WEBVTT

NOTE duration:"00:16:49" NOTE recognizability:0.942

NOTE language:en-us

NOTE Confidence: 0.97942126125

00:00:02.820 --> 00:00:05.774 OK, so today's talk will be mainly

NOTE Confidence: 0.97942126125

 $00:00:05.774 \longrightarrow 00:00:07.604$ about the analysis of single

NOTE Confidence: 0.97942126125

 $00:00:07.604 \longrightarrow 00:00:10.328$ cell RNA seekers, so we had.

NOTE Confidence: 0.97942126125

 $00:00:10.328 \longrightarrow 00:00:13.008$ Last time, like the last three

NOTE Confidence: 0.97942126125

00:00:13.008 --> 00:00:15.360 times with dealt with the analysis

NOTE Confidence: 0.97942126125

 $00:00:15.434 \longrightarrow 00:00:18.350$ of biker NEC classic methods and

NOTE Confidence: 0.97942126125

00:00:18.350 --> 00:00:20.294 pathway richemond analysis method,

NOTE Confidence: 0.97942126125

 $00{:}00{:}20.300 \dashrightarrow 00{:}00{:}22.508$ I have some slides because last

NOTE Confidence: 0.97942126125

 $00:00:22.508 \longrightarrow 00:00:25.310$ time I remember there was there were

NOTE Confidence: 0.97942126125

 $00:00:25.310 \longrightarrow 00:00:27.395$ questions more specific about the

NOTE Confidence: 0.97942126125

 $00{:}00{:}27.400 \dashrightarrow 00{:}00{:}30.340$ multiple test correction and so I

NOTE Confidence: 0.97942126125

 $00:00:30.340 \longrightarrow 00:00:33.688$ have these lines at least to like.

NOTE Confidence: 0.97942126125

 $00:00:33.690 \longrightarrow 00:00:36.791$ Try to explain two of the methods

 $00:00:36.791 \longrightarrow 00:00:40.107$ that are used in order to do that.

NOTE Confidence: 0.97942126125

 $00:00:40.110 \longrightarrow 00:00:40.916$ So here.

NOTE Confidence: 0.97942126125

00:00:40.916 --> 00:00:43.737 So we start with the assumption that

NOTE Confidence: 0.97942126125

 $00:00:43.737 \longrightarrow 00:00:46.796$ we are bound are in our statistical

NOTE Confidence: 0.97942126125

 $00:00:46.796 \longrightarrow 00:00:50.470$ analysis to that P value threshold of 0.05.

NOTE Confidence: 0.97942126125

 $00{:}00{:}50.470 \dashrightarrow 00{:}00{:}52.990$ So whenever we run a test on

NOTE Confidence: 0.97942126125

 $00:00:52.990 \longrightarrow 00:00:56.197$ whatever we want to test and they,

NOTE Confidence: 0.97942126125

 $00:00:56.197 \longrightarrow 00:00:59.911$ it seems that the most important

NOTE Confidence: 0.97942126125

 $00:00:59.911 \longrightarrow 00:01:03.666$ thing is that you have a P value of

NOTE Confidence: 0.97942126125

 $00:01:03.670 \longrightarrow 00:01:07.782$ less than 0.00 less point than 0.05.

NOTE Confidence: 0.97942126125

 $00:01:07.782 \longrightarrow 00:01:11.260$ So RP value of 0.05 means that

NOTE Confidence: 0.97942126125

00:01:11.260 --> 00:01:13.060 the probability of rejecting.

NOTE Confidence: 0.97942126125

 $00:01:13.060 \longrightarrow 00:01:17.085$ You're not hypothesis when it's true is 5%.

NOTE Confidence: 0.97942126125

 $00{:}01{:}17.085 \dashrightarrow 00{:}01{:}18.540$ So for example,

NOTE Confidence: 0.97942126125

 $00:01:18.540 \longrightarrow 00:01:21.425$ when we are comparing gene expression,

NOTE Confidence: 0.97942126125

00:01:21.425 --> 00:01:23.800 we're performing a test of

 $00{:}01{:}23.800 \dashrightarrow 00{:}01{:}25.371$ differential expression of 1

NOTE Confidence: 0.97942126125

 $00:01:25.371 \longrightarrow 00:01:27.033$ gene between condition A and B.

NOTE Confidence: 0.97942126125

 $00:01:27.040 \longrightarrow 00:01:29.987$ It means that they are the null

NOTE Confidence: 0.97942126125

 $00{:}01{:}29.987 \dashrightarrow 00{:}01{:}33.070$ hypothesis is that the Gina is

NOTE Confidence: 0.97942126125

 $00:01:33.070 \longrightarrow 00:01:34.798$ not differentially expressed.

NOTE Confidence: 0.97942126125

 $00:01:34.800 \longrightarrow 00:01:37.150$ So if we have a P value of 0.05,

NOTE Confidence: 0.97942126125

 $00:01:37.150 \longrightarrow 00:01:40.430$ it means that we can reject the null

NOTE Confidence: 0.97942126125

 $00:01:40.430 \longrightarrow 00:01:43.465$ hypothesis so that the gene is not changing.

NOTE Confidence: 0.97942126125 00:01:43.470 --> 00:01:43.790 Yeah, NOTE Confidence: 0.97942126125

 $00:01:43.790 \longrightarrow 00:01:46.030$ and and the probability of that and

NOTE Confidence: 0.97942126125

 $00:01:46.030 \longrightarrow 00:01:48.206$ Dolly Parton is to be true is only 5%,

NOTE Confidence: 0.97942126125

 $00:01:48.210 \longrightarrow 00:01:50.066$ so that's why the lower the P value,

NOTE Confidence: 0.97942126125

 $00:01:50.070 \longrightarrow 00:01:53.634$ the more confident we are in

NOTE Confidence: 0.97942126125

00:01:53.634 --> 00:01:56.010 rejecting the null hypothesis.

