomes

 $00:46:11.369 \longrightarrow 00:46:13.370$ essential during terminal differentiation.

NOTE Confidence: 0.831401939999999

00:46:13.370 --> 00:46:16.814 Although it begins to be expressed much

NOTE Confidence: 0.831401939999999

 $00:46:16.814 \longrightarrow 00:46:19.820$ earlier in earlier with the Preseas.

NOTE Confidence: 0.831401939999999

00:46:19.820 --> 00:46:20.783 And with that,

NOTE Confidence: 0.831401939999999

 $00:46:20.783 \longrightarrow 00:46:23.030$ the power sector I've shown you earlier,

NOTE Confidence: 0.831401939999999

 $00:46:23.030 \longrightarrow 00:46:26.159$ we have no cells in terminal differentiation.

NOTE Confidence: 0.831401939999999

 $00:46:26.160 \longrightarrow 00:46:27.448$ And so we asked.

NOTE Confidence: 0.831401939999999

00:46:27.448 --> 00:46:30.808 And this is work by Daniel Hidalgo in my lab.

 $00:46:30.810 \longrightarrow 00:46:31.800$ We asked whether.

NOTE Confidence: 0.7722785

 $00{:}46{:}34.520 \dashrightarrow 00{:}46{:}36.310$ The emperor sector has added

NOTE Confidence: 0.7722785

 $00:46:36.310 \longrightarrow 00:46:37.742$ functions other than survival

NOTE Confidence: 0.7722785

00:46:37.742 --> 00:46:39.539 during terminal differentiation,

NOTE Confidence: 0.7722785

 $00{:}46{:}39.540 \dashrightarrow 00{:}46{:}42.200$ and two answer that we developed a

NOTE Confidence: 0.7722785

 $00:46:42.200 \longrightarrow 00:46:45.241$ genetic model in which we take the

NOTE Confidence: 0.7722785

00:46:45.241 --> 00:46:47.516 perceptive nokut fetal livers and

NOTE Confidence: 0.7722785

 $00{:}46{:}47.516 \dashrightarrow 00{:}46{:}50.064$ introduce back either the EPO receptor

NOTE Confidence: 0.7722785

 $00:46:50.064 \longrightarrow 00:46:52.758$ obiesie ELEX to stop them from dying.

NOTE Confidence: 0.7722785

 $00:46:52.758 \longrightarrow 00:46:54.792$ And with this model system we

NOTE Confidence: 0.7722785

 $00:46:54.792 \longrightarrow 00:46:57.270$ were able to see that in fact

NOTE Confidence: 0.7722785

 $00{:}46{:}57.270 \dashrightarrow 00{:}46{:}59.000$ you can get full differentiation

NOTE Confidence: 0.7722785

 $00:46:59.067 \longrightarrow 00:47:01.329$ without any equal receptor at all,

NOTE Confidence: 0.7722785

 $00:47:01.330 \longrightarrow 00:47:05.700$ as long as you keep the cells from dying by.

NOTE Confidence: 0.7722785

 $00{:}47{:}05.700 \dashrightarrow 00{:}47{:}09.510$ D. Transgenic expression of BCLX.

 $00:47:09.510 \longrightarrow 00:47:11.460$ However, there were various abnormalities,

NOTE Confidence: 0.7722785

 $00:47:11.460 \longrightarrow 00:47:14.050$ and the biggest one was that the

NOTE Confidence: 0.7722785

00:47:14.050 --> 00:47:16.448 Sea Fury colonies that were formed

NOTE Confidence: 0.7722785

 $00:47:16.448 \longrightarrow 00:47:18.866$ were much smaller than the area,

NOTE Confidence: 0.7722785

 $00:47:18.870 \longrightarrow 00:47:21.658$ which is much smaller.

