2016
NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo
Rauch I, Tenthorey JL, Nichols RD, Moussawi K, Kang JJ, Kang C, Kazmierczak BI, Vance RE. NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. Journal Of Experimental Medicine 2016, 213: 657-665. PMID: 27045008, PMCID: PMC4854734, DOI: 10.1084/jem.20151809.Peer-Reviewed Original ResearchConceptsSpecific bacterial proteinsNAIP proteinsNeedle proteinBacterial proteinsGenetic evidenceSpecific bacterial ligandsBacterial ligandsBacterial type III secretion systemInner rod proteinType III secretion systemT3SS needle proteinStrong biochemical evidenceCytosolic flagellinFlagellin detectionRod proteinsSecretion systemDetection of flagellinCRISPR/Diverse functionsCytosolic detectionNAIP1ProteinBiochemical evidenceNAIPsFlagellin
2013
Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria
Kazmierczak BI, Hendrixson DR. Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria. Molecular Microbiology 2013, 88: 655-663. PMID: 23600726, PMCID: PMC3654036, DOI: 10.1111/mmi.12221.Peer-Reviewed Original ResearchConceptsPolar flagellatesFlagellar assemblyProper cell divisionRotation of flagellaFlagellar biosynthesisFlagellation patternsGram-negative bacteriaPeritrichous flagellaOrganelle numberCell divisionCell biologyFlhGFlhFBacterial speciesBacterial cellsFlagellatesFlagellaDifferent bacteriaMechanistic insightsProteinBacteriaRecent findingsSpeciesSpecific activityDistinct patterns
2006
FlhF Is Required for Swimming and Swarming in Pseudomonas aeruginosa
Murray TS, Kazmierczak BI. FlhF Is Required for Swimming and Swarming in Pseudomonas aeruginosa. Journal Of Bacteriology 2006, 188: 6995-7004. PMID: 16980502, PMCID: PMC1595508, DOI: 10.1128/jb.00790-06.Peer-Reviewed Original ResearchConceptsWild-type bacteriaAssembly of flagellaRod-shaped organismExpression of flagellinFlhF proteinFlagellar assemblyFlagellar genesFlagellar poleFlhFFlagellin expressionMonotrichous bacteriaDecreased transcriptionCell surfaceBacteria resultsBacteriaLiquid mediumTranscriptionFlagellaOrganismsProteinDifferent motility patternsAberrant placementPseudomonas aeruginosaMotilityExpressionMutational Analysis of RetS, an Unusual Sensor Kinase-Response Regulator Hybrid Required for Pseudomonas aeruginosa Virulence
Laskowski MA, Kazmierczak BI. Mutational Analysis of RetS, an Unusual Sensor Kinase-Response Regulator Hybrid Required for Pseudomonas aeruginosa Virulence. Infection And Immunity 2006, 74: 4462-4473. PMID: 16861632, PMCID: PMC1539586, DOI: 10.1128/iai.00575-06.Peer-Reviewed Original ResearchConceptsType III secretion system proteinsSignal transduction domainsSecretion system proteinsUpregulation of genesPeriplasmic domainSensor kinaseReceiver domainTransmembrane domainRegulator proteinTransduction domainMutational analysisSignaling roleSystem proteinsReciprocal regulationPseudomonas aeruginosaRET activityBiofilm formationVirulence factorsOpportunistic pathogenT3SSProteinRET alleleRETP. aeruginosaKey roleAnalysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa
Kazmierczak BI, Lebron MB, Murray TS. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Molecular Microbiology 2006, 60: 1026-1043. PMID: 16677312, PMCID: PMC3609419, DOI: 10.1111/j.1365-2958.2006.05156.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacterial ProteinsCell MovementCyclic GMPEscherichia coli ProteinsFemaleFimbriae, BacterialHeLa CellsHumansMiceMice, Inbred C57BLPhosphoric Diester HydrolasesPhosphorus-Oxygen LyasesPneumonia, BacterialPoint MutationProtein Structure, TertiaryPseudomonas aeruginosaSequence DeletionVirulenceConceptsEAL domainBacterial poleGGDEF-EAL proteinsCyclic dimeric guanosine monophosphateDiguanylate cyclase activityPolar surface structuresType IV piliWild-type strainGGDEF domainDiguanylate cyclasesREC domainLocalization signalPilus assemblyGGDEFNon-polar sitesFimXSurface piliPseudomonas aeruginosaPhosphodiesterase activityBiofilm formationProteinMutantsPiliMotilityDomain