NOTE Confidence: 0.97942126125

 $00:01:56.010 \longrightarrow 00:01:57.438$ One of the limitations of this

00:01:57.438 --> 00:01:59.570 is that the P value doesn't say

NOTE Confidence: 0.97942126125

 $00:01:59.570 \longrightarrow 00:02:01.058$ anything about our hypothesis,

NOTE Confidence: 0.97942126125

 $00:02:01.060 \longrightarrow 00:02:04.402$ so that the gene is really

NOTE Confidence: 0.97942126125

 $00:02:04.402 \longrightarrow 00:02:05.918$ differentially expressed UM.

NOTE Confidence: 0.97942126125

00:02:05.918 --> 00:02:09.980 So when we run analysis in high to put way,

NOTE Confidence: 0.97942126125

 $00:02:09.980 \longrightarrow 00:02:12.140$ we usually have multiple comparison.

NOTE Confidence: 0.97942126125

 $00:02:12.140 \longrightarrow 00:02:14.858$ So it means that we run a test of

NOTE Confidence: 0.97942126125

 $00:02:14.858 \longrightarrow 00:02:16.126$ differential expression differential

NOTE Confidence: 0.97942126125

 $00:02:16.126 \longrightarrow 00:02:18.808$ expression for each gene and we

NOTE Confidence: 0.97942126125

 $00:02:18.808 \longrightarrow 00:02:21.110$ usually have 10 to 20,000 genes.

NOTE Confidence: 0.97942126125

00:02:21.110 --> 00:02:24.140 For example, in our NGS experiments,

NOTE Confidence: 0.97942126125

 $00:02:24.140 \longrightarrow 00:02:26.905$ or when we do pathway richemond analysis.

NOTE Confidence: 0.97942126125

 $00:02:26.910 \longrightarrow 00:02:28.770$ We're testing their retreat of

NOTE Confidence: 0.97942126125

 $00:02:28.770 \longrightarrow 00:02:30.630$ hundreds or thousands of pathways.

NOTE Confidence: 0.97942126125

 $00{:}02{:}30.630 \dashrightarrow 00{:}02{:}33.492$ That means that we run a lot of tests

NOTE Confidence: 0.97942126125

 $00:02:33.500 \longrightarrow 00:02:36.722$ and For these reasons that probability

 $00:02:36.722 \dashrightarrow 00:02:39.780$ that is 5% to have false positives.

NOTE Confidence: 0.97942126125

 $00:02:39.780 \longrightarrow 00:02:42.718$ So to say that the gene is

NOTE Confidence: 0.97942126125

00:02:42.718 --> 00:02:44.118 differentially expressed,

NOTE Confidence: 0.97942126125

 $00:02:44.120 \longrightarrow 00:02:47.472$ when in reality it is not rises with

NOTE Confidence: 0.97942126125

 $00:02:47.472 \longrightarrow 00:02:50.174$ the number of tests that we run.

NOTE Confidence: 0.97942126125

00:02:50.180 --> 00:02:51.688 And so, for example,

NOTE Confidence: 0.97942126125

00:02:51.688 --> 00:02:53.950 here you see a numeric example,

NOTE Confidence: 0.97942126125

 $00{:}02{:}53.950 \dashrightarrow 00{:}02{:}56.929$ so if you come assume that we you run

NOTE Confidence: 0.97942126125

 $00:02:56.929 \longrightarrow 00:02:59.640$ a differential expression analysis

NOTE Confidence: 0.97942126125

00:02:59.640 --> 00:03:02.696 on next generation sequencing,

NOTE Confidence: 0.97942126125

00:03:02.700 --> 00:03:03.903 you have a,

NOTE Confidence: 0.97942126125

 $00{:}03{:}03.903 \dashrightarrow 00{:}03{:}06.710$ you have a collection of data on

NOTE Confidence: 0.97942126125

 $00{:}03{:}06.809 \dashrightarrow 00{:}03{:}10.365$ 10,000 genes and you select 1000 genes,

NOTE Confidence: 0.97942126125

 $00:03:10.370 \longrightarrow 00:03:15.420$ so 10% with a P value that is less than 0.05.

NOTE Confidence: 0.97942126125 00:03:15.420 --> 00:03:16.025 Now, NOTE Confidence: 0.97942126125 00:03:16.025 --> 00:03:19.898 since you run 10,000 test and you

NOTE Confidence: 0.97942126125

 $00:03:19.898 \longrightarrow 00:03:22.990$ accepted the 5% probability to make an error,

NOTE Confidence: 0.97942126125

 $00:03:22.990 \longrightarrow 00:03:25.755$ that means that you expected by chance

NOTE Confidence: 0.97942126125

 $00{:}03{:}25.755 \dashrightarrow 00{:}03{:}31.410$ to have a 5% of full 5% of tests that

NOTE Confidence: 0.97942126125

 $00:03:31.410 \longrightarrow 00:03:36.998$ are true that are significant but not true.

NOTE Confidence: 0.97942126125

 $00:03:37.000 \longrightarrow 00:03:41.830$ So we expect 500 out of the 10,000 genes to

NOTE Confidence: 0.974495814

 $00:03:41.952 \longrightarrow 00:03:44.537$ be picked up by chance.

NOTE Confidence: 0.974495814

 $00:03:44.540 \longrightarrow 00:03:48.482$ If we compare so 500 is what we expect

NOTE Confidence: 0.974495814

 $00:03:48.490 \longrightarrow 00:03:50.290$ is the number of genes we expect it

NOTE Confidence: 0.974495814

 $00:03:50.290 \longrightarrow 00:03:52.399$ to be in our list of differentially

NOTE Confidence: 0.974495814

 $00{:}03{:}52.399 \dashrightarrow 00{:}03{:}53.994$ expressed when they are not,

NOTE Confidence: 0.974495814

 $00:03:54.000 \longrightarrow 00:03:58.617$ and it's 50% of the 1000 that we find.

