WEBVTT - https://subtitletools.com

 $00:00:00.000 \rightarrow 00:00:03.167$ (students chattering)

00:01:55.456 --> 00:01:57.623 - Okay, let's get started.

 $00:02:03.671 \longrightarrow 00:02:04.583$ Let's get started.

00:02:04.583 --> 00:02:07.080 Can you hear me okay at the back?

00:02:07.080 --> 00:02:08.790 Yeah, okay, great.

 $00{:}02{:}08{.}790 \dashrightarrow 00{:}02{:}12{.}990$ So I'm Robert (mumbles) I'm a professor of epidemiology

 $00{:}02{:}12{.}990 \dashrightarrow 00{:}02{:}15{.}800$ in our Department of Environmental Health Sciences.

 $00:02:15.800 \dashrightarrow 00:02:17.550$ And I'm also the Faculty Director

 $00{:}02{:}17.550 \dashrightarrow 00{:}02{:}20.290$ of the Yellow Climate Change and Health Initiative.

 $00{:}02{:}20.290 \dashrightarrow 00{:}02{:}23.670$ And we're very pleased today as our first speaker

 $00:02:23.670 \rightarrow 00:02:27.010$ of this academic year to have Jason West,

 $00{:}02{:}27.010 \dashrightarrow 00{:}02{:}30.520$ who's from the Department of Environmental Sciences

 $00{:}02{:}30{.}520 \dashrightarrow 00{:}02{:}34{.}870$ and Engineering at the University of North Carolina School

00:02:34.870 --> 00:02:35.703 of Public Health.

00:02:35.703 --> 00:02:37.880 And we were just talking about how few

 $00{:}02{:}39{.}870 \dashrightarrow 00{:}02{:}43{.}140$ public health departments have engineering in the name

 $00{:}02{:}43.140 \dashrightarrow 00{:}02{:}46.970$ and how actually valuable it is to have engineers

 $00:02:46.970 \rightarrow 00:02:49.890$ within schools of public health, as hopefully,

 $00{:}02{:}49{.}890$ --> $00{:}02{:}53{.}253$ I think you'll see when you see the work that Jason does.

 $00:02:54.520 \dashrightarrow 00:02:57.880$ So Jason, has a great publication record

 $00:02:57.880 \rightarrow 00:03:00.110$ he's published in the high impact journals like

00:03:00.110 --> 00:03:03.200 Major Climate Change, and Nature Geoscience

 $00:03:03.200 \dashrightarrow 00:03:05.103$ and Environmental Health Perspectives.

 $00:03:05.970 \rightarrow 00:03:09.150$ He's also had funding from a variety of sources,

 $00{:}03{:}09{.}150$ --> $00{:}03{:}14{.}150$ including the EPA has a the National Science Foundation,

 $00{:}03{:}14.890$ --> $00{:}03{:}18.840$ and the National Institute of Environmental Health Sciences.

 $00{:}03{:}18.840 \dashrightarrow 00{:}03{:}21.980$ And so he's got, as you know, he's gonna talk

00:03:21.980 --> 00:03:24.670 to you today about connecting climate change,

 $00:03:24.670 \rightarrow 00:03:27.063$ air pollution, energy and human health.

00:03:29.896 --> 00:03:33.063 (students applauding)

 $00{:}03{:}34.170 \dashrightarrow 00{:}03{:}35.600$ - So I'm really happy to be here today.

00:03:35.600 -> 00:03:37.670 Thanks for the invitation.

00:03:37.670 --> 00:03:41.330 I spent yesterday, an exciting day for me in New York City

 $00:03:41.330 \longrightarrow 00:03:43.840$ for the climate week, and--

 $00:03:43.840 \rightarrow 00:03:46.697$ - Sorry, (mumbles) to just the lights a little bit.

00:03:46.697 --> 00:03:48.280 - All right, yeah.

00:03:48.280 --> 00:03:52.830 I was just gonna say, I was having a hard time in my mind,

 $00:03:52.830 \rightarrow 00:03:55.400$ justifying flying up here just to attend

 $00:03:55.400 \rightarrow 00:03:58.350$ a climate change event in New York.

00:03:58.350 --> 00:04:01.110 I had thought instead of about maybe taking a sale

00:04:02.097 --> 00:04:02.930 (students laughing)

 $00{:}04{:}02{.}930 \dashrightarrow 00{:}04{:}06{.}220$ but then I contacted Rob who had already invited me

 $00{:}04{:}06{.}220 \dashrightarrow 00{:}04{:}09{.}530$ and asked him if we could combine my trips.

 $00{:}04{:}09{.}530 \dashrightarrow 00{:}04{:}11{.}110$ And that worked out really nicely.

 $00{:}04{:}11{.}110 \dashrightarrow 00{:}04{:}13{.}470$ So Rob, if nothing else, I should thank you

 $00{:}04{:}13.470 \dashrightarrow 00{:}04{:}17.470$ for making me feel less guilty about flying.

00:04:17.470 --> 00:04:21.480 Okay, so I'm gonna talk to you today really,

 $00:04:21.480 \longrightarrow 00:04:23.960$ this is a talk not on one theme,

 $00:04:23.960 \longrightarrow 00:04:25.810$ but I'll be talking about a lot of the work

 $00{:}04{:}25{.}810$ --> $00{:}04{:}29{.}640$ that I in my lab is done over the past decade or so.

 $00:04:29.640 \longrightarrow 00:04:32.480$ I'll motivate that in a minute by talking about

 $00:04:33.680 \rightarrow 00:04:36.060$ especially the human health angle,

 $00{:}04{:}36{.}060$ --> $00{:}04{:}39{.}190$ that the work we do is really pretty interdisciplinary.

 $00:04:39.190 \longrightarrow 00:04:40.260$ And I think you'll see that

 $00:04:40.260 \rightarrow 00:04:43.690$ so I work on climate change in air pollution.

 $00:04:43.690 \rightarrow 00:04:46.000$ My main entry point to climate change is

 $00{:}04{:}46{.}000$ --> $00{:}04{:}48{.}900$ through atmospheric science, which is kinda my background.

 $00{:}04{:}49{.}740 \dashrightarrow 00{:}04{:}53{.}640$ But in particular, this interest in climate change

 $00:04:53.640 \rightarrow 00:04:56.740$ has kinda taken off in connecting climate change

 $00:04:56.740 \longrightarrow 00:04:57.573$ with air pollution.

00:04:57.573 --> 00:04:58.750 So as climate changes,

 $00:04:58.750 \rightarrow 00:05:00.880$ what will that mean for air pollution?

 $00{:}05{:}00{.}880 \dashrightarrow 00{:}05{:}04{.}410$ Or as we take the necessary steps to address climate change,

 $00{:}05{:}04{.}410$ --> $00{:}05{:}06{.}910$ what would that mean for pollution and for health?

 $00{:}05{:}06{.}910 \dashrightarrow 00{:}05{:}10{.}390$ So those are a couple of the themes that are explored here.

00:05:10.390 --> 00:05:12.140 I thought I'd start with this paper,

 $00{:}05{:}12{.}140$ --> $00{:}05{:}15{.}513$ which Michelle (mumbles) here also contributed to.

 $00:05:16.370 \longrightarrow 00:05:18.173$ That appeared a few years ago.

 $00:05:19.070 \rightarrow 00:05:21.690$ I and colleagues this, if you look at the list

 $00{:}05{:}21.690 \dashrightarrow 00{:}05{:}26.150$ of authors here, this is a purposeful combination of

 $00:05:26.150 \longrightarrow 00:05:27.510$ air pollution scientists

 $00:05:27.510 \rightarrow 00:05:29.420$ and air pollution health effects scientists,

 $00:05:29.420 \rightarrow 00:05:32.090$ we all got together in a room and talked about

 $00:05:32.090 \rightarrow 00:05:34.930$ what were some of the big issues of our day

00:05:34.930 --> 00:05:37.237 trying to take stock of what's known about air pollution

 $00{:}05{:}37{.}237 \dashrightarrow 00{:}05{:}39{.}880$ and health, and what are the big opportunities

 $00:05:39.880 \longrightarrow 00:05:41.470$ for the future.

00:05:41.470 --> 00:05:45.520 Some of our main conclusions I've pointed out here,

 $00:05:45.520 \longrightarrow 00:05:47.610$ one is how important air pollution is

 $00:05:47.610 \longrightarrow 00:05:50.040$ for global public health.

 $00:05:50.040 \rightarrow 00:05:52.630$ And what's been really instrumental in coming

 $00:05:52.630 \dashrightarrow 00:05:54.050$ to this understanding has been

 $00:05:54.050 \dashrightarrow 00:05:55.920$ the Global Burden of Disease Assessment.

 $00:05:55.920 \rightarrow 00:05:58.610$ So as I go along, through this presentation,

 $00:05:58.610 \rightarrow 00:06:00.010$ I'll show you some results from the

 $00{:}06{:}00{.}010 \dashrightarrow 00{:}06{:}02{.}210$ Global Burden of Disease Assessment

 $00{:}06{:}02{.}210$ --> $00{:}06{:}04{.}980$ and show you how my lab is doing some work to contribute

 $00:06:04.980 \longrightarrow 00:06:05.900$ to that assessment

00:06:05.900 --> 00:06:09.743 by mapping global surface ozone concentrations.

00:06:10.860 --> 00:06:13.980 Air pollution, it's health impacts our changing globally

 $00{:}06{:}13.980$ --> $00{:}06{:}17.123$ and will change in ways interrelated with climate change.

 $00:06:18.240 \longrightarrow 00:06:20.020$ We looked also at air pollution science,

 $00:06:20.020 \rightarrow 00:06:22.690$ which is making new possibilities through

00:06:22.690 --> 00:06:24.590 new ways of measuring air pollutants,

 $00{:}06{:}24.590 \dashrightarrow 00{:}06{:}27.590$ measuring new chemical constituents that may be then

 $00{:}06{:}27{.}590$ --> $00{:}06{:}30{.}960$ we could put in epidemiological models to find out

 $00{:}06{:}30{.}960 \dashrightarrow 00{:}06{:}33{.}110$ what component of air pollution is most

 $00:06:33.110 \longrightarrow 00:06:34.760$ important for health.

 $00{:}06{:}34{.}760$ --> $00{:}06{:}37{.}730$ We also have cheap sensors that can be widely deployed

00:06:37.730 --> 00:06:39.510 and are being widely deployed,

00:06:39.510 --> 00:06:41.730 providing a lot more information,

 $00:06:41.730 \rightarrow 00:06:44.920$ even if the quality of those measurements is poor.

 $00:06:44.920 \longrightarrow 00:06:47.680$ We have satellites looking down at the world now

 $00{:}06{:}47.680 \dashrightarrow 00{:}06{:}51.260$ giving us information every day about air pollution

 $00{:}06{:}51{.}260 \dashrightarrow 00{:}06{:}53{.}420$ that's potentially useful for us.

 $00{:}06{:}53{.}420 \dashrightarrow 00{:}06{:}55{.}910$ And computer models and that's what I do

 $00{:}06{:}55{.}910$ --> $00{:}06{:}59{.}930$ are becoming better for this kind of application too.

00:06:59.930 --> 00:07:02.445 One of the reasons why I wanted to start off with this,

 $00:07:02.445 \dashrightarrow 00:07:05.110$ (mumbles) was we took some time in this article $00:07:05.110 \dashrightarrow 00:07:08.120$ to talk about the need for the air pollution science

 $00{:}07{:}08{.}120 \dashrightarrow 00{:}07{:}11{.}160$ community to work better and closer together

 $00{:}07{:}11.160 \dashrightarrow 00{:}07{:}12.900$ with people that work in air pollution,

 $00{:}07{:}12{.}900 \dashrightarrow 00{:}07{:}14{.}470$ health effects science.

00:07:14.470 --> 00:07:17.890 So when I think back to when I was a graduate student,

 $00:07:17.890 \rightarrow 00:07:21.060$ I was firmly in the air pollution science world,

 $00:07:21.060 \dashrightarrow 00:07:23.600$ I was not exposed at all really to help.

00:07:23.600 --> 00:07:27.230 And as I look out at even our air pollution science

 $00:07:27.230 \rightarrow 00:07:29.420$ meetings, those are changing that I now see

 $00:07:29.420 \rightarrow 00:07:32.410$ more presentations from health effects scientists

 $00:07:32.410 \rightarrow 00:07:34.930$ or people that are making this bridge

 $00{:}07{:}34{.}930$ --> $00{:}07{:}37{.}330$ between air pollution science and health effects science.

 $00:07:37.330 \longrightarrow 00:07:39.030$ So that's a healthy change,

 $00:07:39.030 \rightarrow 00:07:41.030$ but I think we have a long way to go still.

00:07:41.030 - 00:07:42.760 Okay, in that regard, and maybe some

 $00{:}07{:}42.760 \dashrightarrow 00{:}07{:}46.420$ of you will be interested to, in your career fill that void.

00:07:46.420 --> 00:07:49.870 Okay, my plan for today is to

 $00:07:49.870 \rightarrow 00:07:51.940$ it's sort of the buckshot approach (mumbles)

 $00{:}07{:}51{.}940 \dashrightarrow 00{:}07{:}54{.}360$ I'll talk about a lot of different themes,

 $00:07:54.360 \longrightarrow 00:07:56.593$ and we'll see if any of them stick with you. $00:07:57.460 \rightarrow 00:08:00.467$ But first, I was gonna talk about global ozone $00:08:00.467 \rightarrow 00:08:03.660$ and what drives global ozone changes? $00:08:03.660 \dashrightarrow 00:08:05.360$ This is more atmospheric science. $00:08:05.360 \rightarrow 00:08:09.450$ But the rest of the talk will be about, $00:08:09.450 \rightarrow 00:08:12.700$ about air pollution and climate and health. 00:08:12.700 --> 00:08:14.900 So how many people die each year due $00:08:14.900 \rightarrow 00:08:17.500$ to exposure to ambient air pollution? $00:08:17.500 \rightarrow 00:08:20.630$ How can we best model global surfaces on distributions $00:08:20.630 \rightarrow 00:08:22.590$ that's for the Global Burden of Disease? $00:08:22.590 \rightarrow 00:08:24.490$ And I'll show you those results. 00:08:24.490 --> 00:08:26.920 How will climate change affect global air pollution $00:08:26.920 \rightarrow 00:08:28.560$ and air pollution related deaths? $00:08:28.560 \rightarrow 00:08:32.700$ So now turning our attention to climate a little bit. 00:08:32.700 --> 00:08:34.970 What are the trends in air pollution related deaths 00:08:34.970 --> 00:08:37.100 focusing on the United States? $00:08:37.100 \rightarrow 00:08:40.350$ And the last question, if we slow down climate change, $00:08:40.350 \rightarrow 00:08:42.020$ what are the benefits that we would see $00:08:42.020 \rightarrow 00:08:44.053$ for air pollution and health, okay? $00:08:46.000 \rightarrow 00:08:46.833$ Good. $00:08:48.050 \rightarrow 00:08:50.060$ I'll talk a little bit about ozone. 00:08:50.060 --> 00:08:53.670 So I'm guessing many of the students in here (mumbles) $00:08:53.670 \rightarrow 00:08:56.520$ from of a public health are studying public health $00:08:56.520 \rightarrow 00:08:58.210$ and maybe don't know a lot about ozone $00:08:58.210 \longrightarrow 00:08:59.410$ so let me talk about that. $00:08:59.410 \rightarrow 00:09:03.610$ So ozones forming the atmosphere by an interaction of $00:09:05.580 \rightarrow 00:09:07.290$ non-methane volatile organic.