NOTE Confidence: 0.7722785

 $00:47:21.660 \longrightarrow 00:47:24.186$ And the second finding was that

NOTE Confidence: 0.7722785

 $00:47:24.186 \longrightarrow 00:47:26.390$ S phase wasn't as fast,

NOTE Confidence: 0.7722785

 $00:47:26.390 \longrightarrow 00:47:28.970$ so it was still pretty fast,

NOTE Confidence: 0.7722785

 $00:47:28.970 \longrightarrow 00:47:32.170$ but not as fast as in cells that

NOTE Confidence: 0.7722785

 $00:47:32.170 \longrightarrow 00:47:34.558$ were expressing the E prospectors.

NOTE Confidence: 0.7722785

00:47:34.560 --> 00:47:36.198 So clearly E.

NOTE Confidence: 0.7722785

 $00:47:36.198 \longrightarrow 00:47:38.382$ Praeceptor can further accelerate

NOTE Confidence: 0.7722785

 $00:47:38.382 \longrightarrow 00:47:39.474$ space speed.

NOTE Confidence: 0.7722785

 $00:47:39.480 \longrightarrow 00:47:41.226$ When we look at cell growth,

NOTE Confidence: 0.7722785

 $00:47:41.230 \longrightarrow 00:47:43.670$ this is in vitro.

NOTE Confidence: 0.7722785

 $00:47:43.670 \longrightarrow 00:47:47.065$ And see that cells expressing the ape

 $00:47:47.065 \longrightarrow 00:47:50.230$ receptor grow much faster than cells

NOTE Confidence: 0.7722785

 $00{:}47{:}50.230 \dashrightarrow 00{:}47{:}53.464$ expressing BCLX and the doubling time.

NOTE Confidence: 0.7722785

 $00:47:53.470 \longrightarrow 00:47:55.170$ Let's look at control cells.

NOTE Confidence: 0.7722785

00:47:55.170 --> 00:47:57.666 That doubling time is only six hours in

NOTE Confidence: 0.7722785

 $00:47:57.666 \longrightarrow 00:48:00.267$ our cells that express the equal sector,

NOTE Confidence: 0.7722785

 $00:48:00.270 \longrightarrow 00:48:03.546$ but it climbs to a towers in cells that

NOTE Confidence: 0.7722785

00:48:03.546 --> 00:48:06.268 don't have a protective signaling.

NOTE Confidence: 0.7722785

 $00:48:06.270 \longrightarrow 00:48:08.832$ We were fortunate to be able to

NOTE Confidence: 0.7722785

00:48:08.832 --> 00:48:11.108 collaborate with Sean James Goose Lab,

NOTE Confidence: 0.7722785

 $00:48:11.110 \longrightarrow 00:48:13.966$ who developed a beautiful Reporter mice.

NOTE Confidence: 0.7722785

 $00{:}48{:}13.970 \dashrightarrow 00{:}48{:}16.973$ This mouse reports the length of the

NOTE Confidence: 0.7722785

 $00{:}48{:}16.973 \dashrightarrow 00{:}48{:}19.720$ cell cycle using a Fusion protein.

NOTE Confidence: 0.7722785

 $00{:}48{:}19.720 \dashrightarrow 00{:}48{:}23.168$ H2B fluorescence timer Fusion.

NOTE Confidence: 0.7722785

00:48:23.170 --> 00:48:25.260 These Fusion is fluorescent blue

NOTE Confidence: 0.7722785

 $00:48:25.260 \longrightarrow 00:48:27.761$ when it is first synthesized and

 $00:48:27.761 \longrightarrow 00:48:29.471$ then becomes a fluoresces red

NOTE Confidence: 0.7722785

 $00:48:29.471 \longrightarrow 00:48:31.599$ about an hour or two later.

NOTE Confidence: 0.7722785

 $00{:}48{:}31.600 \dashrightarrow 00{:}48{:}35.569$ And so cells that have a short cycle IBB

NOTE Confidence: 0.7722785

 $00:48:35.569 \longrightarrow 00:48:39.558$ lower than cells that have a longer cycle.

NOTE Confidence: 0.7722785

 $00:48:39.560 \longrightarrow 00:48:41.610$ And so with her lab,

NOTE Confidence: 0.7722785

00:48:41.610 --> 00:48:45.434 we injected mice with either Ipoh or Saline.