NOTE Confidence: 0.974495814

 $00:03:58.620 \longrightarrow 00:04:04.140$ So if we calculate 500 out of 1000,

NOTE Confidence: 0.974495814

 $00:04:04.140 \longrightarrow 00:04:07.112$ that means that we have a 50% of genes

NOTE Confidence: 0.974495814

 $00:04:07.112 \longrightarrow 00:04:09.989$ that we expect to be false positive.

NOTE Confidence: 0.974495814

 $00:04:09.990 \longrightarrow 00:04:13.071$ So this ratio is 50% is what we

00:04:13.071 --> 00:04:14.956 call the false discovery rate,

NOTE Confidence: 0.974495814

 $00{:}04{:}14.960 \dashrightarrow 00{:}04{:}17.907$ and in this case using just these

NOTE Confidence: 0.974495814

 $00:04:17.907 \longrightarrow 00:04:20.634$ values is 50%. So it's very high.

NOTE Confidence: 0.974495814

 $00:04:20.634 \longrightarrow 00:04:23.235$ It means that potentially one out of

NOTE Confidence: 0.974495814

 $00:04:23.235 \longrightarrow 00:04:25.517$ two genes can be a false positive.

NOTE Confidence: 0.974495814

 $00:04:25.520 \longrightarrow 00:04:28.310$ So multiple test correction methods are

NOTE Confidence: 0.974495814

00:04:28.310 --> 00:04:32.060 ways that to modify the original P values,

NOTE Confidence: 0.974495814

 $00:04:32.060 \longrightarrow 00:04:34.592$ particularly to increase the original P

NOTE Confidence: 0.974495814

00:04:34.592 --> 00:04:37.879 values so that this probability of having

NOTE Confidence: 0.974495814

 $00:04:37.879 \longrightarrow 00:04:40.424$ false positives is ultimately less.

NOTE Confidence: 0.974495814

 $00:04:40.430 \longrightarrow 00:04:41.420$ It is reduced.

NOTE Confidence: 0.98081213

00:04:44.820 --> 00:04:46.890 Yeah, I just want to make a quick

NOTE Confidence: 0.9814035733333333

 $00{:}04{:}46.890 \dashrightarrow 00{:}04{:}50.106$ addition to as this is a very important

NOTE Confidence: 0.981403573333333

 $00{:}04{:}50.106 \dashrightarrow 00{:}04{:}52.340$ concept and the first time I see

NOTE Confidence: 0.981403573333333

 $00:04:52.340 \longrightarrow 00:04:54.629$ encounters a word not have processes.

 $00:04:54.630 \longrightarrow 00:04:56.706$ Always got confused initially or so.

NOTE Confidence: 0.981403573333333

 $00:04:56.710 \longrightarrow 00:04:59.166$ Why is the heck is not hypothesis also

NOTE Confidence: 0.981403573333333

00:04:59.166 --> 00:05:01.479 not purposes we can consider As for

NOTE Confidence: 0.981403573333333

 $00:05:01.479 \longrightarrow 00:05:03.496$ example if you're comparing two groups

NOTE Confidence: 0.981403573333333

 $00:05:03.496 \longrightarrow 00:05:06.104$ of samples and not help us is basically

NOTE Confidence: 0.981403573333333

 $00:05:06.104 \longrightarrow 00:05:07.582$ there's there's a 21 gene the gene

NOTE Confidence: 0.981403573333333

 $00:05:07.582 \longrightarrow 00:05:08.916$ you're looking at has no difference

NOTE Confidence: 0.981403573333333

 $00:05:08.916 \longrightarrow 00:05:10.524$ between these two groups, for example,

NOTE Confidence: 0.9814035733333333

 $00:05:10.524 \longrightarrow 00:05:13.060$ so this will be done on hypothesis and the.

NOTE Confidence: 0.981403573333333

00:05:13.060 --> 00:05:15.870 5% P value oh point. 5.050 point

NOTE Confidence: 0.985787001666667

00:05:18.340 --> 00:05:20.775 05 means you have a 5% chance

NOTE Confidence: 0.985787001666667

 $00:05:20.775 \longrightarrow 00:05:23.505$ to make a wrong call basically,

NOTE Confidence: 0.985787001666667

00:05:23.510 --> 00:05:25.118 so that's that's eventually.

NOTE Confidence: 0.985787001666667

 $00{:}05{:}25.118 \dashrightarrow 00{:}05{:}27.128$ II interpreted that way myself.

NOTE Confidence: 0.98298246

 $00:05:27.700 \longrightarrow 00:05:29.280$ Yeah, exactly. So that's the

NOTE Confidence: 0.98298246

 $00{:}05{:}29.280 \dashrightarrow 00{:}05{:}31.220$ first positive is a wrong code.

 $00:05:31.220 \longrightarrow 00:05:34.524$ So basically yes, and when you do

NOTE Confidence: 0.98298246

 $00:05:34.524 \longrightarrow 00:05:36.805$ pathway richemond Denali part is

NOTE Confidence: 0.98298246

 $00:05:36.805 \longrightarrow 00:05:39.528$ is that the pathway is not reached?

NOTE Confidence: 0.98298246

 $00:05:39.530 \longrightarrow 00:05:43.175$ So those are the two examples that I'm doing.

NOTE Confidence: 0.98298246

 $00:05:43.180 \longrightarrow 00:05:45.922$ Uhm, so all the multiple test

NOTE Confidence: 0.98298246

 $00:05:45.922 \longrightarrow 00:05:47.750$ correction methods increase the

NOTE Confidence: 0.98298246

 $00:05:47.832 \longrightarrow 00:05:50.352$ original key values with the aim

NOTE Confidence: 0.98298246

 $00:05:50.352 \longrightarrow 00:05:52.860$ of reducing these false positives.