 $00:09:07.290 \longrightarrow 00:09:10.100$ So organics that come from motor vehicles

 $00{:}09{:}10{.}100 \dashrightarrow 00{:}09{:}14.750$ from all kinds of different things, carbon monoxide as well.

 $00:09:14.750 \rightarrow 00:09:17.200$ Trees emit volatile organics,

 $00:09:17.200 \rightarrow 00:09:19.290$ those drive this cycle of radicals.

00:09:19.290 --> 00:09:22.770 The other important ingredient is nitrogen oxides,

 $00:09:22.770 \rightarrow 00:09:24.750$ comes from motor vehicles and power plants

 $00{:}09{:}24.750 \dashrightarrow 00{:}09{:}27.680$ and heavy industries, in the presence of sunlight

 $00:09:28.560 \longrightarrow 00:09:29.393$ gives us ozone.

 $00:09:29.393 \dashrightarrow 00:09:32.400$ So the three important ingredients are in organic $00:09:33.766 \dashrightarrow 00:09:37.240$ (mumbles) sunlight, and out of those chemical reactions,

 $00:09:37.240 \longrightarrow 00:09:38.073$ we get ozone.

 $00:09:39.170 \longrightarrow 00:09:42.020$ I'll be talking as well on the global scale.

 $00{:}09{:}42.020$ --> $00{:}09{:}46.020$ And when we look at the global scale, these fast reacting

 $00{:}09{:}46{.}020$ --> $00{:}09{:}49{.}750$ organics that are important in a place like Los Angeles

 $00:09:49.750 \rightarrow 00:09:52.830$ for producing ozone very fast because these react $00:09:52.830 \rightarrow 00:09:56.500$ on the order of hours are not very important than

 $00:09:56.500 \longrightarrow 00:09:57.850$ on the global scale.

 $00:09:57.850 \longrightarrow 00:09:59.620$ It's these more long live compounds.

 $00:09:59.620 \longrightarrow 00:10:01.890$ So carbon monoxide is really an important

 $00:10:01.890 \rightarrow 00:10:03.440$ methane really important.

 $00:10:03.440 \rightarrow 00:10:06.600$ Okay, so methane is admitted in large quantities,

00:10:06.600 --> 00:10:09.730 but it reacts so slowly contributes very little

 $00:10:09.730 \longrightarrow 00:10:11.470$ to urban air pollution.

00:10:11.470 --> 00:10:15.240 But on the global scale methane is one of the big drivers.

 $00:10:15.240 \rightarrow 00:10:19.060$ Okay, so and by the way, methane and ozone

 $00:10:19.060 \longrightarrow 00:10:21.640$ are both greenhouse gases.

00:10:21.640 --> 00:10:24.470 So going back several years, I had a line of research

 $00{:}10{:}24.470 \dashrightarrow 00{:}10{:}27.850$ looking at how emissions of these different precursors

00:10:27.850 --> 00:10:30.940 would affect both methane and ozone thinking about

 $00{:}10{:}30{.}940 \dashrightarrow 00{:}10{:}33{.}810$ how do you control those, both from an air pollution point

 $00:10:33.810 \rightarrow 00:10:36.520$ of view and from a climate point of view, okay.

 $00:10:36.520 \rightarrow 00:10:38.793$ So as you motivate the first study here.

 $00:10:41.400 \longrightarrow 00:10:43.510$ We're interested in here in

 $00:10:43.510 \rightarrow 00:10:46.530$ how global emissions are changing.

 $00:10:46.530 \rightarrow 00:10:50.160$ This shows global emissions of nitrogen oxide

 $00:10:50.160 \rightarrow 00:10:53.063$ one of those compounds that reacts to form ozone.

 $00{:}10{:}54{.}140 \dashrightarrow 00{:}10{:}59{.}140$ Globally, in 1950, and I'm gonna flash forward

00:10:59.440 --> 00:11:04.440 by decade now, so in 1950, 1960, 1970 and 1980.

 $00:11:04.570 \longrightarrow 00:11:06.210$ So by the time we got to 1980,

 $00{:}11{:}06{.}210$ --> $00{:}11{:}10{.}010$ you see the emissions are dominated by the U.S and Europe.

 $00{:}11{:}10{.}010 \dashrightarrow 00{:}11{:}12{.}390$ The spatial distribution, this is the latitude

 $00:11:12.390 \rightarrow 00:11:14.480$ and they'll distribution on the right here,

 $00:11:14.480 \rightarrow 00:11:17.640$ that hasn't really changed as emissions grew.

00:11:17.640 --> 00:11:22.640 But after that period, then this is 1990, 2000, 2010,

 $00:11:23.800 \rightarrow 00:11:26.640$ we see emissions going down

 $00:11:26.640 \rightarrow 00:11:28.580$ here in the U.S and Europe as

00:11:28.580 --> 00:11:30.920 we've implemented air pollution controls.

00:11:30.920 --> 00:11:32.860 And they've gone up pretty dramatically now

 $00:11:32.860 \longrightarrow 00:11:33.870$ in China and India.

 $00:11:33.870 \rightarrow 00:11:38.860$ So the emission distribution is shifting southward.

00:11:38.860 --> 00:11:41.790 This is interesting, and perhaps troubling,

 $00:11:41.790 \longrightarrow 00:11:44.070$ because we understand from the point of view

00:11:44.070 --> 00:11:47.100 of atmospheric science, that a ton of emissions closer

 $00{:}11{:}47{.}100 \dashrightarrow 00{:}11{:}51{.}030$ to the equator is expected to cause more ozone to be formed.

 $00:11:51.030 \rightarrow 00:11:54.423$ And so we're asking the question here, basically,

 $00:11:55.480 \rightarrow 00:11:58.230$ we'll focus on this period 1980 to 2010.

00:11:58.230 --> 00:12:02.900 So 1980 years before we had this change in the spatial

 $00:12:02.900 \rightarrow 00:12:06.550$ distribution with emissions coming southward.

 $00{:}12{:}06{.}550$ --> $00{:}12{:}10{.}450$ We're gonna separate out the importance of the magnitude

00:12:10.450 --> 00:12:13.850 of the emission change versus the spatial distribution

 $00:12:13.850 \longrightarrow 00:12:15.260$ of the emission change.

 $00:12:15.260 \rightarrow 00:12:18.830$ And the third ingredients here and the third factor $00:12:18.830 \rightarrow 00:12:22.060$ that's really important is the global methane change.

 $00{:}12{:}22.060 \dashrightarrow 00{:}12{:}24.854$ And we're gonna see how important each of those is

 $00:12:24.854 \rightarrow 00:12:26.820$ for global troposphere ozone,

 $00:12:26.820 \rightarrow 00:12:30.120$ that is the total amount of ozone in the lower level $00:12:30.120 \rightarrow 00:12:32.570$ of the atmosphere, okay.

 $00{:}12{:}32{.}570$ --> $00{:}12{:}35{.}980$ So using a computer model, so I'm a computer modeler,

00:12:35.980 --> 00:12:38.443 and I work with models of the global atmosphere.

 $00:12:40.550 \rightarrow 00:12:42.860$ We separated out these different influences.

 $00{:}12{:}42{.}860$ --> $00{:}12{:}46{.}610$ So according to our model, this is how the total ozone

 $00:12:46.610 \longrightarrow 00:12:48.490$ distribution has changed.

 $00{:}12{:}48{.}490 \dashrightarrow 00{:}12{:}52{.}120$ Where it's increased the most is an indicator of

 $00:12:52.120 \rightarrow 00:12:55.730$ where the biggest growth in emissions in the ozone

 $00{:}12{:}55{.}730$ --> $00{:}12{:}59{.}763$ has taken place, especially South and Southeast Asia.

 $00:13:00.970 \dashrightarrow 00:13:03.610$ And then the contributions to this total.

00:13:03.610 --> 00:13:08.610 So 28 Teragrams of ozone contributions from the change

 $00:13:08.680 \rightarrow 00:13:11.680$ in spatial distribution, the magnitude change

 $00:13:11.680 \rightarrow 00:13:13.890$ and the methane change, these two on the bottom,

 $00:13:13.890 \rightarrow 00:13:15.790$ though they contributed to the total amount

 $00:13:15.790 \rightarrow 00:13:19.260$ of ozone present, have very little ability

 $00:13:19.260 \rightarrow 00:13:24.240$ to explain this pattern of the total lows on growth.

 $00:13:24.240 \rightarrow 00:13:27.150$ But if we look at the spatial distribution change,

 $00{:}13{:}27{.}150 \dashrightarrow 00{:}13{:}31{.}590$ we have reductions in ozone, reductions in emissions,

00:13:31.590 --> 00:13:33.130 I should say, from the U.S and Europe,

 $00{:}13{:}33{.}130 \dashrightarrow 00{:}13{:}37{.}960$ but pretty dramatic growth in South and Southeast Asia.

 $00:13:37.960 \rightarrow 00:13:41.610$ And this gets us a lot further at explaining

 $00:13:41.610 \longrightarrow 00:13:43.370$ this total ozone growth.

 $00{:}13{:}43{.}370$ --> $00{:}13{:}46{.}560$ We were actually surprised by this that this is over half

 $00:13:46.560 \rightarrow 00:13:50.233$ of the total, bigger than the effect of the magnitude

 $00{:}13{:}50{.}233 \dashrightarrow 00{:}13{:}52{.}690$ and the effect of the methane change.

 $00:13:52.690 \rightarrow 00:13:55.610$ This is another way of looking at this where

00:13:55.610 - 00:13:58.100 this is the I should stay close to the mic,

00:13:58.100 --> 00:14:00.150 I'm told because we're recording.

 $00{:}14{:}00{.}150$ --> $00{:}14{:}02{.}830$ This is the equator, the North Pole, the South Pole,

 $00{:}14{:}02{.}830 \dashrightarrow 00{:}14{:}06{.}140$ and then looking through the depth of the atmosphere here.

 $00{:}14{:}06{.}140$ --> $00{:}14{:}09{.}410$ This is the total change, the spatial distribution change,

 $00{:}14{:}09{.}410$ --> $00{:}14{:}13{.}240$ the magnitude change, and the changing global methane.

 $00:14:13.240 \rightarrow 00:14:16.490$ In all of these cases, I should say in these two

00:14:16.490 --> 00:14:19.580 on the bottom, again, you don't explain the pattern

 $00{:}14{:}19.580 \dashrightarrow 00{:}14{:}21.930$ that you see in the total ozone change.

 $00{:}14{:}21{.}930 \dashrightarrow 00{:}14{:}25{.}150$ And this helps us to explain why this is so important.

 $00{:}14{:}25{.}150 \dashrightarrow 00{:}14{:}28{.}860$ So as admissions have shifted, further southward,

 $00{:}14{:}28.860 \dashrightarrow 00{:}14{:}32.731$ close to the equator now, those emissions are being lifted

 $00{:}14{:}32{.}731 \dashrightarrow 00{:}14{:}37{.}100$ up by deep convection, we would say in a (mumbles)

00:14:37.100 --> 00:14:40.270 meteorological sense, reaching a higher level

 $00:14:40.270 \rightarrow 00:14:42.360$ in the atmosphere than they do here.

 $00{:}14{:}42{.}360$ --> $00{:}14{:}46{.}650$ Once those emissions become part of the upper troposphere,

 $00:14:46.650 \rightarrow 00:14:49.820$ they live longer, and they react to form ozone.

 $00:14:49.820 \rightarrow 00:14:52.700$ That's what's driving this greater sensitivity

 $00{:}14{:}52{.}700 \dashrightarrow 00{:}14{:}56{.}710$ of ozone to changes in our pollutant emissions

 $00{:}14{:}56{.}710 \dashrightarrow 00{:}14{:}57{.}960$ near the equator.

 $00:14:57.960 \rightarrow 00:14:59.790$ And you can see that really vividly here

 $00{:}14{:}59{.}790 \dashrightarrow 00{:}15{:}04{.}340$ that these emissions that are from Southeast Asia in India

00:15:04.340 --> 00:15:07.770 are being distributed, lofted up very high,

 $00:15:07.770 \rightarrow 00:15:10.070$ where they're reacting to form a lot of ozone.

 $00:15:11.220 \longrightarrow 00:15:16.220$ So our concern then was that as we shift

 $00{:}15{:}16{.}590$ --> $00{:}15{:}20{.}040$ and continue to to shift emissions toward the equator,

 $00{:}15{:}20{.}040 \dashrightarrow 00{:}15{:}22{.}780$ that even if global emissions might decrease,

 $00:15:22.780 \rightarrow 00:15:25.240$ if we're if the spatial pattern is changing,

 $00{:}15{:}25{.}240 \dashrightarrow 00{:}15{:}27{.}553$ we might continue to increase global ozone.

 $00{:}15{:}28{.}830$ --> $00{:}15{:}31{.}627$ This was the work of Yuqiang Zhang who is my PhD student

00:15:31.627 --> 00:15:35.880 and that postdoc, he's continued that do a bunch more

 $00{:}15{:}37{.}100 \dashrightarrow 00{:}15{:}40{.}130$ simulations where he's separating out then the influence

 $00{:}15{:}40{.}130$ --> $00{:}15{:}44{.}750$ of each we're looking again at the change from 1980 to 2010.

 $00{:}15{:}44.750$ --> $00{:}15{:}48.890$ Looking at the influence of each world region change

 $00:15:48.890 \rightarrow 00:15:50.260$ on the total ozone change,

 $00:15:50.260 \rightarrow 00:15:52.430$ and here's the methane change as well.

 $00:15:52.430 \longrightarrow 00:15:54.390$ So this is the total effect.

 $00{:}15{:}54{.}390 \dashrightarrow 00{:}15{:}57{.}350$ And we see here that East Asia is important, that's China.

 $00:15:57.350 \rightarrow 00:16:00.980$ That's not surprising, they led the world in

 $00{:}16{:}00{.}980$ --> $00{:}16{:}04{.}510$ manufacturing with huge emissions associated with it.

 $00:16:04.510 \longrightarrow 00:16:05.840$ What is surprising here,

 $00{:}16{:}05{.}840 \dashrightarrow 00{:}16{:}08{.}360$ is right next to it is Southeast Asia

 $00:16:08.360 \longrightarrow 00:16:10.840$ as important for globalism.

 $00:16:10.840 \longrightarrow 00:16:13.200$ And if we look at the emissions,

 $00{:}16{:}13{.}200$ --> $00{:}16{:}16{.}350$ the emissions from Southeast Asia are much smaller

 $00{:}16{:}16{.}350 \dashrightarrow 00{:}16{:}18{.}930$ than the emission growth that's taken place over

 $00:16:18.930 \rightarrow 00:16:21.820$ these three decades from East Asia.