NOTE Confidence: 0.7722785

 $00:48:45.440 \longrightarrow 00:48:47.762$ And found that two mice injected

NOTE Confidence: 0.7722785

 $00:48:47.762 \longrightarrow 00:48:49.760$ with Saline here in blue.

NOTE Confidence: 0.7722785

 $00:48:49.760 \longrightarrow 00:48:52.300 \text{ Um}$?

NOTE Confidence: 0.7722785

 $00:48:52.300 \longrightarrow 00:48:53.998$ Here we're looking at the ratio

NOTE Confidence: 0.7722785

00:48:53.998 --> 00:48:56.000 of blue to red fluorescence.

NOTE Confidence: 0.7722785

 $00:48:56.000 \longrightarrow 00:48:59.290$ We see a shift in that ratio when we look

NOTE Confidence: 0.7722785

 $00:48:59.375 \longrightarrow 00:49:02.743$ at two mice that are injected with people.

NOTE Confidence: 0.7722785

 $00:49:02.750 \longrightarrow 00:49:05.263$ And here we're looking at a specific

NOTE Confidence: 0.7722785

00:49:05.263 --> 00:49:07.268 erythroblast earlier Race for Life stage,

NOTE Confidence: 0.7722785

 $00:49:07.270 \longrightarrow 00:49:09.745$ and we can look at a number of our

00:49:09.745 --> 00:49:11.794 way through glass stages and at

NOTE Confidence: 0.7722785

 $00{:}49{:}11.794 \dashrightarrow 00{:}49{:}14.485$ each stage we see a clear difference

NOTE Confidence: 0.7722785

 $00:49:14.485 \longrightarrow 00:49:16.317$ in cell cycle length.

NOTE Confidence: 0.7722785

 $00:49:16.320 \longrightarrow 00:49:18.270$ So it seems that if receptor

NOTE Confidence: 0.7722785

 $00:49:18.270 \longrightarrow 00:49:20.150$ can shorten space even further,

NOTE Confidence: 0.7722785

 $00:49:20.150 \longrightarrow 00:49:23.390$ and in fact shorten the cycle.

NOTE Confidence: 0.7722785

00:49:23.390 --> 00:49:26.358 I'm going to skip this next part,

NOTE Confidence: 0.7722785

 $00:49:26.360 \longrightarrow 00:49:27.455$ which very briefly,

NOTE Confidence: 0.7722785

 $00:49:27.455 \longrightarrow 00:49:30.010$ you would think that if a preceptor

NOTE Confidence: 0.7722785

 $00{:}49{:}30.079 \dashrightarrow 00{:}49{:}32.509$ drives as shortest cycle and more

NOTE Confidence: 0.7722785

 $00:49:32.509 \longrightarrow 00:49:35.260$ numerous cycles in terminal differentiation,

NOTE Confidence: 0.7722785

 $00{:}49{:}35.260 \dashrightarrow 00{:}49{:}37.804$ the red cells that would result

NOTE Confidence: 0.7722785

 $00:49:37.804 \longrightarrow 00:49:39.076$ would be smaller.

NOTE Confidence: 0.7722785

 $00:49:39.080 \longrightarrow 00:49:42.464$ But in fact we find exactly the opposite.

NOTE Confidence: 0.7722785

 $00:49:42.470 \longrightarrow 00:49:45.870$ We find that the rattles are formed at

00:49:45.870 --> 00:49:49.246 larger and I won't go through the data,

NOTE Confidence: 0.7722785

 $00:49:49.250 \longrightarrow 00:49:53.156$ but we see a larger diameter in cells that.

NOTE Confidence: 0.7722785

 $00{:}49{:}53.160 \dashrightarrow 00{:}49{:}55.625$ Experienced high ipho and so

NOTE Confidence: 0.7722785

 $00:49:55.625 \longrightarrow 00:49:58.090$ that's a sort of paradox.