NOTE Confidence: 0.98298246

 $00:05:52.860 \longrightarrow 00:05:54.940$ What they do not do is that they

NOTE Confidence: 0.98298246

00:05:54.940 --> 00:05:57.335 do not swap the order of P values,

NOTE Confidence: 0.98298246

 $00{:}05{:}57.340 \dashrightarrow 00{:}05{:}59.052$ so you can imagine if you have your

NOTE Confidence: 0.98298246

 $00:05:59.052 \longrightarrow 00:06:01.206$ list of genes and your rank your genes

NOTE Confidence: 0.98298246

 $00{:}06{:}01.206 \dashrightarrow 00{:}06{:}02.820$ according to the original P values.

NOTE Confidence: 0.98298246

 $00{:}06{:}02.820 \dashrightarrow 00{:}06{:}05.105$ When you perform the transformation

NOTE Confidence: 0.98298246

 $00:06:05.105 \longrightarrow 00:06:06.476$ or the correction,

 $00:06:06.480 \longrightarrow 00:06:09.198$ you don't have changes in the

NOTE Confidence: 0.98298246

 $00{:}06{:}09.198 --> 00{:}06{:}11.010$ rank of the jeans.

NOTE Confidence: 0.98298246

 $00:06:11.010 \longrightarrow 00:06:13.965$ So this simplest correction is

NOTE Confidence: 0.98298246

 $00:06:13.965 \longrightarrow 00:06:16.329$ the Bonferroni correction method.

NOTE Confidence: 0.98298246

 $00:06:16.330 \longrightarrow 00:06:18.262$ It's simple because you just take

NOTE Confidence: 0.98298246

 $00{:}06{:}18.262 \dashrightarrow 00{:}06{:}20.238$ the original P value and you

NOTE Confidence: 0.98298246

 $00:06:20.238 \longrightarrow 00:06:22.098$ multiply the original P value for

NOTE Confidence: 0.98298246

 $00:06:22.098 \longrightarrow 00:06:24.336$ the number of tests that you perform.

NOTE Confidence: 0.98298246

 $00:06:24.340 \longrightarrow 00:06:25.630$ So in our case, for example,

NOTE Confidence: 0.98298246

 $00:06:25.630 \longrightarrow 00:06:27.716$ if you run tests for 10,000 genes,

NOTE Confidence: 0.98298246

 $00{:}06{:}27.720 \dashrightarrow 00{:}06{:}29.850$ that means you take your original

NOTE Confidence: 0.98298246

 $00:06:29.850 \longrightarrow 00:06:32.108$ P values and you multiply each

NOTE Confidence: 0.98298246

 $00:06:32.108 \longrightarrow 00:06:34.400$ of these P values for 10,000.

NOTE Confidence: 0.98298246

 $00:06:34.400 \longrightarrow 00:06:35.720$ So that this is the formula,

NOTE Confidence: 0.98298246

 $00:06:35.720 \longrightarrow 00:06:36.250$ there just NOTE Confidence: 0.980613493333333

00:06:36.950 --> 00:06:38.290 have a question I I'm

00:06:38.290 --> 00:06:39.362 understanding what you're saying,

NOTE Confidence: 0.980613493333333

 $00:06:39.370 \longrightarrow 00:06:41.986$ but there's adjusted P minus value.

NOTE Confidence: 0.896916326666667

 $00:06:42.810 \longrightarrow 00:06:44.100$ I know it's a P value,

NOTE Confidence: 0.896916326666667

00:06:44.100 --> 00:06:45.452 it's inequation, no, no.

NOTE Confidence: 0.896916326666667

00:06:45.452 --> 00:06:48.349 It's up evalue with a very large space,

NOTE Confidence: 0.896916326666667

 $00:06:48.350 \longrightarrow 00:06:52.728$ minus yeah. Oh yeah, yeah.

NOTE Confidence: 0.896916326666667

 $00:06:52.730 \longrightarrow 00:06:55.818$ OK, it's devalue so.

NOTE Confidence: 0.896916326666667

 $00:06:55.820 \longrightarrow 00:06:59.490$ I will correct this so it's just evalue.

NOTE Confidence: 0.896916326666667

00:06:59.490 --> 00:07:01.326 Yeah, it's the original P value.

NOTE Confidence: 0.896916326666667

 $00{:}07{:}01.330 \dashrightarrow 00{:}07{:}03.836$ Multiply that by the number of tests.

NOTE Confidence: 0.896916326666667

 $00:07:03.840 \longrightarrow 00:07:08.118$ OK, thank you and this belongs to a family

NOTE Confidence: 0.896916326666667

 $00:07:08.118 \longrightarrow 00:07:10.810$ of correction methods that control for

NOTE Confidence: 0.896916326666667

 $00{:}07{:}10.810 \dashrightarrow 00{:}07{:}13.576$ the so called family wise error rate.

NOTE Confidence: 0.896916326666667

 $00:07:13.580 \longrightarrow 00:07:16.460$ So after the correction when you

NOTE Confidence: 0.896916326666667

 $00:07:16.460 \longrightarrow 00:07:19.465$ take everything that is below 0.05,

 $00:07:19.465 \longrightarrow 00:07:22.855$ interpretation of that is that you're

NOTE Confidence: 0.896916326666667

 $00:07:22.855 \dashrightarrow 00:07:26.395$ relying 5% of probability to have at least.

NOTE Confidence: 0.896916326666667

 $00:07:26.400 \longrightarrow 00:07:27.663$ One false positive.