00:16:21.820 --> 00:16:25.310 So we're really highlighting here how important

 $00:16:25.310 \rightarrow 00:16:29.400$ emissions are, that are near the equator,

00:16:29.400 --> 00:16:31.850 and in particular, from Southeast Asia, suggesting

 $00:16:31.850 \rightarrow 00:16:34.840$ that there really are sort of emission hotspots

 $00{:}16{:}34{.}840 \dashrightarrow 00{:}16{:}38{.}760$ where each ton of emissions has a much greater influence,

 $00:16:38.760 \rightarrow 00:16:42.460$ on global air quality than emissions

 $00:16:42.460 \longrightarrow 00:16:45.910$ from further north, okay.

 $00:16:45.910 \rightarrow 00:16:48.650$ So that's your bit of atmospheric science today.

 $00{:}16{:}48.650 \dashrightarrow 00{:}16{:}50.900$ I'll turn our attention to health.

00:16:50.900 --> 00:16:53.490 And our first question will be,

 $00{:}16{:}53{.}490 \dashrightarrow 00{:}16{:}55{.}740$ how many people die each year due to exposure

 $00:16:55.740 \longrightarrow 00:16:57.010$ to ambient air pollution?

 $00:16:57.010 \rightarrow 00:16:58.990$ I'm gonna take a minute and get into that.

00:16:58.990 --> 00:17:02.440 So, Rob introduced me as an engineer

 $00:17:02.440 \rightarrow 00:17:04.440$ and my background is engineering.

00:17:04.440 --> 00:17:06.360 I had no schooling and public health

 $00:17:06.360 \rightarrow 00:17:09.090$ had no idea what public health was about,

00:17:09.090 --> 00:17:13.200 really until I did this study,

 $00:17:13.200 \longrightarrow 00:17:14.850$ I had been for a few years,

 $00{:}17{:}14.850 \dashrightarrow 00{:}17{:}18.840$ I had a fellowship to work in UPA head quarters in DC.

 $00{:}17{:}18{.}840 \dashrightarrow 00{:}17{:}21{.}520$ So there's a fellowship program for PhD scientists

 $00{:}17{:}21.520 \dashrightarrow 00{:}17{:}23.050$ to go into government offices.

 $00{:}17{:}23.050 \dashrightarrow 00{:}17{:}26.090$ And I thought at the time that I'd be leaving academics

 $00{:}17{:}26.090 \dashrightarrow 00{:}17{:}29.320$ for good to pursue a career in policy.

00:17:29.320 --> 00:17:33.060 And I learned a lot about how people

 $00:17:33.060 \rightarrow 00:17:36.373$ formulate policy questions in a place like DC.

 $00{:}17{:}37{.}310 \dashrightarrow 00{:}17{:}40{.}360$ And that changed how I approached problems.

00:17:40.360 --> 00:17:42.433 So I became interested in health.

00:17:43.360 --> 00:17:46.300 Health is an interesting topic, but my main motivation

 $00:17:46.300 \rightarrow 00:17:49.380$ actually was to think about it from a cost benefit $00:17:49.380 \rightarrow 00:17:51.070$ of policy analysis point of view.

 $00{:}17{:}51.070 \dashrightarrow 00{:}17{:}53.487$ The health was, to me the benefit

 $00:17:53.487 \longrightarrow 00:17:55.380$ of the cost benefit analysis.

 $00:17:55.380 \longrightarrow 00:17:57.240$ That's why I wanted to study it.

 $00{:}17{:}57{.}240$ --> $00{:}18{:}01{.}230$ So my first study, there was I became aware as I just sort

 $00:18:01.230 \longrightarrow 00:18:04.230$ of explained to you that methane affects

 $00:18:04.230 \longrightarrow 00:18:05.923$ the global background of ozone.

 $00:18:08.080 \rightarrow 00:18:10.500$ We had been thinking about methane,

 $00:18:10.500 \longrightarrow 00:18:12.420$ obviously as a greenhouse gas.

 $00:18:12.420 \longrightarrow 00:18:14.640$ And there's good reasons to reduce methane

 $00{:}18{:}14.640 \dashrightarrow 00{:}18{:}16.060$ as a greenhouse gas.

 $00:18:16.060 \rightarrow 00:18:18.317$ I thought I look at it in different contexts.

 $00:18:18.317 \rightarrow 00:18:21.170$ And I asked the question, could we justify

 $00{:}18{:}21{.}170 \dashrightarrow 00{:}18{:}24{.}980$ reducing methane emissions, because of it's reductions

 $00:18:24.980 \longrightarrow 00:18:27.650$ in ozone, and the health benefits

 $00:18:27.650 \rightarrow 00:18:29.980$ that would come about from that?

 $00:18:29.980 \longrightarrow 00:18:32.720$ So this was published in 2006.

 $00{:}18{:}32{.}720$ --> $00{:}18{:}36{.}240$ I called up Michelle Bell, who had the number one paper

 $00{:}18{:}36{.}240 \dashrightarrow 00{:}18{:}39{.}640$ at the time on ozone related deaths

 $00{:}18{:}39{.}640 \dashrightarrow 00{:}18{:}41{.}290$ and I talked through with her.

 $00{:}18{:}41{.}290 \dashrightarrow 00{:}18{:}43{.}790$ How do I use that information in

 $00:18:43.790 \longrightarrow 00:18:45.900$ what I'll call now a risk assessment?

 $00{:}18{:}45{.}900 \dashrightarrow 00{:}18{:}50{.}020$ So using epidemiological information to assess health.

00:18:50.020 --> 00:18:53.970 So what I did here was I use my global atmospheric model,

 $00:18:53.970 \longrightarrow 00:18:57.350$ put in a simulated a 20% reduction

 $00:18:57.350 \longrightarrow 00:18:59.170$ of global methane emissions,

 $00:18:59.170 \longrightarrow 00:19:02.960$ overlaid that on the world's population,

 $00{:}19{:}02{.}960$ --> $00{:}19{:}06{.}270$ and found that the reduction who knows on that came about

 $00{:}19{:}06{.}270$ --> $00{:}19{:}10{.}990$ from reducing methane avoided about 30,000 deaths in 2030.

 $00{:}19{:}11{.}830$ --> $00{:}19{:}15{.}160$ When I put dollar sign associated with those deaths,

 $00{:}19{:}15{.}160$ --> $00{:}19{:}18{.}940$ and compared it against the cost of reducing methane,

00:19:18.940 --> 00:19:21.600 and I could look up from the climate literature,

 $00{:}19{:}21{.}600$ --> $00{:}19{:}23{.}890$ the ways that we could think about reducing methane

 $00{:}19{:}23{.}890 \dashrightarrow 00{:}19{:}27{.}730$ and how much it costs, I found actually that the benefits

 $00:19:27.730 \longrightarrow 00:19:30.040$ to health outweigh the cost.

 $00:19:30.040 \longrightarrow 00:19:31.500$ So that was kind of cool.

 $00{:}19{:}31{.}500$ --> $00{:}19{:}34{.}420$ And it's suggested that we could be thinking about methane

 $00{:}19{:}34{.}420$ --> $00{:}19{:}38{.}030$ controls from an air pollution management point of view,

 $00{:}19{:}38{.}030 \dashrightarrow 00{:}19{:}42{.}360$ as well as from climate change management point of view.

00:19:42.360 --> 00:19:45.250 Okay, but one of the things that I was only vaguely aware

 $00:19:45.250 \rightarrow 00:19:47.840$ of at the time, this was actually the first time

 $00{:}19{:}47{.}840$ --> $00{:}19{:}51{.}650$ or certainly one of the first times that any body had used

 $00:19:51.650 \longrightarrow 00:19:53.560$ global atmospheric model

 $00:19:53.560 \rightarrow 00:19:55.780$ to drive a health impact assessment.

00:19:55.780 --> 00:19:58.610 And what I wasn't anticipating at the time was,

 $00{:}19{:}58{.}610$ --> $00{:}20{:}01{.}810$ that would be that the major direction of my research

 $00:20:01.810 \rightarrow 00:20:03.630$ ever since that, okay.

 $00:20:03.630 \longrightarrow 00:20:05.290$ So what I'll talk to you through now

 $00:20:05.290 \longrightarrow 00:20:07.010$ or some more applications,

 $00:20:07.010 \rightarrow 00:20:09.560$ where I'm using my global atmospheric model,

 $00:20:09.560 \rightarrow 00:20:12.300$ or using models that are used in the community

00:20:12.300 --> 00:20:14.740 that I came from, and now using them

00:20:14.740 --> 00:20:17.820 for Health Impact Assessments.

 $00{:}20{:}17.820 \dashrightarrow 00{:}20{:}21.500$ So the question that I asked just go back a couple slides

 $00{:}20{:}21{.}500 \dashrightarrow 00{:}20{:}24{.}460$ how many people died prematurely due to exposure

 $00:20:24.460 \rightarrow 00:20:26.403$ to outdoor air pollution every year?

 $00{:}20{:}28{.}010 \dashrightarrow 00{:}20{:}31{.}360$ If we look back several Global Burden of Disease Assessments

 $00{:}20{:}31{.}360$ --> $00{:}20{:}35{.}110$ ago, the first answers to those questions only looked

 $00:20:35.110 \longrightarrow 00:20:36.890$ at cities because it was in cities

 $00:20:36.890 \longrightarrow 00:20:38.270$ that we had observations

 $00:20:38.270 \rightarrow 00:20:41.050$ we didn't have observations elsewhere.

 $00:20:41.050 \rightarrow 00:20:43.670$ And so they were only estimating in the

 $00{:}20{:}43.670 \dashrightarrow 00{:}20{:}47.260$ Global Burden of Disease, the effect of air pollution

 $00{:}20{:}47.260 \dashrightarrow 00{:}20{:}50.380$ on health for the fraction of the world's population

 $00:20:50.380 \rightarrow 00:20:52.810$ that lived in the city, ignoring everybody else,

 $00{:}20{:}52{.}810 \dashrightarrow 00{:}20{:}55{.}940$ but we know where pollution is going up in a lot of places,

 $00:20:55.940 \longrightarrow 00:20:57.710$ even rural places.

 $00{:}20{:}57{.}710 \dashrightarrow 00{:}20{:}59{.}860$ So our first attempt at doing that was

 $00{:}20{:}59{.}860 \dashrightarrow 00{:}21{:}02{.}920$ that you use a computer model, the computer model

00:21:02.920 --> 00:21:04.840 has an advantage because it's got

 $00:21:04.840 \longrightarrow 00:21:06.890$ complete quote global coverage.

00:21:06.890 --> 00:21:09.980 It's got disadvantages, of (mumbles) grid cells

 $00{:}21{:}09{.}980 \dashrightarrow 00{:}21{:}12{.}070$ that don't really tell you what people are breathing

 $00:21:12.070 \longrightarrow 00:21:13.610$ in an urban setting.

00:21:13.610 --> 00:21:16.580 And it's got biases, okay.

00:21:16.580 --> 00:21:19.610 But nonetheless, we used it and that gave us the first

00:21:19.610 --> 00:21:23.750 estimate of global air pollution related deaths

 $00:21:24.840 \longrightarrow 00:21:26.223$ as a global total.

 $00{:}21{:}27{.}120 \dashrightarrow 00{:}21{:}29{.}100$ Here was the next study in that line.

00:21:29.100 --> 00:21:31.660 This is Raquel Silva, who is my PhD.

00:21:31.660 --> 00:21:34.440 I use a bunch of chemistry and climate models.

 $00{:}21{:}34{.}440$ --> $00{:}21{:}37{.}760$ These are simulations that were run for climate research,

 $00{:}21{:}37{.}760$ --> $00{:}21{:}41{.}640$ but they also output ground level concentrations of ozone,

 $00{:}21{:}41{.}640$ --> $00{:}21{:}45{.}700$ and PM2.5 and one of the neat things is they simulated

 $00:21:45.700 \rightarrow 00:21:49.570$ today, which in this study was year 2000.

 $00{:}21{:}49{.}570 \dashrightarrow 00{:}21{:}52{.}620$ And they also simulated the year 1850 as being

 $00{:}21{:}52.620 \dashrightarrow 00{:}21{:}54.280$ before the Industrial Revolution.

 $00{:}21{:}54{.}280 \dashrightarrow 00{:}21{:}58{.}560$ So we took the difference between air pollution in 1850

 $00{:}21{:}58{.}560 \dashrightarrow 00{:}22{:}02{.}550$ and 2000 and called that human caused air pollution.

 $00{:}22{:}02{.}550 \dashrightarrow 00{:}22{:}06{.}280$ And then assess what that meant for global human health.

 $00:22:06.280 \longrightarrow 00:22:08.460$ So these are a bunch of different models

 $00{:}22{:}08{.}460 \dashrightarrow 00{:}22{:}10{.}590$ that all ran the same experiment.

 $00{:}22{:}10.590 \dashrightarrow 00{:}22{:}12.980$ This for ozone, you see, there's a spread

 $00:22:12.980 \rightarrow 00:22:16.600$ of different results, using the different models.

 $00{:}22{:}16.600$ --> $00{:}22{:}19.097$ When we looked at this, this is the average of those.

 $00{:}22{:}19.097 \dashrightarrow 00{:}22{:}21.820$ But the error bars here reflect both the uncertainty

 $00:22:21.820 \rightarrow 00:22:24.240$ and the concentration response function,

 $00{:}22{:}24{.}240$ --> $00{:}22{:}26{.}640$ and the spread that we get from the different models.

 $00:22:26.640 \rightarrow 00:22:29.830$ And it turns out that the uncertainty that comes $00:22:29.830 \rightarrow 00:22:32.020$ from the spread of the different models,

 $00:22:32.020 \rightarrow 00:22:35.150$ outweighs the uncertainty contributes more

 $00{:}22{:}35{.}150 \dashrightarrow 00{:}22{:}38{.}140$ to this overall uncertainty, then does the uncertainty

 $00:22:38.140 \rightarrow 00:22:39.840$ and the concentration response function.

 $00:22:39.840 \rightarrow 00:22:41.820$ So that was kind of interesting as well.

 $00{:}22{:}41.820$ --> $00{:}22{:}46.443$ But globally, half a million or so, deaths related to ozone,

00:22:47.570 --> 00:22:50.920 related to PM2.5, about 2 million deaths.

 $00{:}22{:}50{.}920$ --> $00{:}22{:}53{.}840$ In a minute, I'll put those numbers into more context

 $00:22:53.840 \longrightarrow 00:22:55.860$ for you, you know, how do we think about that

 $00:22:55.860 \rightarrow 00:22:58.930$ and how do we compare what that number means?

 $00:22:58.930 \rightarrow 00:23:01.420$ I'll just finish talking about this study.

 $00{:}23{:}01{.}420$ --> $00{:}23{:}04{.}700$ This is the average of the many different models we use.

 $00{:}23{:}04{.}700 \dashrightarrow 00{:}23{:}08{.}980$ This is for ozone, with most of the world's deaths occurring

 $00{:}23{:}08{.}980{\:-}{-}{>}\,00{:}23{:}13{.}000$ in India and East Asia, obviously huge populations exposed

 $00:23:13.000 \rightarrow 00:23:15.770$ to highly polluted air.

 $00:23:15.770 \longrightarrow 00:23:18.090$ Here, we've looked at it deaths per million people $00:23:18.090 \longrightarrow 00:23:20.300$ in these different regions, it's certainly higher there.

 $00:23:20.300 \rightarrow 00:23:23.370$ But even North America stands out is pretty high $00:23:23.370 \rightarrow 00:23:28.310$ as well there, even though air pollution is has gotten

00:23:28.310 - 00:23:31.260 less severe through time, okay.