NOTE Confidence: 0.7722785

 $00:49:58.090 \longrightarrow 00:50:00.519$ This is interesting in its own right.

NOTE Confidence: 0.7722785

00:50:00.520 --> 00:50:02.600 I'm.

NOTE Confidence: 0.7722785

 $00:50:02.600 \longrightarrow 00:50:04.445$ And so I will summarize

NOTE Confidence: 0.7722785

 $00:50:04.445 \longrightarrow 00:50:06.700$ what I've told you so far.

NOTE Confidence: 0.7722785

 $00{:}50{:}06.700 --> 00{:}50{:}08.112$ And summarize my talk.

NOTE Confidence: 0.7722785

 $00:50:08.112 \longrightarrow 00:50:10.230$ What we find is that during

NOTE Confidence: 0.85460913

 $00{:}50{:}10.305 \dashrightarrow 00{:}50{:}12.917$ the are thra developmental trajectory,

NOTE Confidence: 0.85460913

 $00:50:12.920 \longrightarrow 00:50:15.584$ the cell cycle takes up a

NOTE Confidence: 0.85460913

00:50:15.584 --> 00:50:17.360 number of different shapes.

NOTE Confidence: 0.85460913

00:50:17.360 --> 00:50:20.018 If you like, it is long,

NOTE Confidence: 0.85460913

 $00:50:20.020 \longrightarrow 00:50:22.595$ early in the trajectory with

NOTE Confidence: 0.85460913

 $00:50:22.595 \longrightarrow 00:50:26.210$ along for a space and along G1.

 $00:50:26.210 \longrightarrow 00:50:28.054$ During the gradual progression

NOTE Confidence: 0.85460913

 $00{:}50{:}28.054 \longrightarrow 00{:}50{:}31.397$ through to see if you re staged

NOTE Confidence: 0.85460913

 $00:50:31.397 \longrightarrow 00:50:34.799$ towards the switch to ETD we have

NOTE Confidence: 0.85460913

00:50:34.799 --> 00:50:37.288 initially gradual shortening of G1.

NOTE Confidence: 0.85460913

00:50:37.290 --> 00:50:40.020 And sorry, gradual shortening of D1.

NOTE Confidence: 0.85460913

 $00:50:40.020 \longrightarrow 00:50:43.800$ And then at the time of this which we have.

NOTE Confidence: 0.85460913

00:50:43.800 --> 00:50:45.800 An abrupt shortening of essays,

NOTE Confidence: 0.85460913

 $00:50:45.800 \longrightarrow 00:50:48.775$ the shortening West phase is the result

NOTE Confidence: 0.85460913

00:50:48.775 --> 00:50:50.980 of downregulation of P57 Kip too,

NOTE Confidence: 0.85460913

 $00:50:50.980 \longrightarrow 00:50:52.580$ which is acidic Lee,

NOTE Confidence: 0.85460913

 $00:50:52.580 \longrightarrow 00:50:53.380$ two inhibitor.

NOTE Confidence: 0.85460913

00:50:53.380 --> 00:50:56.495 It inhibits S phase city K activity

NOTE Confidence: 0.85460913

00:50:56.495 --> 00:50:59.864 and that leads to an increase in

NOTE Confidence: 0.85460913

 $00:50:59.864 \longrightarrow 00:51:02.289$ the speed of replication Forks.

NOTE Confidence: 0.85460913

 $00:51:02.290 \longrightarrow 00:51:05.730$ The long ass face in the CFG stage

 $00:51:05.730 \longrightarrow 00:51:08.793$ is critical for the stability of that

NOTE Confidence: 0.85460913

 $00{:}51{:}08.793 \dashrightarrow 00{:}51{:}12.209$ stage in it for its self renewal,

NOTE Confidence: 0.85460913

 $00:51:12.210 \longrightarrow 00:51:15.110$ and it appears that glucocorticoids

NOTE Confidence: 0.85460913

 $00:51:15.110 \longrightarrow 00:51:18.010$ utilize that by enhancing expression

NOTE Confidence: 0.85460913

 $00:51:18.092 \longrightarrow 00:51:21.638$ of of the silicate to inhibit P 57 and

NOTE Confidence: 0.85460913

 $00:51:21.638 \longrightarrow 00:51:24.857$ prolonging the CFO is suffering you'll stage.