NOTE Confidence: 0.896916326666667

 $00:07:27.663 \longrightarrow 00:07:29.768$ So you're controlling for the

NOTE Confidence: 0.896916326666667

00:07:29.768 --> 00:07:32.102 probability of having in your final

NOTE Confidence: 0.896916326666667

 $00:07:32.102 \longrightarrow 00:07:34.232$ list at least one false positive.

NOTE Confidence: 0.896916326666667

 $00:07:34.240 \longrightarrow 00:07:36.580$ That's why it's a very

NOTE Confidence: 0.896916326666667

 $00:07:36.580 \longrightarrow 00:07:37.516$ conservative correction,

NOTE Confidence: 0.896916326666667

 $00:07:37.520 \longrightarrow 00:07:39.360$ so it's very stringent because

NOTE Confidence: 0.896916326666667

 $00:07:39.360 \longrightarrow 00:07:41.896$ basically you are not allowing to have

NOTE Confidence: 0.896916326666667

 $00{:}07{:}41.896 \dashrightarrow 00{:}07{:}44.244$ any false positive at all almost.

NOTE Confidence: 0.896916326666667 00:07:44.244 --> 00:07:45.180 And so,

NOTE Confidence: 0.896916326666667

 $00{:}07{:}45.180 --> 00{:}07{:}46.540$ especially when you have a

NOTE Confidence: 0.896916326666667

 $00{:}07{:}46.540 \dashrightarrow 00{:}07{:}47.628$ large number of tests.

NOTE Confidence: 0.896916326666667

 $00:07:47.630 \longrightarrow 00:07:49.730$ Since this is the number that you

NOTE Confidence: 0.896916326666667

 $00:07:49.730 \longrightarrow 00:07:51.388$ multiply your original P values for,

 $00:07:51.390 \longrightarrow 00:07:54.720$ it can be very not rewarding,

NOTE Confidence: 0.896916326666667

 $00{:}07{:}54.720 \dashrightarrow 00{:}07{:}56.450$ meaning that after the correction.

NOTE Confidence: 0.896916326666667

00:07:56.450 --> 00:07:58.730 Would ever would be values

NOTE Confidence: 0.896916326666667

 $00:07:58.730 \longrightarrow 00:08:00.554$ basically reduced to 1.

NOTE Confidence: 0.896916326666667

 $00:08:00.560 \longrightarrow 00:08:02.564$ And so that no gene after

NOTE Confidence: 0.896916326666667

 $00:08:02.564 \longrightarrow 00:08:03.900$ the correction is selected.

NOTE Confidence: 0.896916326666667

 $00:08:03.900 \longrightarrow 00:08:06.260$ So that's why this is simple to explain,

NOTE Confidence: 0.896916326666667

 $00:08:06.260 \longrightarrow 00:08:07.740$ but it's rarely used.

NOTE Confidence: 0.896916326666667

 $00:08:07.740 \longrightarrow 00:08:10.529$ The most common method that is used

NOTE Confidence: 0.896916326666667

 $00{:}08{:}10.529 \dashrightarrow 00{:}08{:}13.019$ is the Benjamini Hochberg correction,

NOTE Confidence: 0.896916326666667

 $00:08:13.020 \longrightarrow 00:08:15.210$ so this is the most popular

NOTE Confidence: 0.896916326666667

 $00:08:15.210 \longrightarrow 00:08:16.670$ multiple test correction method

NOTE Confidence: 0.896916326666667

 $00{:}08{:}16.741 \dashrightarrow 00{:}08{:}18.847$ was introduced there 25 years ago,

NOTE Confidence: 0.896916326666667

 $00:08:18.850 \longrightarrow 00:08:20.985$ so this is belongs to a family

NOTE Confidence: 0.896916326666667

 $00:08:20.985 \longrightarrow 00:08:22.825$ of methods that designed to

 $00:08:22.825 \longrightarrow 00:08:24.960$ control the false discovery rate.

NOTE Confidence: 0.896916326666667

 $00{:}08{:}24.960 \dashrightarrow 00{:}08{:}30.008$ So the proportion of false positives that we.

NOTE Confidence: 0.896916326666667

00:08:30.010 --> 00:08:32.298 One thing that we expect in our data,

NOTE Confidence: 0.896916326666667

 $00:08:32.300 \longrightarrow 00:08:35.492$ so we're not if we select

NOTE Confidence: 0.896916326666667

 $00:08:35.492 \longrightarrow 00:08:37.088$ after the correction.

NOTE Confidence: 0.896916326666667

 $00:08:37.090 \longrightarrow 00:08:41.922 \ 0.05$ it means that we allow 5\% of our genes

NOTE Confidence: 0.896916326666667

 $00:08:41.922 \longrightarrow 00:08:45.360$ to be wrong calls or false positives.

NOTE Confidence: 0.896916326666667

 $00:08:45.360 \longrightarrow 00:08:47.030$ So it's a stepwise method,

NOTE Confidence: 0.896916326666667

 $00:08:47.030 \longrightarrow 00:08:49.352$ so it's it's a more slightly

NOTE Confidence: 0.896916326666667

 $00:08:49.352 \longrightarrow 00:08:51.370$ more complex than the bond,

NOTE Confidence: 0.896916326666667

 $00:08:51.370 \longrightarrow 00:08:52.606$ then the Bonferroni,

NOTE Confidence: 0.896916326666667

00:08:52.606 --> 00:08:55.097 but the formula is quite straightforward,

NOTE Confidence: 0.896916326666667

 $00:08:55.097 \longrightarrow 00:08:58.940$ so it requires a first year that you sort

NOTE Confidence: 0.896916326666667

 $00:08:59.016 \longrightarrow 00:09:02.327$ all your original values in increasing order.

NOTE Confidence: 0.896916326666667

 $00:09:02.330 \longrightarrow 00:09:06.274$ So from the smallest to the biggest value,

NOTE Confidence: 0.896916326666667

 $00:09:06.280 \longrightarrow 00:09:08.856$ so that you can calculate the rank.