00:23:31.260 --> 00:23:35.530 And in East Asia, I mean, (mumbles) PM2.5

 $00:23:35.530 \rightarrow 00:23:39.033$ half the global total is in East Asia or so, okay.

 $00{:}23{:}40{.}410 \dashrightarrow 00{:}23{:}44{.}483$ So that's an example of the type of work that we can do,

 $00:23:45.360 \rightarrow 00:23:46.920$ addressing this question.

 $00{:}23{:}46{.}920 \dashrightarrow 00{:}23{:}48{.}890$ Will come back to that question when we look at the

00:23:48.890 --> 00:23:50.960 Global Burden of Disease Assessment.

 $00:23:50.960 \longrightarrow 00:23:52.000$ This was our

 $00{:}23{:}53{.}610 \dashrightarrow 00{:}23{:}57{.}560$ contribution to the Global Burden of Disease Assessments,

 $00{:}23{:}57{.}560 \dashrightarrow 00{:}24{:}01{.}000$ where my lab is now looking at the statistical methods

00:24:01.000 - 00:24:03.640 for how we can best model global

 $00:24:03.640 \rightarrow 00:24:06.220$ surface ozones concentration.

 $00:24:06.220 \rightarrow 00:24:08.150$ So we wanna understand all around the world

 $00:24:08.150 \rightarrow 00:24:10.990$ what people are breathing at ground level.

 $00{:}24{:}10{.}990 \dashrightarrow 00{:}24{:}14{.}340$ The challenges that we've got a lot of measurements

00:24:14.340 --> 00:24:16.930 of ozone air pollution in the United States and Europe

 $00{:}24{:}16{.}930 \dashrightarrow 00{:}24{:}18{.}920$ and much less elsewhere.

 $00:24:18.920 \rightarrow 00:24:21.490$ And I'll show you later we have huge voids where

 $00{:}24{:}23{.}730$ --> $00{:}24{:}27{.}330$ of Africa for example, where there's very few observations.

 $00:24:27.330 \longrightarrow 00:24:29.520$ So going beyond where we started,

 $00:24:29.520 \rightarrow 00:24:32.130$ which was let's just use a model to estimate

 $00:24:32.130 \longrightarrow 00:24:33.960$ what people are breathing.

00:24:33.960 --> 00:24:37.460 Now we're going to fuse together in a statistical way

 $00:24:38.770 \rightarrow 00:24:41.720$ the global surface ozone concentrations,

00:24:41.720 --> 00:24:45.270 I'm sorry, the global ozone observations

 $00{:}24{:}45{.}270 \dashrightarrow 00{:}24{:}47{.}410$ and an ensemble of global models, okay.

00:24:47.410 --> 00:24:49.840 So we have a big team working on this

 $00{:}24{:}49{.}840$ --> $00{:}24{:}52{.}880$ we're working with Owen Cooper and Kai-Lan Chang.

 $00{:}24{:}52{.}880 \dashrightarrow 00{:}24{:}55{.}790$ Owen is the chair of what's known as the tropospheric goes

 $00:24:55.790 \longrightarrow 00:24:57.470$ on Assessment Report.

 $00{:}24{:}57{.}470$ --> $00{:}25{:}00{.}110$ They've compiled together, this is the biggest compilation

 $00{:}25{:}00{.}110 \dashrightarrow 00{:}25{:}02{.}620$ of ozone related measurements

 $00{:}25{:}02{.}620 \dashrightarrow 00{:}25{:}05{.}880$ that it's ever been put together from all around the world

00:25:05.880 --> 00:25:08.130 going back several decades, actually.

 $00{:}25{:}08{.}130 \dashrightarrow 00{:}25{:}10{.}480$ So that was a huge undertaking, including, you know,

 $00:25:10.480 \rightarrow 00:25:13.210$ calling up the government of Iran,

 $00{:}25{:}13{.}210 \dashrightarrow 00{:}25{:}16{.}420$ and asking them that they would share their ozone data.

 $00:25:16.420 \longrightarrow 00:25:18.440$ There's a lot of work that went into that.

00:25:18.440 --> 00:25:20.530 I'm using a bunch of models that come out of what's

 $00:25:20.530 \rightarrow 00:25:23.540$ known as the chemistry climate model initiative.

 $00{:}25{:}23{.}540$ --> $00{:}25{:}27{.}030$ And then we have a big team of people in all especially

 $00{:}25{:}27.030 \dashrightarrow 00{:}25{:}30.530$ mentioned, Marc Serre, who's a space time statistician

 $00{:}25{:}30{.}530$ --> $00{:}25{:}33{.}400$ who works in my department, and will use his methods here.

 $00:25:33.400 \rightarrow 00:25:35.320$ I'll explain that in a minute, okay.

00:25:35.320 --> 00:25:38.130 So Kai-Lan led our first study which was published

 $00:25:38.130 \longrightarrow 00:25:41.730$ this year, where we're combining,

 $00{:}25{:}41{.}730 \dashrightarrow 00{:}25{:}45{.}840$ again, the observations and output for many models,

 $00:25:45.840 \rightarrow 00:25:48.180$ and we're using here this health related metric,

 $00:25:48.180 \longrightarrow 00:25:50.590$ we're doing an average of several years.

 $00:25:50.590 \rightarrow 00:25:53.450$ And the health related metric was requested

 $00:25:53.450 \rightarrow 00:25:56.030$ by the Global Burden of Disease Assessment,

 $00:25:56.030 \rightarrow 00:25:59.280$ because this is how they'll assess human health.

 $00{:}25{:}59{.}280 \dashrightarrow 00{:}26{:}02{.}630$ Okay, so the big the picture we take tour observations

 $00:26:02.630 \longrightarrow 00:26:03.890$ this is what those look like.

00:26:03.890 --> 00:26:06.970 Again, a lot of observations in a few places,

 $00{:}26{:}06{.}970 \dashrightarrow 00{:}26{:}09{.}733$ but other places very sparse observations.

 $00:26:10.760 \rightarrow 00:26:13.820$ We have the, this is the multi model average,

 $00:26:13.820 \rightarrow 00:26:16.090$ the average of all the models that we're using,

 $00:26:16.090 \rightarrow 00:26:17.950$ you see that this is biased high,

 $00:26:17.950 \longrightarrow 00:26:20.090$ so we wanna correct that bias.

 $00{:}26{:}20.090 \dashrightarrow 00{:}26{:}22.540$ Then combine these together, I'll talk about the steps

 $00{:}26{:}22{.}540 \dashrightarrow 00{:}26{:}26{.}580$ that we go through to do this, to create this output map

 $00:26:26.580 \longrightarrow 00:26:27.980$ that was delivered for the

00:26:27.980 --> 00:26:30.623 Global Burden of Disease 2017 Assessment.

 $00{:}26{:}32.070$ --> $00{:}26{:}35.050$ So I'll go through the steps that Kai-Lan did in this study.

 $00:26:35.050 \rightarrow 00:26:37.450$ First, he did a spatial interpolation

 $00:26:37.450 \rightarrow 00:26:39.723$ of all the measurements which is shown here.

 $00{:}26{:}40.850 \dashrightarrow 00{:}26{:}44.263$ He looked at all of the models, these are the models listed.

 $00{:}26{:}45{.}130 \dashrightarrow 00{:}26{:}50{.}130$ And he did a full evaluation of each model with respect

 $00:26:50.680 \longrightarrow 00:26:53.800$ to all of the observations.

 $00:26:53.800 \rightarrow 00:26:56.370$ Here is really the key to what Kai-Lan did,

 $00{:}26{:}56{.}370 \dashrightarrow 00{:}27{:}00{.}540$ he found in each region of the world, so for North America,

00:27:00.540 -> 00:27:02.493 Europe, East Asia, et cetera.

 $00:27:03.430 \longrightarrow 00:27:07.600$ The combination of models that best represents

 $00{:}27{:}07{.}600$ --> $00{:}27{:}10{.}350$ the measurements, the best reproduces the measurements.

 $00{:}27{:}11{.}310$ --> $00{:}27{:}14{.}860$ So he is like an optimization routine that he goes through

 $00:27:14.860 \longrightarrow 00:27:17.430$ to find the linear combination of models

 $00:27:17.430 \longrightarrow 00:27:19.530$ that best reproduces the measurements.

 $00:27:19.530 \rightarrow 00:27:22.220$ And he's correcting bias while he does that,

 $00:27:22.220 \rightarrow 00:27:25.150$ that gives us this multimodal blend.

 $00:27:25.150 \rightarrow 00:27:28.380$ And the last step is where we have observations,

 $00:27:28.380 \rightarrow 00:27:31.120$ then, we're gonna correct within two degrees

 $00:27:31.120 \longrightarrow 00:27:32.230$ of those observations.

00:27:32.230 --> 00:27:35.280 The two degrees is fairly arbitrary,

 $00{:}27{:}35{.}280 \dashrightarrow 00{:}27{:}37{.}750$ and I'll talk about that choice next.

00:27:37.750 --> 00:27:41.970 But we correct for the observations within two degrees

 $00:27:41.970 \longrightarrow 00:27:43.163$ of the observation.

 $00:27:44.200 \longrightarrow 00:27:45.720$ And this is our final product.

 $00{:}27{:}45{.}720 \dashrightarrow 00{:}27{:}49{.}840$ So in the U.S where we had a lot of observation stations,

00:27:49.840 --> 00:27:52.955 it's going to because of this last step, basically

 $00:27:52.955 \rightarrow 00:27:56.880$ be based mainly on the observations

 $00{:}27{:}56{.}880 \dashrightarrow 00{:}28{:}00{.}480$ in a place like Africa where we have very few observations

 $00{:}28{:}00{.}480 \dashrightarrow 00{:}28{:}03{.}173$ our output is going to be based mainly on the models.

 $00{:}28{:}04{.}380 \dashrightarrow 00{:}28{:}06{.}970$ Okay, so that was our first attempt at it,

 $00{:}28{:}06{.}970$ --> $00{:}28{:}11{.}380$ which was produced for the Global Burden of Disease 2017.

00:28:11.380 --> 00:28:13.580 And we just finished our work for the new

00:28:13.580 --> 00:28:16.930 forthcoming Global Burden of Disease 2019.

 $00{:}28{:}16{.}930 \dashrightarrow 00{:}28{:}20{.}200$ Here we did quite a few steps to improve upon that.

 $00{:}28{:}20{.}200 \dashrightarrow 00{:}28{:}22{.}460$ We're now producing ozone maps for all years,

 $00:28:22.460 \longrightarrow 00:28:24.513$ from 1990 to 2017.

 $00:28:25.540 \rightarrow 00:28:28.630$ Where you perform a new data fusion method

 $00{:}28{:}28{.}630 \dashrightarrow 00{:}28{:}31{.}100$ that I'll explain in a minute, which is Marc Serre's method

00:28:31.100 --> 00:28:33.620 known as Bayesian Maximum Entropy.

 $00{:}28{:}33{.}620$ --> $00{:}28{:}36{.}370$ We add new observations from China and elsewhere.

 $00:28:36.370 \rightarrow 00:28:40.070$ China really started measuring in 2015 or so.

 $00{:}28{:}40.070 \dashrightarrow 00{:}28{:}43.280$ Now there's hundreds of stations in China operating

 $00:28:43.280 \rightarrow 00:28:46.040$ which were not up operating before.

 $00{:}28{:}46.040 \dashrightarrow 00{:}28{:}51.040$ And when we do this, we have really the observations

 $00:28:51.640 \longrightarrow 00:28:53.040$ if there's a lot of observations

 $00:28:53.040 \rightarrow 00:28:55.580$ that can give us spatial information on a fine scale,

 $00:28:55.580 \longrightarrow 00:28:57.760$ such as around an urban area,

00:28:57.760 - 00:28:59.990 but again, many places in the world

 $00:28:59.990 \rightarrow 00:29:01.950$ have very few observations.

 $00:29:01.950 \rightarrow 00:29:04.960$ So what we did is the last step was to use this

 $00{:}29{:}04{.}960$ --> $00{:}29{:}09{.}600$ NASA model that simulated the whole world at one eighth

 $00{:}29{:}09{.}600 \dashrightarrow 00{:}29{:}11{.}163$ of a degree resolution.

 $00:29:12.030 \rightarrow 00:29:14.661$ To add that find space or spatial structure

00:29:14.661 --> 00:29:17.120 (mumbles) output product is for the whole world,

 $00{:}29{:}17{.}120 \dashrightarrow 00{:}29{:}20{.}780$ each year over this period, at .1 degree resolution.

 $00{:}29{:}20.780$ --> $00{:}29{:}24.890$ So we've delivered that to GVD, they're gonna use that.

 $00{:}29{:}24{.}890$ --> $00{:}29{:}27{.}610$ I'll explain the Bayesian Maximum Entropy method.

00:29:27.610 -> 00:29:32.050 So we use the output of the multi model blending 00:29:32.050 -> 00:29:34.010 that Kai-Lan Chang did.

00:29:34.010 - 00:29:36.400 So we're now doing that and each year,

 $00:29:36.400 \rightarrow 00:29:38.960$ that becomes in this framework, a global offset,

 $00:29:38.960 \rightarrow 00:29:43.140$ which is shown in blue, the BME method would

 $00:29:43.140 \rightarrow 00:29:45.910$ in suppose these are observations around it.

 $00{:}29{:}45{.}910$ --> $00{:}29{:}50{.}280$ So the BME method would exactly match an observation

 $00{:}29{:}50{.}280 \dashrightarrow 00{:}29{:}52{.}730$ at the location of the observation

 $00:29:52.730 \rightarrow 00:29:55.660$ and the influence of this observation.

 $00:29:55.660 \rightarrow 00:29:57.750$ If you're very far away from the observations,

 $00:29:57.750 \rightarrow 00:30:00.680$ you're gonna use the global offset which is this

 $00:30:00.680 \rightarrow 00:30:03.740$ model output, so basing it on the models,

 $00:30:03.740 \rightarrow 00:30:07.333$ and the influence of these observations falls off

 $00:30:07.333 \rightarrow 00:30:10.063$ with distance from the observations.

 $00{:}30{:}11{.}130$ --> $00{:}30{:}16{.}130$ And that function by which it decreases with distance

 $00:30:16.130 \rightarrow 00:30:19.380$ is a function of the spatial correlation

 $00:30:19.380 \rightarrow 00:30:22.200$ of the observations themselves, okay.

 $00:30:22.200 \dashrightarrow 00:30:23.530$ I'll talk more about that in a minute.

 $00:30:23.530 \longrightarrow 00:30:25.920$ So, the features of the output is

 $00:30:25.920 \rightarrow 00:30:28.220$ that we're gonna match observations,

 $00{:}30{:}28{.}220 \dashrightarrow 00{:}30{:}30{.}840$ where we have observations and far from the observations,

 $00{:}30{:}30{.}840$ --> $00{:}30{:}33{.}780$ we're gonna tend toward what the models are telling us

 $00:30:33.780 \longrightarrow 00:30:35.130$ after we bias correct them.

00:30:36.950 --> 00:30:39.020 I should say, though, this shows it in space,

 $00:30:39.020 \longrightarrow 00:30:41.340$ but we also do this in time actually.