NOTE Confidence: 0.85460913

 $00:51:24.860 \longrightarrow 00:51:27.460$ And we may be able to use that

NOTE Confidence: 0.85460913

 $00:51:27.460 \longrightarrow 00:51:28.586$ therapeutically with silicate

NOTE Confidence: 0.85460913

 $00:51:28.586 \longrightarrow 00:51:30.218$ two inhibitors as well.

NOTE Confidence: 0.85460913

 $00:51:30.220 \longrightarrow 00:51:32.686$ Once we cross this this late

NOTE Confidence: 0.85460913

 $00{:}51{:}32.686 \dashrightarrow 00{:}51{:}33.919$ into terminal differentiation,

NOTE Confidence: 0.85460913

 $00:51:33.920 \longrightarrow 00:51:36.386$ the initial cycles are very short.

NOTE Confidence: 0.85460913

 $00:51:36.390 \longrightarrow 00:51:39.846$ In fact I forgot to mention this cycles

NOTE Confidence: 0.85460913

00:51:39.846 --> 00:51:43.249 of the earlier throw blasts as some

NOTE Confidence: 0.85460913

 $00:51:43.249 \longrightarrow 00:51:46.920$ of this shortest in the bone marrow.

NOTE Confidence: 0.85460913

 $00:51:46.920 \longrightarrow 00:51:50.964$ And these can be even further

 $00:51:50.964 \longrightarrow 00:51:52.986$ shorter when we.

NOTE Confidence: 0.85460913

 $00:51:52.990 \longrightarrow 00:51:55.797$ Use that when we simulate these cells.

NOTE Confidence: 0.85460913

00:51:55.800 --> 00:51:59.064 With people so at high levels of people

NOTE Confidence: 0.85460913

00:51:59.064 --> 00:52:02.688 which we would find in stress situations,

NOTE Confidence: 0.85460913

 $00:52:02.690 \longrightarrow 00:52:06.296$ high altitude or disease or bleeding.

NOTE Confidence: 0.85460913

 $00{:}52{:}06.300 \dashrightarrow 00{:}52{:}09.268$ Cycles become even shorter.

NOTE Confidence: 0.85460913

 $00:52:09.270 \longrightarrow 00:52:12.342$ And that in itself is raises

NOTE Confidence: 0.85460913

 $00:52:12.342 \longrightarrow 00:52:15.349$ the question of why is that?

NOTE Confidence: 0.85460913

00:52:15.350 --> 00:52:19.913 And I did not have time to discuss that,

NOTE Confidence: 0.85460913

 $00:52:19.920 \longrightarrow 00:52:22.664$ but all the work shows that the

NOTE Confidence: 0.85460913

 $00:52:22.664 \longrightarrow 00:52:25.843$ fast cycles of earlier reefer blasts

NOTE Confidence: 0.85460913

 $00:52:25.843 \longrightarrow 00:52:29.038$ contribute to rapid DNA demethylation,

NOTE Confidence: 0.85460913

 $00{:}52{:}29.040 \dashrightarrow 00{:}52{:}31.950$ and that in terns assist the speed

NOTE Confidence: 0.85460913

 $00:52:31.950 \longrightarrow 00:52:34.620$ of the ATD transcriptional program.

NOTE Confidence: 0.85460913

 $00:52:34.620 \longrightarrow 00:52:37.854$ So it's possible that that might

 $00:52:37.854 \longrightarrow 00:52:40.010$ be the reason why.

NOTE Confidence: 0.85460913

00:52:40.010 --> 00:52:41.470 This takes place here,

NOTE Confidence: 0.85460913

 $00:52:41.470 \longrightarrow 00:52:44.760$ but of course we don't know that for sure.