 $00:09:08.860 \longrightarrow 00:09:11.149$ So this more length is the smallest

NOTE Confidence: 0.896916326666667

 $00:09:11.149 \longrightarrow 00:09:14.416$ has rank one, and then 2-3 and so on,

NOTE Confidence: 0.896916326666667

 $00:09:14.420 \longrightarrow 00:09:15.830$ so they adjusted.

NOTE Confidence: 0.896916326666667

 $00:09:15.830 \longrightarrow 00:09:18.650$ Failure is basically the original P

NOTE Confidence: 0.896916326666667

 $00:09:18.650 \longrightarrow 00:09:21.734$ value multiplied by the number of tests

NOTE Confidence: 0.896916326666667

 $00:09:21.734 \longrightarrow 00:09:24.780$ divided by the rank of the variable.

NOTE Confidence: 0.896916326666667

 $00:09:24.780 \longrightarrow 00:09:27.306$ So this means that you don't

NOTE Confidence: 0.896916326666667

 $00:09:27.306 \dashrightarrow 00:09:29.809$ multiply your original value for a

NOTE Confidence: 0.896916326666667

 $00:09:29.809 \longrightarrow 00:09:32.023$ fixed number as in the Bonferroni,

NOTE Confidence: 0.896916326666667

 $00:09:32.030 \longrightarrow 00:09:34.575$ but the multiplication the amount

NOTE Confidence: 0.896916326666667

 $00:09:34.575 \longrightarrow 00:09:37.120$ of the multiplication depends on

NOTE Confidence: 0.896916326666667

 $00:09:37.204 \longrightarrow 00:09:39.829$ the rank of your original P value.

NOTE Confidence: 0.896916326666667

 $00{:}09{:}39.830 \dashrightarrow 00{:}09{:}43.142$ And I have these examples to show the

NOTE Confidence: 0.896916326666667

 $00:09:43.142 \longrightarrow 00:09:45.449$ difference between the two approaches,

NOTE Confidence: 0.896916326666667

 $00:09:45.450 \longrightarrow 00:09:47.670$ so it's a simplified example.

 $00:09:47.670 \longrightarrow 00:09:49.498$ We run an analysis.

NOTE Confidence: 0.896916326666667

 $00{:}09{:}49.498 \dashrightarrow 00{:}09{:}52.240$ Let's assume we run an analysis

NOTE Confidence: 0.896916326666667

 $00:09:52.333 \longrightarrow 00:09:55.010$ of Honor 5353 jeans.

NOTE Confidence: 0.896916326666667

 $00:09:55.010 \longrightarrow 00:09:57.182$ So these are our genes we're

NOTE Confidence: 0.896916326666667

 $00:09:57.182 \longrightarrow 00:09:58.630$ testing for differential expression

NOTE Confidence: 0.896916326666667

 $00{:}09{:}58.693 \dashrightarrow 00{:}10{:}00.448$ of these genes into conditions,

NOTE Confidence: 0.896916326666667

 $00:10:00.450 \longrightarrow 00:10:02.328$ so these are the original P

NOTE Confidence: 0.896916326666667

 $00:10:02.328 \longrightarrow 00:10:03.580$ values that we get.

NOTE Confidence: 0.896916326666667

 $00{:}10{:}03.580 \dashrightarrow 00{:}10{:}06.520$ For example from let's say at Test

NOTE Confidence: 0.896916326666667

 $00:10:06.520 \longrightarrow 00:10:09.076$ or something that is more specific

NOTE Confidence: 0.896916326666667

 $00{:}10{:}09.076 \dashrightarrow 00{:}10{:}11.272$ for next generation sequencing data.

NOTE Confidence: 0.896916326666667 00:10:11.272 --> 00:10:12.168 So it's

NOTE Confidence: 0.948966472

 $00:10:12.170 \longrightarrow 00:10:14.930$ any test of differential expression.

NOTE Confidence: 0.948966472

 $00:10:14.930 \longrightarrow 00:10:17.762$ So this is the original P value and

NOTE Confidence: 0.948966472

00:10:17.762 --> 00:10:20.351 I ranked the genes in increasing

NOTE Confidence: 0.948966472

 $00:10:20.351 \longrightarrow 00:10:23.051$ values so that these genes level

 $00:10:23.138 \longrightarrow 00:10:25.228$ 4 is the most significant.

NOTE Confidence: 0.948966472

 $00{:}10{:}25.230 --> 00{:}10{:}27.636$ And so on. This, the laster,

NOTE Confidence: 0.948966472

 $00:10:27.640 \longrightarrow 00:10:29.170$ has no significance at all,

NOTE Confidence: 0.948966472

 $00:10:29.170 \longrightarrow 00:10:31.516$ because the P value is 1.

NOTE Confidence: 0.948966472

 $00{:}10{:}31.520 \dashrightarrow 00{:}10{:}33.356$ So this is the Bonferroni formula.

NOTE Confidence: 0.948966472

 $00:10:33.360 \longrightarrow 00:10:35.880$ So since we have a 53.

NOTE Confidence: 0.948966472

 $00:10:35.880 \longrightarrow 00:10:39.264$ Jeans we run 53 tests and so every

NOTE Confidence: 0.948966472

 $00:10:39.264 \longrightarrow 00:10:42.442$ number has to be multiplied by 53.

NOTE Confidence: 0.948966472

 $00:10:42.442 \longrightarrow 00:10:44.210$ So after this formula,

NOTE Confidence: 0.948966472

 $00{:}10{:}44.210 \dashrightarrow 00{:}10{:}46.989$ that's the result that we get them.

NOTE Confidence: 0.948966472

 $00:10:46.990 \longrightarrow 00:10:50.410$ And so if before the correction all these

NOTE Confidence: 0.948966472

 $00:10:50.410 \longrightarrow 00:10:53.498$ jeans were below the 0.05 threshold.