 $00:30:41.340 \longrightarrow 00:30:44.200$ So we use information in different years.

 $00{:}30{:}44{.}200 \dashrightarrow 00{:}30{:}47{.}030$ It's often the case that a monitoring station

 $00:30:47.030 \longrightarrow 00:30:49.490$ will come online in a particular year.

00:30:49.490 --> 00:30:54.160 We can use information from those monitoring values

 $00:30:54.160 \rightarrow 00:30:58.430$ and use that to inform the years before that, okay,

 $00:30:58.430 \longrightarrow 00:31:00.520$ in a statistical sense, where

 $00:31:00.520 \rightarrow 00:31:02.510$ again, the further we get away from it,

 $00:31:02.510 \longrightarrow 00:31:05.560$ the influence of those observations falls off

 $00:31:05.560 \longrightarrow 00:31:06.833$ with distance or time.

 $00:31:08.080 \rightarrow 00:31:09.990$ This is what those correlations look like

 $00:31:09.990 \longrightarrow 00:31:14.070$ this is a covariance function with distance

 $00:31:14.070 \longrightarrow 00:31:15.100$ from the station.

 $00:31:15.100 \rightarrow 00:31:19.470$ So spatially, it drops off quite a lot such that

 $00{:}31{:}19{.}470 \dashrightarrow 00{:}31{:}24{.}070$ by the time we're one degree away from an observation,

 $00:31:24.070 \rightarrow 00:31:26.890$ we've lost a lot of useful information.

 $00:31:26.890 \rightarrow 00:31:29.470$ But in time, it drops off actually very slowly.

 $00:31:29.470 \rightarrow 00:31:33.700$ So, one, this is to say that one year's observations

 $00:31:33.700 \rightarrow 00:31:36.375$ is useful for informing the years around it,

00:31:36.375 -> 00:31:39.550 and (mumbles) we make use of that here, okay.

00:31:39.550 --> 00:31:41.990 So our final product, I'm just showing you results

 $00{:}31{:}41{.}990 \dashrightarrow 00{:}31{:}43{.}770$ for a single year, but we've done this

 $00:31:43.770 \rightarrow 00:31:45.890$ for all years over this period.

 $00:31:45.890 \dashrightarrow 00:31:48.070$ We started with the observations.

 $00:31:48.070 \rightarrow 00:31:51.093$ This is a multi model average which is bias high.

 $00:31:52.110 \longrightarrow 00:31:54.010$ If we go through this step of

00:31:55.000 --> 00:31:58.090 our first sort of methods of combining together

 $00:31:58.090 \rightarrow 00:32:00.690$ the different models in an optimum sense,

 $00:32:00.690 \longrightarrow 00:32:03.150$ this is an correcting for bias.

 $00:32:03.150 \longrightarrow 00:32:05.310$ This is the result that we get.

 $00{:}32{:}05{.}310 \dashrightarrow 00{:}32{:}07{.}850$ And then our final product, which doesn't look all

 $00:32:07.850 \longrightarrow 00:32:08.960$ that different from that one.

 $00:32:08.960 \rightarrow 00:32:12.540$ But if you look at details around in urban area,

 $00{:}32{:}12{.}540$ --> $00{:}32{:}16{.}370$ for example, especially where we have measurements now,

 $00:32:16.370 \rightarrow 00:32:18.370$ this is doing a lot better at reproducing

 $00:32:18.370 \longrightarrow 00:32:19.863$ those measurements, okay.

 $00:32:22.610 \longrightarrow 00:32:24.750$ So the most recent global,

 $00:32:24.750 \longrightarrow 00:32:26.940$ we've delivered that to Global Burden of Disease

 $00{:}32{:}26{.}940 \dashrightarrow 00{:}32{:}29{.}100$ that's gonna come out in the forthcoming assessment,

 $00:32:29.100 \longrightarrow 00:32:31.157$ but these are the results that I'll take a bit

 $00:32:31.157 \rightarrow 00:32:33.510$ and talk about to put air pollution related

00:32:33.510 -> 00:32:35.160 deaths into perspective.

 $00:32:35.160 \rightarrow 00:32:38.120$ This is from the 2017 assessment that was done.

 $00{:}32{:}38{.}120$ --> $00{:}32{:}43{.}120$ So, Ambient PM2.5 pollution, that's 2.9 million deaths,

 $00{:}32{:}43.690$ --> $00{:}32{:}47.230$ Ambient noise, pollution, about half a million deaths.

 $00{:}32{:}47{.}230 \dashrightarrow 00{:}32{:}49{.}150$ The third one here is household air pollution

 $00:32:49.150 \longrightarrow 00:32:50.060$ from solid fuels.

00:32:50.060 --> 00:32:55.060 That's people burning coal, and straw and wood,

 $00:32:55.250 \longrightarrow 00:32:56.890$ within a home environment,

 $00:32:56.890 \rightarrow 00:32:59.350$ often where there's very poor ventilation.

 $00:32:59.350 \rightarrow 00:33:01.660$ So this is not in the United States,

 $00{:}33{:}01.660$ --> $00{:}33{:}04.280$ but in the poorest regions of the world where people don't

 $00:33:04.280 \rightarrow 00:33:07.880$ have access to electricity and things like that.

 $00:33:07.880 \longrightarrow 00:33:10.120$ So that's 1.6 or so million.

00:33:10.120 -> 00:33:13.200 If you were to add up PM2.5 and ozone,

00:33:13.200 - 00:33:16.390 that's one of every 19 deaths globally.

 $00{:}33{:}16{.}390 \dashrightarrow 00{:}33{:}19{.}020$ And what the Global Burden of Disease Assessment does

 $00{:}33{:}19{.}020 \dashrightarrow 00{:}33{:}22{.}040$ is they assessed a whole bunch of different risk factors

 $00{:}33{:}23{.}110 \dashrightarrow 00{:}33{:}25{.}450$ such that you can compare them against one another

00:33:25.450 --> 00:33:28.650 and here's Ambien PM2.5 pollution,

00:33:28.650 --> 00:33:30.750 coming in at number 10th in this list,

 $00:33:30.750 \dashrightarrow 00:33:35.180$ if you only looked at death, it would be the number eighth

 $00:33:35.180 \dashrightarrow 00:33:37.880$ most important risk factor but look at the things around it.

 $00{:}33{:}37{.}880 \dashrightarrow 00{:}33{:}41{.}140$ So I think if you were to ask people, what's most important

00:33:41.140 --> 00:33:44.650 for health first, you know, PM2.5 pollution

00:33:44.650 - 00:33:47.200 is the number one, it's shown in green,

 $00:33:47.200 \longrightarrow 00:33:49.290$ environmental risk factor.

 $00{:}33{:}49{.}290 \dashrightarrow 00{:}33{:}52{.}310$ Here's unsafe water coming in after that,

 $00:33:52.310 \longrightarrow 00:33:54.870$ but around this are a lot of things

 $00:33:54.870 \longrightarrow 00:33:56.293$ that have to do with diet.

00:33:57.530 --> 00:34:00.110 Have to do with you know, obesity,

00:34:00.110 --> 00:34:02.010 high blood pressure, right?

 $00{:}34{:}02{.}010$ --> $00{:}34{:}06{.}820$ And here's PM2.5 pollution being comparable to all those

 $00:34:06.820 \longrightarrow 00:34:08.180$ many of those other sources.

 $00:34:08.180 \longrightarrow 00:34:11.730$ So that's been really very influential in

00:34:11.730 --> 00:34:15.090 changing people's minds about how important air pollution

 $00:34:15.090 \rightarrow 00:34:18.233$ is globally as a driver of global public health.

 $00:34:19.880 \rightarrow 00:34:21.890$ I'll mention as well that in the past year,

 $00:34:21.890 \rightarrow 00:34:24.720$ there's been another study come out where

 $00:34:24.720 \longrightarrow 00:34:27.233$ they looked again at the epidemiological functions

 $00:34:27.233 \rightarrow 00:34:31.230$ that they're using, constructed a new function,

 $00:34:31.230 \rightarrow 00:34:34.820$ which gives us much greater number of deaths.

 $00:34:34.820 \rightarrow 00:34:36.903$ So 8.9 is quite a bit bigger than 2.8.

 $00{:}34{:}38{.}400 \dashrightarrow 00{:}34{:}41{.}586$ If they're gonna use this function in the forth coming

00:34:41.586 --> 00:34:44.000 Global Burden of Disease Assessment,

 $00{:}34{:}44.000 \dashrightarrow 00{:}34{:}46.850$ we should expect much bigger numbers to come out of that.

 $00:34:48.218 \longrightarrow 00:34:49.830$ Okay.

 $00:34:49.830 \longrightarrow 00:34:52.440$ How will climate change affect global air pollution

 $00:34:52.440 \longrightarrow 00:34:55.070$ and air pollution related deaths, okay?

 $00:34:55.070 \dashrightarrow 00:34:59.140$ This is a figure from Arlene Fury that I collaborate with.

 $00{:}34{:}59{.}140$ --> $00{:}35{:}03{.}470$ There's all kinds of ways that climate change as it occurs

 $00:35:03.470 \longrightarrow 00:35:05.630$ is expected to affect air quality.

 $00:35:05.630 \dashrightarrow 00:35:08.380$ So climate change affects meteorology.

00:35:08.380 --> 00:35:11.400 Meteorology, rainfall removes pollutants

 $00{:}35{:}11{.}400$ --> $00{:}35{:}15{.}170$ from the atmosphere, higher temperatures and more sunlight

 $00:35:16.320 \rightarrow 00:35:19.320$ make chemical reactions happen more quickly

 $00{:}35{:}19{.}320 \dashrightarrow 00{:}35{:}21{.}910$ that increases air pollution.

 $00{:}35{:}21{.}910 \dashrightarrow 00{:}35{:}25{.}100$ If there's stronger winds that can ventilate

 $00:35:25.100 \rightarrow 00:35:27.690$ polluted region taking pollution elsewhere,

 $00:35:27.690 \rightarrow 00:35:30.250$ that might decrease air pollution.

 $00{:}35{:}30{.}250$ --> $00{:}35{:}33{.}380$ There might be influences we expect of climate change

 $00{:}35{:}33{.}380 \dashrightarrow 00{:}35{:}37{.}653$ to increase the amount of organics the trees put out.

 $00:35:38.849 \rightarrow 00:35:42.380$ The if we look at wind blowing dust,

 $00:35:42.380 \rightarrow 00:35:45.450$ if we look at forest fires, all of these things will

 $00:35:45.450 \rightarrow 00:35:47.820$ be affected by climate change, okay.

00:35:47.820 --> 00:35:50.810 So there's a lot of different pathways here, physical

00:35:50.810 --> 00:35:53.650 ways that climate change could affect air pollution.

 $00{:}35{:}53{.}650 \dashrightarrow 00{:}35{:}57{.}400$ And we're again looking at a bunch of different global

 $00:35:57.400 \longrightarrow 00:35:59.720$ models that have addressed this so what.

 $00{:}35{:}59{.}720 \dashrightarrow 00{:}36{:}03{.}640$ The experiment that they ran was to hold a mission constant

 $00{:}36{:}03{.}640 \dashrightarrow 00{:}36{:}08{.}410$ at present day levels and then look at 2030 experiments

 $00:36:08.410 \longrightarrow 00:36:11.890$ with future climate change versus today's climate.

00:36:11.890 --> 00:36:16.230 And then 2100 with future climate versus today's climate,

 $00:36:16.230 \rightarrow 00:36:18.943$ so there's singling out the effects of climate change.

 $00{:}36{:}19.780 \dashrightarrow 00{:}36{:}21.540$ When we look over these different models,

 $00:36:21.540 \rightarrow 00:36:23.670$ we get different answers from each model,

 $00{:}36{:}23.670$ --> $00{:}36{:}27.520$ including some models here, a few models for which,

 $00{:}36{:}27{.}520$ --> $00{:}36{:}31{.}390$ you know, depends a lot on how the spatial distribution

 $00:36:31.390 \rightarrow 00:36:33.470$ of where air pollution is increasing because

 $00:36:33.470 \rightarrow 00:36:35.560$ of climate change, and where it's decreasing

00:36:35.560 --> 00:36:37.410 overlays on population, right?

 $00{:}36{:}37{.}410 \dashrightarrow 00{:}36{:}41{.}270$ So if we happen to have big increase that happens right over

00:36:41.270 --> 00:36:43.610 India, which is densely populated,

 $00:36:43.610 \rightarrow 00:36:45.380$ that's gonna be really important.

00:36:45.380 --> 00:36:49.310 Okay, so our multi model average year is positive,

 $00:36:49.310 \rightarrow 00:36:51.820$ not hugely positive, and there's big uncertainty

 $00{:}36{:}51{.}820 \dashrightarrow 00{:}36{:}54{.}560$ that comes about from the spread of the different models,

 $00:36:54.560 \rightarrow 00:36:59.480$ nonetheless, most of the models suggest increase

 $00:36:59.480 \rightarrow 00:37:02.460$ of air pollution due to climate change,

 $00:37:02.460 \longrightarrow 00:37:04.980$ a few suggested decrease.

 $00:37:04.980 \dashrightarrow 00:37:08.710$ And for PM2.5 we have fewer models that reported changes

 $00{:}37{:}08{.}710$ --> $00{:}37{:}13{.}020$ in PM2.5, but only one of them showed a small decrease.

 $00{:}37{:}13.020$ --> $00{:}37{:}17.600$ And now we have more of the models showing a big increase

 $00:37:17.600 \longrightarrow 00:37:22.490$ the magnitude here by 2100, 200 or so thousand

 $00:37:22.490 \rightarrow 00:37:26.050$ deaths per year attributable to climate change

 $00:37:26.050 \longrightarrow 00:37:27.850$ by this mechanism.

 $00{:}37{:}27{.}850 \dashrightarrow 00{:}37{:}30{.}400$ If we look at all of the ways that climate change

 $00:37:30.400 \dashrightarrow 00:37:33.520$ could affect health, this actually is pretty important.

 $00{:}37{:}33{.}520$ --> $00{:}37{:}37{.}100$ Okay, you might not have guessed that climate changes

 $00{:}37{:}37{.}100 \dashrightarrow 00{:}37{:}40{.}810$ effect on air pollution would be one of the important ways

 $00:37:40.810 \longrightarrow 00:37:42.490$ that it would affect health.

 $00:37:42.490 \rightarrow 00:37:45.780$ You might think as well, right, heat stress,

00:37:45.780 --> 00:37:47.620 spread of infectious diseases,

 $00:37:47.620 \rightarrow 00:37:50.080$ access to food and water population displaces.

 $00:37:50.080 \rightarrow 00:37:51.553$ There's all kinds of ways that affects health

 $00{:}37{:}51{.}553 \dashrightarrow 00{:}37{:}56{.}010$ but when we've tried to put numbers to it, this number,

 $00{:}37{:}56.010$ --> $00{:}37{:}59.080$ you know, of deaths, puts it in the same ballpark,

 $00:37:59.080 \longrightarrow 00:38:00.690$ as many of those other factors.

 $00{:}38{:}00{.}690 \dashrightarrow 00{:}38{:}03{.}220$ So, maybe not what you would have guessed at first,

 $00:38:03.220 \rightarrow 00:38:06.220$ but again, because air pollution kills a lot of people $00:38:06.220 \rightarrow 00:38:08.893$ that becomes important here, okay.