NOTE Confidence: 0.85460913

 $00:52:44.760 \longrightarrow 00:52:49.376$ So I'd like to thank the people that

NOTE Confidence: 0.85460913

 $00:52:49.376 \longrightarrow 00:52:54.856$ did the work and these people in my lab.

NOTE Confidence: 0.85460913

00:52:54.860 --> 00:52:57.259 Including include US Warrior, Sami, Nathan.

NOTE Confidence: 0.85460913

00:52:57.259 --> 00:53:00.291 Better bear to see who did a lot

NOTE Confidence: 0.85460913

00:53:00.291 --> 00:53:03.318 of the single cell RNA SEQ work.

NOTE Confidence: 0.85460913

 $00:53:03.320 \longrightarrow 00:53:06.505$ Melinda Futron who worked in the DNA

NOTE Confidence: 0.85460913

 $00:53:06.505 \longrightarrow 00:53:08.626$ combing together with young Kwang

NOTE Confidence: 0.85460913

 $00{:}53{:}08.626 \mathrel{--}{>} 00{:}53{:}11.322$ who did all the work on P57 and

NOTE Confidence: 0.85460913

00:53:11.406 --> 00:53:14.206 Daniel Hidalgo who did the work on

NOTE Confidence: 0.85460913

 $00:53:14.206 \longrightarrow 00:53:16.859$ the ape receptor signaling and our

NOTE Confidence: 0.85460913

 $00:53:16.859 \longrightarrow 00:53:18.791$ collaborators were very fortunate

NOTE Confidence: 0.85460913

 $00:53:18.791 \longrightarrow 00:53:21.258$ in our collaborators and old clients

NOTE Confidence: 0.85460913

 $00:53:21.258 \longrightarrow 00:53:23.463$ lab with a single cell RNA SEQ.

 $00:53:23.470 \longrightarrow 00:53:25.850$ Necrime at UMass Medical School.

NOTE Confidence: 0.85460913

 $00:53:25.850 \longrightarrow 00:53:29.203$ Who helped us with the DNA combing

NOTE Confidence: 0.85460913

00:53:29.203 --> 00:53:32.035 and shanting Google in Yale who

NOTE Confidence: 0.85460913

 $00:53:32.035 \longrightarrow 00:53:34.200$ had been a great colleague,

NOTE Confidence: 0.85460913

 $00:53:34.200 \longrightarrow 00:53:37.784$ was also interested in the cell cycle and

NOTE Confidence: 0.85460913

 $00:53:37.784 \longrightarrow 00:53:40.697$ we've collaborated with her transgenic mouse.

NOTE Confidence: 0.85460913

 $00:53:40.700 \longrightarrow 00:53:42.089$ So thank you.

NOTE Confidence: 0.8510252

 $00:53:45.520 \longrightarrow 00:53:48.094$ Thank you very much for a great talk.

NOTE Confidence: 0.8510252

00:53:48.100 --> 00:53:49.715 We have two questions for

NOTE Confidence: 0.8510252

00:53:49.715 --> 00:53:51.330 you in the Q&A session.

NOTE Confidence: 0.8510252

 $00:53:51.330 \longrightarrow 00:53:54.237$ I don't know if you can see them wrong,

NOTE Confidence: 0.8510252

 $00{:}53{:}54.240 \dashrightarrow 00{:}53{:}56.824$ but I can read them to the group.

NOTE Confidence: 0.8510252

 $00{:}53{:}56.830 \to 00{:}53{:}59.728$ The first is from Doctor Liu says great talk.

NOTE Confidence: 0.8510252

 $00{:}53{:}59.730 \dashrightarrow 00{:}54{:}02.054$ Any speculation in how CD K2 and

NOTE Confidence: 0.8510252

 $00:54:02.054 \longrightarrow 00:54:04.248$ P57 regulate fork speed in S phase.

 $00{:}54{:}05.100 \dashrightarrow 00{:}54{:}07.319$ We would like to know that yeah,

NOTE Confidence: 0.8742839

 $00:54:07.320 \longrightarrow 00:54:09.560$ so we don't know there are many.