NOTE Confidence: 0.948966472

00:10:53.498 --> 00:10:55.100 After the correction,

NOTE Confidence: 0.948966472

 $00{:}10{:}55.100 \dashrightarrow 00{:}10{:}58.628$ only the first jeans is selected.

NOTE Confidence: 0.948966472

 $00:10:58.630 \longrightarrow 00:11:01.170$ Because it's the only one that is below 0.05.

00:11:03.450 --> 00:11:06.434 Uhm below here you see the same analysis

NOTE Confidence: 0.941178177857143

 $00:11:06.434 \longrightarrow 00:11:09.848$ but with the benjamini Hochberg correction.

NOTE Confidence: 0.941178177857143

 $00{:}11{:}09.850 \dashrightarrow 00{:}11{:}13.170$ So the original P values are the same.

NOTE Confidence: 0.941178177857143

 $00:11:13.170 \longrightarrow 00:11:15.645$ It's a stepwise procedure because

NOTE Confidence: 0.941178177857143

 $00:11:15.645 \longrightarrow 00:11:18.872$ you start from the from the bottom.

NOTE Confidence: 0.941178177857143

 $00{:}11{:}18.872 \dashrightarrow 00{:}11{:}21.770$ And so you multiply that these are,

NOTE Confidence: 0.941178177857143

 $00:11:21.770 \longrightarrow 00:11:23.863$ that is value one for the number

NOTE Confidence: 0.941178177857143

 $00:11:23.863 \longrightarrow 00:11:26.158$ of tests are divided by the rank.

NOTE Confidence: 0.941178177857143

 $00:11:26.160 \longrightarrow 00:11:27.966$ So this is multiplied by one,

NOTE Confidence: 0.941178177857143

 $00:11:27.970 \longrightarrow 00:11:29.470$ so it stays the same.

NOTE Confidence: 0.941178177857143

 $00:11:29.470 \longrightarrow 00:11:30.590$ And that's why it's one.

NOTE Confidence: 0.941178177857143

 $00:11:30.590 \longrightarrow 00:11:33.890$ Also here, then you multiply this

NOTE Confidence: 0.941178177857143

 $00:11:33.890 \longrightarrow 00:11:36.318$ value for the number of tests,

NOTE Confidence: 0.941178177857143

 $00:11:36.318 \longrightarrow 00:11:37.646$ 53 for the rank.

NOTE Confidence: 0.941178177857143

 $00:11:37.650 \longrightarrow 00:11:39.645$ So this is slightly more than one,

NOTE Confidence: 0.941178177857143

00:11:39.650 --> 00:11:43.969 so you're a little bit increasing the.

 $00{:}11{:}43.970 \dashrightarrow 00{:}11{:}47.458$ The value here from one this is the

NOTE Confidence: 0.941178177857143

 $00{:}11{:}47.458 \dashrightarrow 00{:}11{:}49.727$ result and what I didn't tell you before

NOTE Confidence: 0.941178177857143

00:11:49.727 --> 00:11:51.938 is that it's not simply this formula,

NOTE Confidence: 0.941178177857143

00:11:51.940 --> 00:11:54.138 but once you get your these results,

NOTE Confidence: 0.941178177857143

 $00:11:54.140 \longrightarrow 00:11:57.241$ you have to check whether this is

NOTE Confidence: 0.941178177857143

00:11:57.241 --> 00:12:00.134 higher than the value of the corrected

NOTE Confidence: 0.941178177857143

 $00:12:00.134 \longrightarrow 00:12:02.738$ P value of the genes that precedes.

NOTE Confidence: 0.941178177857143

 $00:12:02.740 \longrightarrow 00:12:04.060$ In this case, it's lower,

NOTE Confidence: 0.941178177857143

 $00:12:04.060 \longrightarrow 00:12:05.440$ so we keep this.

NOTE Confidence: 0.941178177857143

 $00:12:05.440 \longrightarrow 00:12:08.332$ But if this was higher than we

NOTE Confidence: 0.941178177857143

 $00:12:08.332 \longrightarrow 00:12:11.110$ would have kept these this value

NOTE Confidence: 0.941178177857143

 $00:12:11.203 \longrightarrow 00:12:13.936$ and you see this here so here.

NOTE Confidence: 0.941178177857143

 $00{:}12{:}13.936 \dashrightarrow 00{:}12{:}17.240$ I proceed and so we multiply this value

NOTE Confidence: 0.941178177857143

 $00{:}12{:}17.331 \dashrightarrow 00{:}12{:}20.964$ here for 53 / 3 and this is the result.

NOTE Confidence: 0.941178177857143

 $00:12:20.970 \longrightarrow 00:12:22.918$ Now these results here,

 $00:12:22.918 \longrightarrow 00:12:25.898$ the multiplication would give you 0.04.

NOTE Confidence: 0.941178177857143

 $00{:}12{:}25.898 \dashrightarrow 00{:}12{:}30.202$ This is higher than what you obtain here.

NOTE Confidence: 0.941178177857143

00:12:30.210 --> 00:12:33.399 0.035 and so that's why instead of instead,

NOTE Confidence: 0.941178177857143 00:12:33.399 --> 00:12:34.077 instead of, NOTE Confidence: 0.941178177857143

 $00:12:34.077 \longrightarrow 00:12:36.111$ the result will not be the

NOTE Confidence: 0.941178177857143

00:12:36.111 --> 00:12:37.989 exact result of this formula,

NOTE Confidence: 0.941178177857143

 $00:12:37.990 \longrightarrow 00:12:40.684$ but these jeans will take the

NOTE Confidence: 0.941178177857143

 $00:12:40.684 \longrightarrow 00:12:43.919$ value of the gene that precedes.