 $00{:}38{:}11{.}490 \dashrightarrow 00{:}38{:}14{.}640$ What are trends in air pollution related deaths in the U.S?

00:38:14.640 --> 00:38:17.450 I'm gonna, we've only got two topics left.

 $00:38:17.450 \rightarrow 00:38:20.430$ I'm gonna try to wrap this up somewhat quickly.

 $00{:}38{:}20{.}430$ --> $00{:}38{:}23{.}250$ This is the work of Omar Nawaz and Yuqiang Zhang.

 $00:38:23.250 \dashrightarrow 00:38:24.633$ Omar was a master student with me.

00:38:24.633 --> 00:38:28.170 Yuqiang was a PhD student and postdoc.

 $00:38:28.170 \rightarrow 00:38:31.860$ Omar created this nice animation for you.

 $00{:}38{:}31{.}860 \dashrightarrow 00{:}38{:}34{.}640$ This is from a satellite data set looking down

 $00{:}38{:}34{.}640 \dashrightarrow 00{:}38{:}38{.}190$ in North America of PM2.5 concentration.

 $00:38:38.190 \longrightarrow 00:38:43.190$ This goes from 1998 I think it was to 2012

 $00:38:43.960 \longrightarrow 00:38:45.270$ I think that's right 2011.

 $00:38:46.830 \rightarrow 00:38:49.670$ And we've taken steps in the United States

 $00{:}38{:}49{.}670$ --> $00{:}38{:}53{.}210$ to dramatically decrease air pollution and that's sort

 $00:38:53.210 \rightarrow 00:38:54.960$ of actually a public health success story

 $00{:}38{:}54{.}960 \dashrightarrow 00{:}38{:}58{.}260$ that hasn't been talked about quite as much as it could be.

 $00:38:58.260 \dashrightarrow 00:39:00.660$ We still have a severe air pollution problem (mumbles)

 $00:39:00.660 \rightarrow 00:39:02.200$ I'll talk about in a minute.

00:39:02.200 --> 00:39:04.295 But nonetheless, we've taken you know,

 $00:39:04.295 \longrightarrow 00:39:07.970$ it's mainly EPA regulations that have driven

 $00:39:09.650 \longrightarrow 00:39:11.210$ air pollution levels down.

 $00:39:11.210 \rightarrow 00:39:13.270$ And the effects of that are pretty dramatic

 $00:39:13.270 \rightarrow 00:39:15.750$ when we look at it in terms of concentrations.

 $00{:}39{:}15{.}750$ --> $00{:}39{:}18{.}973$ So we wanna look at that in terms of health as well.

 $00:39:19.950 \rightarrow 00:39:21.670$ We're using three different data sets,

 $00:39:21.670 \longrightarrow 00:39:22.930$ they give us concentration.

 $00:39:22.930 \longrightarrow 00:39:26.800$ So one is this 21 year simulation using

 $00:39:26.800 \rightarrow 00:39:29.680$ the CMAQ regional air quality model

 $00:39:29.680 \longrightarrow 00:39:31.660$ that was conducted at the EPA.

00:39:31.660 --> 00:39:35.110 So that's pretty unique resource we're using here.

00:39:35.110 --> 00:39:38.290 That's sort of extended here using another data set

 $00:39:38.290 \rightarrow 00:39:40.630$ the North American Chemical Reanalysis.

 $00:39:40.630 \rightarrow 00:39:44.600$ This is like air pollution forecast models

 $00{:}39{:}44{.}600$ --> $00{:}39{:}47{.}563$ that archive their results, and we're using them here.

 $00:39:48.570 \dashrightarrow 00:39:52.090$ And then the satellite derived product that comes from

00:39:52.090 --> 00:39:55.970 Randall Martin's group, he's at the Dalhausser University

 $00{:}39{:}55{.}970 \dashrightarrow 00{:}39{:}58{.}470$ in Canada, what we're using as well

 $00{:}39{:}58{.}470 \dashrightarrow 00{:}40{:}02{.}390$ as we're using from the CDC county level population

 $00:40:02.390 \rightarrow 00:40:04.940$ and baseline cause specific mortality rates

 $00:40:05.820 \rightarrow 00:40:07.850$ to assess air pollution mortality, and each year.

 $00{:}40{:}07{.}850$ --> $00{:}40{:}11.030$ So we're gonna do air pollution related deaths in each year,

 $00:40:11.030 \longrightarrow 00:40:14.210$ over this whole period, using this information

 $00:40:14.210 \longrightarrow 00:40:16.400$ to also account for how population

 $00:40:16.400 \rightarrow 00:40:20.950$ and other causes of death are changing.

 $00:40:20.950 \rightarrow 00:40:23.130$ So the results that we get using our three different

 $00{:}40{:}23.130$ --> $00{:}40{:}25.970$ data sets all should have a pretty dramatic decrease

 $00:40:25.970 \longrightarrow 00:40:28.720$ this for PM2.5.

 $00{:}40{:}28.720 \dashrightarrow 00{:}40{:}32.090$ The three different data sets over in the years they overlap

 $00:40:32.090 \rightarrow 00:40:34.630$ disagree by quite a lot, unfortunately.

 $00:40:34.630 \rightarrow 00:40:36.700$ And that's of course, because they're reporting

 $00:40:36.700 \rightarrow 00:40:39.010$ different concentrations, but they all show

 $00:40:39.010 \longrightarrow 00:40:41.710$ a similar trend, okay.

00:40:41.710 --> 00:40:45.540 And that's it's itself sort of an interesting finding.

00:40:45.540 --> 00:40:49.320 Because we use this county level mortality rate,

 $00{:}40{:}49{.}320$ --> $00{:}40{:}52{.}930$ we were able to then separate out the total change in death,

 $00:40:52.930 \rightarrow 00:40:56.150$ which is in black here with uncertainty around it,

 $00{:}40{:}56{.}150 \dashrightarrow 00{:}40{:}58{.}250$ and then the deaths that would have come about

 $00:40:58.250 \rightarrow 00:41:00.540$ from only the concentration change.

 $00{:}41{:}00{.}540$ --> $00{:}41{:}05{.}170$ If we held the population and the baseline death rate

 $00{:}41{:}05{.}170 \dashrightarrow 00{:}41{:}09{.}360$ at 1990 levels, and then what the effect of population

 $00{:}41{:}09{.}360$ --> $00{:}41{:}12{.}910$ and base, of course, population is growing over this period,

 $00{:}41{:}12{.}910$ --> $00{:}41{:}15{.}920$ but fewer people are dying from heart attack and stroke,

 $00:41:15.920 \rightarrow 00:41:18.660$ which are the things that air pollution affects.

 $00:41:18.660 \longrightarrow 00:41:20.300$ So that goes down over time.

 $00:41:20.300 \rightarrow 00:41:21.890$ But the bigger influence is really

 $00:41:21.890 \longrightarrow 00:41:23.760$ this concentration change.

 $00{:}41{:}23.760 \dashrightarrow 00{:}41{:}26.670$ So we can use this simulation to estimate

00:41:26.670 --> 00:41:30.900 that PM2.5 reductions since 1990 or so,

 $00:41:30.900 \rightarrow 00:41:33.640$ have these decreased death in 2010,

 $00:41:33.640 \rightarrow 00:41:37.550$ by about, this is using only the EPA data set,

 $00{:}41{:}37{.}550 \dashrightarrow 00{:}41{:}39{.}833$ by about 35,000 deaths or so.

00:41:41.010 --> 00:41:46.010 Okay, we did it for ozone too, only the satellite data set

 $00:41:46.200 \rightarrow 00:41:47.240$ doesn't apply to ozone.

 $00{:}41{:}47{.}240$ --> $00{:}41{:}52{.}240$ So we have air pollution, ozone related deaths getting worse

 $00{:}41{:}52{.}600$ --> $00{:}41{:}55{.}760$ than perhaps better, but quite a lot of year to year

00:41:55.760 - 00:41:58.800 variability here as well, okay.

00:41:58.800 --> 00:42:03.310 And again, in this case, the baseline

 $00:42:03.310 \longrightarrow 00:42:05.250$ death rate is going up.

 $00:42:05.250 \rightarrow 00:42:09.143$ So, without concentrations decreasing,

 $00:42:10.400 \rightarrow 00:42:12.300$ air pollution related deaths would have gone up,

 $00:42:12.300 \rightarrow 00:42:15.180$ but in fact, they have stayed about the same

 $00:42:15.180 \longrightarrow 00:42:17.473$ or have gone down a little bit, okay.

 $00:42:19.920 \rightarrow 00:42:22.670$ This is my public service announcement

 $00:42:22.670 \longrightarrow 00:42:24.133$ since I have your attention.

 $00{:}42{:}25{.}060 \dashrightarrow 00{:}42{:}27{.}850$ I've worked on different ways of talking about air pollution

 $00:42:27.850 \dashrightarrow 00:42:29.470$ related deaths and how it's important.

 $00:42:29.470 \rightarrow 00:42:33.400$ I use the number one in 19 deaths globally

 $00:42:34.500 \rightarrow 00:42:37.290$ from the Global Burden of Disease Assessment.

00:42:37.290 --> 00:42:40.750 For the United States, it's about 110,000 deaths

 $00:42:41.650 \longrightarrow 00:42:44.620$ from our work about 47,000 deaths.

 $00:42:44.620 \rightarrow 00:42:47.510$ This helps translating it to one in 25 deaths

00:42:47.510 --> 00:42:51.660 or for the United States, one in 60 or so deaths.

 $00{:}42{:}51{.}660$ --> $00{:}42{:}54{.}330$ But what I think helps more as compared against other

 $00{:}42{:}54{.}330 \dashrightarrow 00{:}42{:}56{.}270$ causes of death.

 $00{:}42{:}56{.}270 \dashrightarrow 00{:}42{:}59{.}960$ So in, when I talk with the public about air pollution

00:42:59.960 --> 00:43:03.970 related deaths, I try to go out of my way to say,

 $00{:}43{:}03{.}970$ --> $00{:}43{:}08{.}040$ you know, air pollution is more than all transportation

 $00:43:08.040 \rightarrow 00:43:10.780$ accidents and all gun shootings combined.

 $00:43:10.780 \rightarrow 00:43:15.550$ Or it's a breast cancer plus prostate cancer, okay.

 $00:43:15.550 \rightarrow 00:43:17.460$ I think for a lot of people that gets their attention

 $00:43:17.460 \longrightarrow 00:43:19.170$ and puts it in a different light.

 $00:43:19.170 \longrightarrow 00:43:20.830$ Why is it so important?

 $00{:}43{:}20{.}830$ --> $00{:}43{:}23{.}500$ Because at the top of this list, this is just the causes

 $00:43:23.500 \rightarrow 00:43:27.540$ of death from the CDC is heart attack and stroke,

 $00{:}43{:}27{.}540 \dashrightarrow 00{:}43{:}31{.}500$ being, you know, a very large number of hundreds

 $00:43:31.500 \rightarrow 00:43:33.710$ of thousands of deaths every year.

 $00{:}43{:}33{.}710 \dashrightarrow 00{:}43{:}37{.}070$ And air pollution modifies that, air pollution affects

 $00{:}43{:}37{.}070 \dashrightarrow 00{:}43{:}40{.}180$ those deaths, which means that at the end of the day,

 $00:43:40.180 \rightarrow 00:43:42.430$ air pollution is really important here, okay.

 $00:43:43.880 \longrightarrow 00:43:44.840$ Let me skip over that.

 $00:43:44.840 \rightarrow 00:43:47.580$ Okay, so, last question.

00:43:47.580 - 00:43:48.910 If we slow down climate change,

 $00{:}43{:}48{.}910$ --> $00{:}43{:}51{.}810$ what are the benefits for global air pollution and health?

 $00{:}43{:}52.660$ --> $00{:}43{:}56.000$ This is known in the literature is that as CO-benefits

 $00:43:56.000 \longrightarrow 00:44:00.290$ so let's say the world listen to

 $00{:}44{:}00{.}290$ --> $00{:}44{:}03{.}370$ the teenagers marching on the United Nations this week,

 $00{:}44{:}03{.}370$ --> $00{:}44{:}07{.}460$ right, got their act together and reduced greenhouse gas

 $00:44:08.810 \rightarrow 00:44:10.830$ emissions to solve climate change.

00:44:10.830 --> 00:44:13.040 Many of the actions that would be taken would be

 $00:44:13.040 \longrightarrow 00:44:14.830$ to shift us away from fossil fuels.

 $00{:}44{:}14.830 \dashrightarrow 00{:}44{:}17.380$ We know that fossil fuel combustion is the major source

 $00:44:17.380 \longrightarrow 00:44:20.450$ of air pollution that we care about

 $00:44:20.450 \longrightarrow 00:44:22.040$ that influences our health.

 $00{:}44{:}22.040$ --> $00{:}44{:}25.060$ So there ought to be called benefits associated with that.

 $00:44:25.060 \rightarrow 00:44:26.530$ And there ought to be health benefits.

 $00:44:26.530 \rightarrow 00:44:28.960$ Actually, Michelle has worked in this area too.

 $00:44:28.960 \rightarrow 00:44:31.080$ If we look back historically at these studies,

 $00{:}44{:}31{.}080 \dashrightarrow 00{:}44{:}34{.}100$ a lot of those studies were done by public health people

 $00{:}44{:}34{.}100 \dashrightarrow 00{:}44{:}37{.}470$ that may be didn't take is a very sophisticated look $00:44:37.470 \rightarrow 00:44:39.650$ at the atmospheric science part of the problem,

 $00:44:39.650 \rightarrow 00:44:41.290$ or by economist, right?

00:44:41.290 --> 00:44:43.936 That we're motivated to understand,

 $00:44:43.936 \rightarrow 00:44:47.410$ how big is this code benefit compared to the costs

 $00:44:47.410 \rightarrow 00:44:51.110$ of reducing air pollution in the first place?

 $00{:}44{:}51{.}110 \dashrightarrow 00{:}44{:}55{.}580$ When we take action to reduce emissions of greenhouse gases,

 $00:44:55.580 \longrightarrow 00:44:57.360$ that reduces greenhouse gases

 $00:44:57.360 \rightarrow 00:44:59.890$ but also slows down air pollutant emissions,

 $00:44:59.890 \rightarrow 00:45:02.170$ that's good for air pollution and human health.

 $00:45:02.170 \longrightarrow 00:45:05.410$ This is a pathway that is immediate local,

00:45:05.410 --> 00:45:09.160 but I also told you that climate change as it occurs,

 $00{:}45{:}09{.}160$ --> $00{:}45{:}11{.}970$ so in this context, we're slowing down climate change,

 $00:45:11.970 \rightarrow 00:45:13.940$ climate change effects, air pollution.

 $00:45:13.940 \longrightarrow 00:45:16.610$ So we're slowing down that influence too.

 $00{:}45{:}16.610 \dashrightarrow 00{:}45{:}19.270$ So our study was the first to look at

 $00:45:19.270 \longrightarrow 00:45:21.270$ these two different pathways,

 $00:45:21.270 \rightarrow 00:45:24.380$ such a you could add them up together, okay.

 $00:45:24.380 \rightarrow 00:45:26.250$ I'll show you some results of that study.