2002
Pseudomonas aeruginosa ExoT Acts In Vivo as a GTPase-Activating Protein for RhoA, Rac1, and Cdc42
Kazmierczak B, Engel J. Pseudomonas aeruginosa ExoT Acts In Vivo as a GTPase-Activating Protein for RhoA, Rac1, and Cdc42. Infection And Immunity 2002, 70: 2198-2205. PMID: 11895987, PMCID: PMC127837, DOI: 10.1128/iai.70.4.2198-2205.2002.Peer-Reviewed Original Research
2001
Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair
Geiser T, Kazmierczak B, Garrity‐Ryan L, Matthay M, Engel J. Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cellular Microbiology 2001, 3: 223-236. PMID: 11298646, DOI: 10.1046/j.1462-5822.2001.00107.x.Peer-Reviewed Original ResearchConceptsGTPase-activating proteinsEpithelial wound repairPseudomonas aeruginosa ExoTRho family GTPasesWound repairPathogen Pseudomonas aeruginosaNosocomial pathogen Pseudomonas aeruginosaP. aeruginosa internalizationEpithelial cellsP. aeruginosaGAP domainGAP activityBacterial proteinsCell roundingCytoskeleton collapseLung epithelial wound repairExoTCell detachmentVivo virulenceProteinEpithelial tissue damageImmune effector cellsLocal host defenseIntact epithelial barrierHost defense
1994
pIV, a Filamentous Phage Protein that Mediates Phage Export Across the Bacterial Cell Envelope, Forms a Multimer
Kazmierczak B, Mielke D, Russel M, Model P. pIV, a Filamentous Phage Protein that Mediates Phage Export Across the Bacterial Cell Envelope, Forms a Multimer. Journal Of Molecular Biology 1994, 238: 187-198. PMID: 8158648, DOI: 10.1006/jmbi.1994.1280.Peer-Reviewed Original ResearchConceptsSpecific substrate proteinsBacterial cell envelopeOuter membrane proteinsBacterial homologSubstrate proteinsMixed multimersPhage assemblyMembrane proteinsPhage proteinsOuter membraneCell envelopeHomologous proteinsExtracellular milieuProtein secretionEscherichia coliFilamentous phageGated channelProteinSame cellsSpecialized formMultimersPhagesHomologSedimentation experimentsSpheroplasts
1993
Analysis of the structure and subcellular location of filamentous phage pIV
Russel M, Kaźmierczak B. Analysis of the structure and subcellular location of filamentous phage pIV. Journal Of Bacteriology 1993, 175: 3998-4007. PMID: 8320216, PMCID: PMC204828, DOI: 10.1128/jb.175.13.3998-4007.1993.Peer-Reviewed Original ResearchMeSH KeywordsAlkaline PhosphataseBacterial ProteinsCell CompartmentationColiphagesDNA Mutational AnalysisGene Expression Regulation, BacterialGenes, ViralHeat-Shock ProteinsMembrane ProteinsMutationOperonRecombinant Fusion ProteinsSequence DeletionSequence Homology, Amino AcidSpheroplastsSubcellular FractionsViral ProteinsVirus ReplicationConceptsMembrane localization domainIntegral membrane proteinsSubstrate-binding domainAmino-terminal halfCarboxy-terminal halfSeries of genesCell fractionation studiesCytoplasmic domainPhage assemblyDeletion mutantsMembrane proteinsSubcellular locationLocalization domainFusion proteinFractionation studiesFilamentous phagePhosphatase activityFilamentous bacteriophageAlkaline phosphatase activityMissense mutationsProteinAssemblyDomainMutantsGenes