 $00{:}45{:}26{.}250$ --> $00{:}45{:}29{.}440$ So again, we're using our global atmospheric model.

 $00{:}45{:}29{.}440$ --> $00{:}45{:}32{.}630$ In this case, I've worked with a team of energy economics

 $00:45:32.630 \rightarrow 00:45:35.760$ modelers using the what's known as the G-Cam,

 $00:45:35.760 \rightarrow 00:45:38.390$ energy global energy economics model.

 $00:45:38.390 \rightarrow 00:45:41.760$ So in doing this, they simulate what the future

00:45:41.760 --> 00:45:44.830 would be like under, you could say a reference case

00:45:44.830 --> 00:45:47.950 or a business as usual case without climate policy. 00:45:47.950 --> 00:45:52.730 In their model, then they apply to a global carbon tax.

 $00{:}45{:}52{.}730 \dashrightarrow 00{:}45{:}54{.}370$ That was pretty aggressive,

 $00:45:54.370 \rightarrow 00:45:56.800$ aggressive enough to really actually

00:45:56.800 --> 00:45:59.830 have a big effect of slowing down climate change.

 $00:45:59.830 \rightarrow 00:46:02.710$ Within their model, the model is choosing the

00:46:02.710 --> 00:46:05.340 most cost effective ways of reducing greenhouse gas

 $00{:}46{:}05{.}340 \dashrightarrow 00{:}46{:}07{.}860$ emissions, we were then able to see

 $00{:}46{:}07{.}860 \dashrightarrow 00{:}46{:}10{.}110$ what is each of those actions have

 $00:46:11.280 \rightarrow 00:46:15.180$ mean for air pollutant emissions,

 $00{:}46{:}15{.}180$ --> $00{:}46{:}18{.}030$ and then put that into our global atmospheric model

 $00:46:18.030 \rightarrow 00:46:20.640$ overlay that on the global population.

 $00{:}46{:}20.640$ --> $00{:}46{:}25.090$ So these are global changes in global PM related deaths

 $00:46:25.090 \rightarrow 00:46:28.000$ the solid lines in the reference case,

 $00{:}46{:}28.000 \dashrightarrow 00{:}46{:}29.900$ and in the emission reduction case.

 $00:46:29.900 \rightarrow 00:46:32.970$ So it's the difference between the blue and the red

 $00:46:32.970 \longrightarrow 00:46:34.780$ that is the CO-benefit.

 $00{:}46{:}34{.}780$ --> $00{:}46{:}38{.}610$ That is attributable, in this case of the climate policy.

 $00{:}46{:}38{.}610$ --> $00{:}46{:}40{.}820$ We're getting numbers that are half a million deaths

 $00:46:40.820 \longrightarrow 00:46:42.050$ or so by 2030.

 $00{:}46{:}42.050 \dashrightarrow 00{:}46{:}45.670$ So immediately, we get a pretty big benefit by 2100.

 $00{:}46{:}45{.}670 \dashrightarrow 00{:}46{:}48{.}500$ We're at one and a half million deaths avoided

 $00:46:48.500 \longrightarrow 00:46:50.610$ by this climate policy.

00:46:50.610 -> 00:46:54.180 For ozone, we also get by 2100, pretty big number.

 $00:46:54.180 \rightarrow 00:46:57.030$ This is in part because the climate policy

 $00:46:57.030 \rightarrow 00:46:58.710$ is reducing methane and I told you

 $00{:}46{:}58{.}710$ --> $00{:}47{:}02{.}890$ that methane is important for reacting to contribute

 $00:47:02.890 \longrightarrow 00:47:05.830$ to the globalism background, okay.

 $00{:}47{:}05{.}830 \dashrightarrow 00{:}47{:}09{.}540$ When I put numbers, dollar signs associated with this

00:47:09.540 --> 00:47:12.810 I'm using here, red is using a high value of a life,

 $00:47:12.810 \longrightarrow 00:47:14.780$ blue is using a low value of a life

00:47:15.750 --> 00:47:19.127 looking at it in 2030, 2050, 2100,

 $00{:}47{:}19{.}127$ --> $00{:}47{:}22{.}430$ the different world regions and the global average here.

00:47:22.430 --> 00:47:25.110 So you get, you know, regions like

 $00:47:25.110 \longrightarrow 00:47:26.520$ that are densely populated,

 $00:47:26.520 \rightarrow 00:47:29.620$ that have severe air pollution problems now,

 $00{:}47{:}29.620$ --> $00{:}47{:}34.620$ having pretty big monetize benefits that come out of this.

 $00{:}47{:}37{.}000 \dashrightarrow 00{:}47{:}40{.}980$ Some regions here like Australia with a very low population,

 $00{:}47{:}40{.}980$ --> $00{:}47{:}44{.}700$ and it's gonna be the CO-benefits are gonna be much smaller.

 $00:47:44.700 \rightarrow 00:47:49.700$ The green shows using 13 actually different

 $00:47:51.200 \rightarrow 00:47:53.010$ global energy economics models

00:47:53.010 - 00:47:55.190 that all ran a similar experiment,

 $00:47:55.190 \rightarrow 00:47:57.570$ the cost of reducing emissions per time.

 $00:47:57.570 \rightarrow 00:48:00.960$ So this is all normalized per ton of carbon dioxide.

 $00{:}48{:}00{.}960 \dashrightarrow 00{:}48{:}05{.}330$ So, cost per ton, the solid line is the median

 $00:48:05.330 \longrightarrow 00:48:08.660$ of the 13 models and the dashed lines

 $00:48:08.660 \rightarrow 00:48:11.040$ give you the full range of those models, okay.

 $00:48:11.040 \rightarrow 00:48:13.960$ So that's shown here, the benefits outweigh

 $00:48:13.960 \longrightarrow 00:48:15.910$ the cost in 2030.

 $00{:}48{:}15{.}910$ --> $00{:}48{:}19{.}800$ Also for most world regions in the global average in 2050,

 $00:48:19.800 \rightarrow 00:48:23.670$ by 2100, we've taken advantage of all the

 $00:48:23.670 \rightarrow 00:48:26.810$ very cheap ways that we know about reducing

 $00{:}48{:}26{.}810$ --> $00{:}48{:}29{.}930$ greenhouse gas emissions and are moving up the cost curve.

 $00:48:29.930 \rightarrow 00:48:33.030$ And there's quite a range of estimated costs

 $00:48:33.030 \rightarrow 00:48:35.440$ here from this point to this point,

 $00:48:35.440 \rightarrow 00:48:37.500$ nonetheless, the CO-benefits are still pretty

 $00:48:37.500 \longrightarrow 00:48:39.050$ comfortable with that.

 $00{:}48{:}39{.}050 \dashrightarrow 00{:}48{:}42{.}920$ So, we found here then that the CO-benefits are comparable

 $00:48:42.920 \rightarrow 00:48:46.350$ to or exceed the cost of reducing emissions

 $00:48:46.350 \rightarrow 00:48:49.000$ in the first place apart obviously,

 $00{:}48{:}49{.}000 \dashrightarrow 00{:}48{:}52{.}420$ from other benefits of slowing down climate change itself.

 $00{:}48{:}52{.}420 \dashrightarrow 00{:}48{:}55{.}600$ And all the reasons that you go on to that.

 $00:48:55.600 \rightarrow 00:48:57.630$ When we looked at the CO-benefits literature,

 $00:48:57.630 \longrightarrow 00:49:00.550$ so the the entire range of CO-benefits literature $00:49:00.550 \longrightarrow 00:49:02.640$ is here in yellow.

 $00:49:02.640 \longrightarrow 00:49:05.730$ Dollars per time, these are studies that were done

 $00:49:05.730 \rightarrow 00:49:08.560$ in all kinds of using different methods over

 $00{:}49{:}08{.}560$ --> $00{:}49{:}12{.}060$ a couple of decades, in all many different world regions,

 $00{:}49{:}12.060$ --> $00{:}49{:}15.793$ but most of these studies were local, or for one country.

00:49:17.180 --> 00:49:19.650 And one of the novelties of our work,

 $00:49:19.650 \rightarrow 00:49:21.880$ we put it into this global framework,

00:49:21.880 --> 00:49:25.080 we're now accounting for if the United States,

 $00:49:25.080 \rightarrow 00:49:28.260$ for example, reduces emissions, that affects health

00:49:28.260 --> 00:49:30.980 in Europe, actually in Asia, because part

 $00:49:30.980 \rightarrow 00:49:33.930$ of that air pollution reduction affects

 $00{:}49{:}33{.}930$ --> $00{:}49{:}37{.}090$ air quality elsewhere and benefits human health elsewhere,

 $00:49:37.090 \rightarrow 00:49:38.910$ by putting this in a global framework,

 $00:49:38.910 \rightarrow 00:49:42.210$ where accounting for all of those trans boundary

 $00:49:42.210 \longrightarrow 00:49:44.440$ and influences, okay.

 $00:49:44.440 \longrightarrow 00:49:47.573$ so that's our global CO-benefits study.

00:49:48.580 --> 00:49:51.950 Yuqiang Zhang is my PhD student then did quite a lot of work $00:49:51.950 \rightarrow 00:49:54.240$ to downscale that to the United States,

 $00:49:54.240 \rightarrow 00:49:57.390$ and I'll show you a couple of the results from that.

 $00:49:57.390 \longrightarrow 00:49:59.250$ When he did that for the United States.

 $00{:}49{:}59{.}250 \dashrightarrow 00{:}50{:}02{.}560$ Again, we're similarly (mumbles) a global climate policy,

00:50:02.560 --> 00:50:05.250 but he ran a couple of experiments to separate out

 $00:50:05.250 \rightarrow 00:50:07.820$ the effect of domestic within the United States

 $00:50:07.820 \rightarrow 00:50:11.020$ emission reductions, right here

 $00{:}50{:}11{.}020 \dashrightarrow 00{:}50{:}13{.}860$ versus what comes from for eign emission reduction.

 $00:50:13.860 \rightarrow 00:50:16.820$ So when we look at PM2.5,

 $00{:}50{:}16.820 \dashrightarrow 00{:}50{:}19.500$ most of the benefit is from domestic reductions

 $00{:}50{:}19{.}500 \dashrightarrow 00{:}50{:}22{.}250$ that makes sense PM2.5 has a rather

 $00{:}50{:}22{.}250$ --> $00{:}50{:}25{.}610$ short lifetime in the atmosphere it doesn't move very far

 $00:50:25.610 \rightarrow 00:50:26.610$ from it's source.

 $00:50:26.610 \rightarrow 00:50:28.890$ So, most of the benefit is domestic

 $00{:}50{:}28.890 \dashrightarrow 00{:}50{:}31.370$ with some influence for example, from

 $00:50:32.730 \rightarrow 00:50:35.000$ the reductions in Mexico and Canada

 $00{:}50{:}35{.}000 \dashrightarrow 00{:}50{:}36{.}773$ that effect in the United States.

 $00{:}50{:}37{.}610 \dashrightarrow 00{:}50{:}39{.}900$ When we looked at the...

 $00{:}50{:}41{.}330$ --> $00{:}50{:}44{.}680$ when we looked at ozone, however, most of the emission

 $00:50:44.680 \rightarrow 00:50:47.160$ most of the benefit actually came from

 $00{:}50{:}47.160 \dashrightarrow 00{:}50{:}49.520$ actions that for eign countries took

 $00{:}50{:}49{.}520 \dashrightarrow 00{:}50{:}51{.}950$ and the global reduction in methane.

 $00:50:51.950 \rightarrow 00:50:53.815$ Okay so that was an interesting.

00:50:53.815 - 00:50:55.500 (mumbles) Yuqiang, then looked at the

 $00{:}50{:}55{.}500$ --> $00{:}50{:}59{.}490$ health benefits associated, finding that most of the benefit

 $00:51:00.780 \longrightarrow 00:51:04.870$ for reduced PM2.5 came about

 $00{:}51{:}04.870 \dashrightarrow 00{:}51{:}07.610$ from domestic reductions shown here.

 $00{:}51{:}07{.}610$ --> $00{:}51{:}12{.}340$ And most of the benefit for ozone related deaths came about

 $00:51:12.340 \longrightarrow 00:51:14.380$ from foreign reductions

 $00:51:14.380 \rightarrow 00:51:18.323$ affecting health in the United States, great.

 $00{:}51{:}19.620 \dashrightarrow 00{:}51{:}21.140$ I've covered a lot of ground today.

 $00:51:21.140 \longrightarrow 00:51:22.630$ I hope it wasn't too much for you.

00:51:22.630 --> 00:51:25.930 But I hope each of you may be took away some nugget

 $00{:}51{:}25{.}930 \dashrightarrow 00{:}51{:}27{.}465$ that you will carry with you.

 $00{:}51{:}27{.}465 \dashrightarrow 00{:}51{:}30{.}410$ There was a lot of people that contributed a lot

 $00:51:30.410 \longrightarrow 00:51:31.243$ of work to this.

 $00:51:31.243 \rightarrow 00:51:33.410$ Several graduate students over many years,

00:51:33.410 --> 00:51:36.260 I really highlighted the work of Yuqiang Zhang

00:51:36.260 --> 00:51:38.910 and Raquel Silva, over my PhD students

 $00:51:38.910 \longrightarrow 00:51:41.220$ and did a fine job doing this,

00:51:41.220 --> 00:51:43.620 and a lot of collaborators over these many studies.

 $00:51:43.620 \longrightarrow 00:51:45.410$ So thanks a lot for listening

 $00:51:45.410 \rightarrow 00:51:47.677$ and I'm happy to take some questions.

 $00:51:47.677 \rightarrow 00:51:50.844$ (students applauding)

 $00:51:57.700 \rightarrow 00:51:59.113$ Yes, right here.

 $00{:}52{:}00{.}638 \dashrightarrow 00{:}52{:}04{.}560$ - [Female Student] (background noise drowns out speaker)

 $00:52:04.560 \longrightarrow 00:52:07.410$ I have a question about the definition

 $00{:}52{:}07{.}410 \dashrightarrow 00{:}52{:}12{.}077$ of ozone layer mortality or PM2.5, related to mortality.

00:52:13.769 --> 00:52:17.087 I mean, how do you define (faintly speaking)?

00:52:17.087 --> 00:52:18.650 - Right, so what we're doing here

00:52:18.650 --> 00:52:22.620 is we're using results of an epidemiological study

 $00{:}52{:}22.620 \dashrightarrow 00{:}52{:}27.620$ that would have related PM2.5 and ozone to mortality.

 $00{:}52{:}28.780$ --> $00{:}52{:}33.160$ And then using our model, we come up with different

 $00{:}52{:}33{.}160 \dashrightarrow 00{:}52{:}36{.}570$ estimates of concentration depending on the application.

 $00:52:36.570 \longrightarrow 00:52:38.800$ And then we apply that function.

 $00:52:38.800 \rightarrow 00:52:41.307$ So it's the function, the epidemiological function

00:52:41.307 - > 00:52:43.590 and the epidemiological study.

 $00{:}52{:}43{.}590 \dashrightarrow 00{:}52{:}45{.}840$ I should have made this clear up front more

 $00:52:45.840 \rightarrow 00:52:50.590$ that relates PM2.5 and goes on with health.

 $00{:}52{:}50{.}590 \dashrightarrow 00{:}52{:}53{.}720$ The studies that we're using are the big cohort studies

 $00:52:53.720 \rightarrow 00:52:55.950$ that are from the United States, largely okay.

 $00{:}52{:}55{.}950 \dashrightarrow 00{:}52{:}58{.}823$ So the American Cancer Society Study.

 $00:52:59.700 \rightarrow 00:53:01.800$ So it's a bit of a leap of faith to say that

 $00:53:01.800 \rightarrow 00:53:05.260$ that function applies elsewhere in the world.

 $00:53:05.260 \rightarrow 00:53:07.707$ And we're also in some of our applications,

00:53:07.707 --> 00:53:10.420 assuming that, that function applies throughout

 $00:53:10.420 \rightarrow 00:53:13.400$ the whole century to come, right?

 $00:53:13.400 \longrightarrow 00:53:15.393$ We don't know that that's true.

 $00:53:16.520 \rightarrow 00:53:19.330$ And we don't know that they apply elsewhere.

 $00:53:19.330 \rightarrow 00:53:21.850$ Now we're getting better information about

 $00{:}53{:}22{.}880 \dashrightarrow 00{:}53{:}25{.}350$ air pollution related deaths in China and India

 $00{:}53{:}25{.}350 \dashrightarrow 00{:}53{:}29{.}740$ and elsewhere, but still not the same quality

 $00:53:29.740 \rightarrow 00:53:32.560$ and number of participants in the study

 $00{:}53{:}32{.}560 \dashrightarrow 00{:}53{:}35{.}420$ as we have for the big cohort studies in the United States.

 $00{:}53{:}35{.}420 \dashrightarrow 00{:}53{:}38{.}660$ In other words, I'm not sure what else you would assume

 $00{:}53{:}38{.}660 \dashrightarrow 00{:}53{:}40{.}650$ about what happens elsewhere in the world

 $00{:}53{:}40{.}650 \dashrightarrow 00{:}53{:}41{.}950$ or from the future.

 $00:53:41.950 \rightarrow 00:53:44.280$ But we should acknowledge and I didn't say it,

 $00:53:44.280 \rightarrow 00:53:47.350$ but I'll say it now that there's big uncertainties

 $00:53:47.350 \rightarrow 00:53:50.690$ and assuming that those functions apply spatially

 $00{:}53{:}50{.}690$ --> $00{:}53{:}53{.}100$ and through time like that, and hopefully that helps

 $00:53:53.100 \rightarrow 00:53:55.350$ with your question, yeah.

 $00{:}53{:}55{.}350 \dashrightarrow 00{:}53{:}59{.}140$ - [Male Student] So particulate matter can be very diverse

 $00{:}53{:}59{.}140$ --> $00{:}54{:}03{.}423$ it's just size of a matter that you contain chromium six or

 $00:54:03.423 \rightarrow 00:54:06.060$ (background noise drowns out other sounds)

 $00{:}54{:}06{.}060 \dashrightarrow 00{:}54{:}10{.}060$ so how do you take that difference in the heterogeneity

 $00:54:10.060 \rightarrow 00:54:12.280$ of this substance across different countries?

 $00:54:12.280 \longrightarrow 00:54:13.940$ Or is there a plan?

00:54:13.940 --> 00:54:15.311 Because you don't have the data, right?

00:54:15.311 --> 00:54:16.310 You have (faintly speaking).

 $00:54:16.310 \rightarrow 00:54:19.090$ - Well, we don't have the epidemiological studies

 $00:54:19.090 \rightarrow 00:54:20.760$ that tease out those relationships.

00:54:20.760 --> 00:54:22.600 I know Michelle is working in that area,

 $00:54:22.600 \rightarrow 00:54:24.643$ and other people are as well.

 $00:54:24.643 \rightarrow 00:54:27.330$ If we had that we if you know, give me a function,

 $00:54:27.330 \longrightarrow 00:54:28.163$ and I'll use it.

 $00:54:29.010 \rightarrow 00:54:33.440$ But you know, short of that, it's a real question.

 $00{:}54{:}33{.}440 \dashrightarrow 00{:}54{:}35{.}990$ And from an air pollution management point of view,

 $00{:}54{:}36{.}868 \dashrightarrow 00{:}54{:}39{.}770$ you know, if we knew that it was the sulfates

 $00:54:39.770 \rightarrow 00:54:41.710$ or it was the organic carbon,

 $00:54:41.710 \rightarrow 00:54:44.130$ we could just regulate that rather than the mass.

 $00:54:44.130 \rightarrow 00:54:46.760$ So the limiting factor is really actually

 $00:54:46.760 \rightarrow 00:54:50.343$ where I started off the presentation talking.

 $00:54:51.350 \rightarrow 00:54:54.670$ It were limited by measurements of air pollution

 $00:54:54.670 \rightarrow 00:54:57.420$ that then could be used for epidemiology,

 $00{:}54{:}57{.}420 \dashrightarrow 00{:}54{:}59{.}210$ that then could divert derive a function

 $00:54:59.210 \rightarrow 00:55:02.000$ that then we could use for this kind of application,

 $00:55:02.000 \rightarrow 00:55:05.500$ but, you know, we're learning more about

 $00{:}55{:}05{.}500 \dashrightarrow 00{:}55{:}07{.}620$ using those different measurements and now becoming

 $00{:}55{:}07.620$ --> $00{:}55{:}10.750$ more creative combining satellites, you could use a model,

 $00:55:10.750 \rightarrow 00:55:14.390$ for example, to estimate the contributions

 $00:55:14.390 \rightarrow 00:55:17.080$ of different emission sources

 $00:55:17.080 \rightarrow 00:55:18.610$ or different chemical components

 $00{:}55{:}18.610 \dashrightarrow 00{:}55{:}21.960$ to an air pollution mixture, and then do epidemiology

 $00:55:21.960 \rightarrow 00:55:23.780$ based on the model, right?

 $00{:}55{:}23.780 \dashrightarrow 00{:}55{:}28.010$ Okay, so we're coming up with a lot of new and creative ways

 $00{:}55{:}28.010 \dashrightarrow 00{:}55{:}30.660$ of approaching that question, but yet great question.

00:55:33.040 --> 00:55:34.073 Yes, please.

 $00:55:36.080 \rightarrow 00:55:38.420$ - [Male Voice] I have a question about the,

 $00:55:38.420 \longrightarrow 00:55:39.850$ about your model versus the

00:55:39.850 --> 00:55:42.470 Global Burden of Disease model currently.

 $00:55:42.470 \rightarrow 00:55:45.440$ So the estimates that you had for air pollution

 $00:55:45.440 \rightarrow 00:55:48.380$ related deaths with something like 40,000

00:55:50.490 --> 00:55:52.410 versus, no...

 $00:55:52.410 \longrightarrow 00:55:55.660$ A 100,000 or so, versus by 40,000 with the

00:55:55.660 -> 00:55:57.080 Global Burden of Disease,

 $00{:}55{:}57{.}080 \dashrightarrow 00{:}56{:}00{.}350$ What is the key differences in your model versus that?

 $00{:}56{:}00{.}350 \dashrightarrow 00{:}56{:}03{.}170$ - Yeah, so one is the function that's used

 $00{:}56{:}03.170 \dashrightarrow 00{:}56{:}04.970$ for to relate air pollution with health.

 $00:56:04.970 \rightarrow 00:56:07.000$ The other is where we're getting exposed

 $00{:}56{:}07.000 \dashrightarrow 00{:}56{:}10.160$ like concentrations from, is it from a model

 $00:56:10.160 \rightarrow 00:56:13.453$ or from some model measurement blending.

 $00:56:14.830 \rightarrow 00:56:18.000$ The factor of two is more than a greater difference.

 $00:56:18.000 \rightarrow 00:56:20.890$ And we would ideally like to see (mumbles)

 $00:56:20.890 \rightarrow 00:56:23.160$ I mean, we're really working to try to continue

 $00{:}56{:}23.160 \dashrightarrow 00{:}56{:}24.740$ to tease out those differences

 $00{:}56{:}24.740 \dashrightarrow 00{:}56{:}27.180$ and see if we can resolve them.

00:56:27.180 --> 00:56:30.500 I know the satellite people have now produced a new

 $00{:}56{:}30{.}500$ --> $00{:}56{:}35{.}110$ for PM2.5 the satellites have been really very important.

00:56:35.110 --> 00:56:37.960 Satellites can see ground level PM2.5,

 $00{:}56{:}37{.}960 \dashrightarrow 00{:}56{:}39{.}580$ but they can't see ground with a low ozone.

00:56:39.580 --> 00:56:41.210 That's one of the important distinctions here,

 $00{:}56{:}41{.}210 \dashrightarrow 00{:}56{:}43{.}690$ we didn't have the benefit of satellite

00:56:43.690 --> 00:56:45.880 providing information on ozone.

 $00:56:45.880 \longrightarrow 00:56:47.990$ And they can see it with the satellites

 $00:56:47.990 \longrightarrow 00:56:50.750$ can see it with very fine spatial resolution.

00:56:50.750 --> 00:56:54.330 So in the PM2.5 world, you know that

 $00{:}56{:}54{.}330 \dashrightarrow 00{:}56{:}57{.}640$ it's actually the satellite that provides a fine spatial

 $00{:}56{:}57{.}640$ --> $00{:}57{:}00{.}910$ resolution whereas we used to fine resolution model

 $00{:}57{:}00{.}910 \dashrightarrow 00{:}57{:}03{.}900$ to do that anyways, that goes beyond your question.

 $00{:}57{:}03{.}900 \dashrightarrow 00{:}57{:}06{.}220$ But your question is a good one.

 $00{:}57{:}06{.}220$ --> $00{:}57{:}09{.}550$ And it troubles me that it's quite as different as it is.

 $00{:}57{:}09{.}550 \dashrightarrow 00{:}57{:}12{.}480$ But, you know, I think we need to just continue

00:57:12.480 --> 00:57:13.400 to work on it.

 $00{:}57{:}13.400 \dashrightarrow 00{:}57{:}15.610$ See if we can work out the differences

 $00{:}57{:}15.610$ --> $00{:}57{:}17.210$ between the different studies.

00:57:17.210 --> 00:57:20.773 - [Male Voice] So for the 2019 (faintly speaking)

 $00{:}57{:}20{.}773 \dashrightarrow 00{:}57{:}22{.}900$ this model is gonna be adopted,

 $00:57:22.900 \rightarrow 00:57:24.357$ because it is a very large change.

 $00:57:24.357 \rightarrow 00:57:27.080$ And this is something I've noticed with other

 $00:57:27.080 \rightarrow 00:57:30.510$ updates of the GDP numbers for the same years

 $00:57:30.510 \rightarrow 00:57:33.010$ get updated dramatically as a result.

 $00:57:33.010 \longrightarrow 00:57:34.210$ - Yeah.

00:57:34.210 --> 00:57:35.920 - [Male Voice] And so depending on when you actually

 $00{:}57{:}35{.}920 \dashrightarrow 00{:}57{:}38{.}680$ access the data, you might get pretty large

 $00:57:38.680 \rightarrow 00:57:42.920$ in the estimates, so do you have a sense for

 $00:57:42.920 \rightarrow 00:57:44.803$ what's gonna be done in the 2019 study?

 $00{:}57{:}45{.}860 \dashrightarrow 00{:}57{:}48{.}164$ - Well, I know that I know what they're

 $00:57:48.164 \longrightarrow 00:57:48.997$ doing for concentration.

 $00{:}57{:}48{.}997 \dashrightarrow 00{:}57{:}51{.}100$ So they're using a similar method for concentrations

00:57:51.100 - 00:57:53.870 and then our ozone estimates, I mean,

 $00{:}57{:}53.870 \dashrightarrow 00{:}57{:}57.020$ for PM2.5 concentrations and then our ozone estimates

 $00:57:57.020 \dashrightarrow 00:57:59.300$ are gonna be used that I know well.

 $00{:}57{:}59{.}300 \dashrightarrow 00{:}58{:}02{.}560$ I don't know what risk functions they're planning to use.

 $00:58:02.560 \longrightarrow 00:58:04.100$ And it's a good question.

 $00:58:04.100 \dashrightarrow 00:58:07.020$ But that's, you know, they have a team of people, $00:58:07.020 \dashrightarrow 00:58:09.050$ you know, some of the best epidemiologists in the world

 $00{:}58{:}09{.}050 \dashrightarrow 00{:}58{:}10{.}580$ reviewing the literature.

 $00:58:10.580 \rightarrow 00:58:13.100$ So I leave that up to them to use.

 $00:58:13.100 \rightarrow 00:58:16.650$ I try to, you know, not push the envelope there

 $00{:}58{:}16.650 \dashrightarrow 00{:}58{:}20.150$ our studies are pushing the envelope just by bringing

 $00:58:20.150 \longrightarrow 00:58:22.720$ different information from different fields together.

00:58:22.720 --> 00:58:25.080 That's why I (mumbles) so we gained nothing

00:58:25.080 --> 00:58:29.260 by using some epidemiological study that, you know,

 $00{:}58{:}29{.}260 \dashrightarrow 00{:}58{:}31{.}143$ the people who really understand it,

 $00:58:32.140 \longrightarrow 00:58:33.633$ let them choose it, right?

00:58:34.800 --> 00:58:35.870 - [Robert] Okay, so I think we'll wrap

 $00:58:35.870 \rightarrow 00:58:37.150$ it up, two announcements.

 $00:58:37.150 \longrightarrow 00:58:40.440$ So there's lunch in the LAPH 108.

 $00{:}58{:}40{.}440 \dashrightarrow 00{:}58{:}43{.}410$ And also for students who are interested in available,

 $00:58:43.410 \longrightarrow 00:58:45.800$ Jason's gonna be having an informal discussion

 $00:58:45.800 \rightarrow 00:58:49.543$ starting around 11:15 in room 101.

 $00{:}58{:}50{.}500 \dashrightarrow 00{:}58{:}52{.}258$ So thanks again Jason. - Thank you.

 $00:58:52.258 \rightarrow 00:58:55.425$ (students applauding)

 $00:58:57.847 \rightarrow 00:59:01.014$ (students chattering)

00:59:21.630 --> 00:59:23.270 - Hi, I'm (speaking off mic)

00:59:23.270 --> 00:59:24.290 - Oh, hi.

 $00:59:24.290 \longrightarrow 00:59:25.462$ Thanks a lot

00:59:25.462 --> 00:59:30.462 - (faintly speaking) or maybe already know, right?

00:59:33.540 --> 00:59:35.283 - Oh, that's true.

00:59:36.180 --> 00:59:38.162 - Yeah, have you ever heard about that?

00:59:38.162 --> 00:59:43.162 - I saw (mumbles), I saw (mumbles), the day (mumbles).

 $00:59:43.973 \rightarrow 00:59:45.330$ - There you go. (laughs)

 $00{:}59{:}45{.}330$ --> $00{:}59{:}47{.}911$ but we still need to hear (faintly speaking) (laughs).

00:59:47.911 --> 00:59:52.760 - So I wanted to ask, like do you your models initially,

 $00{:}59{:}52{.}760 \dashrightarrow 00{:}59{:}55{.}701$ what sparked the question was when I saw (mumbles)

 $00:59:55.701 \rightarrow 00:59:57.923$ one of the earlier ones your (mumbles) over.