NOTE Confidence: 0.941178177857143

 $00:12:43.920 \longrightarrow 00:12:46.118$ And so that's where the final P

NOTE Confidence: 0.941178177857143

00:12:46.118 --> 00:12:48.420 value adjusted P value will be 0.035,

NOTE Confidence: 0.941178177857143

 $00{:}12{:}48.420 \dashrightarrow 00{:}12{:}51.940$ and that's why when you use this method.

NOTE Confidence: 0.941178177857143

00:12:51.940 --> 00:12:53.116 You know, if you look now at.

NOTE Confidence: 0.941178177857143 00:12:53.120 --> 00:12:53.754 I mean, NOTE Confidence: 0.941178177857143

 $00{:}12{:}53.754 \dashrightarrow 00{:}12{:}56.290$ I noticed you can have a lot of

NOTE Confidence: 0.941178177857143

 $00:12:56.290 \longrightarrow 00:12:58.840$ adjusted values that are the same.

NOTE Confidence: 0.969053

 $00:13:00.150 \longrightarrow 00:13:02.250$ Ask a question comma. This is great.

 $00:13:02.250 \longrightarrow 00:13:05.000$ I'm so appreciating your clarifying

NOTE Confidence: 0.969053

 $00{:}13{:}05.000 \dashrightarrow 00{:}13{:}07.058$ everything just on the bottom

NOTE Confidence: 0.969053

 $00:13:07.058 \longrightarrow 00:13:09.867$ where it says BH adjusted P value

NOTE Confidence: 0.969053

 $00:13:09.867 \longrightarrow 00:13:12.187$ and then in parentheses FDR.

NOTE Confidence: 0.969053

 $00:13:12.190 \longrightarrow 00:13:15.696$ Q value clarify all those

NOTE Confidence: 0.969053

 $00:13:15.696 \longrightarrow 00:13:17.268$ different things that FDR.

NOTE Confidence: 0.969053

00:13:17.270 --> 00:13:19.110 I know it's false discovery rate in Q,

NOTE Confidence: 0.969053

 $00:13:19.110 \longrightarrow 00:13:22.410$ but is this point 027?

NOTE Confidence: 0.969053

 $00:13:22.410 \longrightarrow 00:13:24.687$ Could it be referred to as the P value,

NOTE Confidence: 0.969053

 $00:13:24.690 \longrightarrow 00:13:26.510$ the FDR and the Q?

NOTE Confidence: 0.88450238036

 $00:13:27.160 \longrightarrow 00:13:29.008$ So, uh, yeah, this is a

NOTE Confidence: 0.88450238036

00:13:29.008 --> 00:13:30.240 little bit of terminology,

NOTE Confidence: 0.88450238036

 $00:13:30.240 \longrightarrow 00:13:32.550$ so this notation here tells you how

NOTE Confidence: 0.88450238036

 $00{:}13{:}32.550 \dashrightarrow 00{:}13{:}35.021$ the P value has been adjusted so

NOTE Confidence: 0.88450238036

00:13:35.021 --> 00:13:37.754 it has been adjusted with the with

 $00:13:37.754 \longrightarrow 00:13:39.946$ the benjamini Hochberg correction.

NOTE Confidence: 0.88450238036

 $00:13:39.950 \longrightarrow 00:13:42.080$ So since this method belongs to

NOTE Confidence: 0.88450238036

 $00:13:42.080 \longrightarrow 00:13:44.828$ a family of methods that are so

NOTE Confidence: 0.88450238036

00:13:44.828 --> 00:13:46.918 called false discovery rate methods,

NOTE Confidence: 0.88450238036

 $00:13:46.920 \longrightarrow 00:13:49.671$ so the the you can interpret the

NOTE Confidence: 0.88450238036

00:13:49.671 --> 00:13:52.860 result also as a false discovery rate.

NOTE Confidence: 0.88450238036

 $00:13:52.860 \longrightarrow 00:13:57.164$ So that's why sometimes you will not find.

NOTE Confidence: 0.88450238036

00:13:57.170 --> 00:13:58.442 BH adjusted P value,

NOTE Confidence: 0.88450238036

 $00{:}13{:}58.442 --> 00{:}14{:}00.032$ but false discovery rate and

NOTE Confidence: 0.88450238036

 $00:14:00.032 \longrightarrow 00:14:01.829$ also any adjusted P value is.

NOTE Confidence: 0.88450238036

 $00:14:01.830 \longrightarrow 00:14:05.320$ I think it can be also called the Q value.

NOTE Confidence: 0.88450238036

 $00:14:05.320 \longrightarrow 00:14:06.100$ Got it, thank you.

NOTE Confidence: 0.88450238036

 $00{:}14{:}06.100 \dashrightarrow 00{:}14{:}08.782$ So that means that FDR can be used also

NOTE Confidence: 0.88450238036

 $00:14:08.782 \longrightarrow 00:14:10.875$ for with other corrections methods

NOTE Confidence: 0.88450238036

 $00:14:10.875 \longrightarrow 00:14:13.455$ that belong to the same family,

NOTE Confidence: 0.88450238036

 $00:14:13.460 \longrightarrow 00:14:15.940$ but they are not benjamini.

 $00:14:15.940 \longrightarrow 00:14:19.428$ Yes, Benjamin Hochberg corrected.

NOTE Confidence: 0.88450238036

 $00:14:19.430 \longrightarrow 00:14:21.836$ So usually in publication you use

NOTE Confidence: 0.88450238036

00:14:21.836 --> 00:14:24.609 FDR for example and then you specify

NOTE Confidence: 0.88450238036

 $00:14:24.609 \longrightarrow 00:14:27.150$ in the methods that you use the

NOTE Confidence: 0.88450238036

 $00{:}14{:}27.232 \dashrightarrow 00{:}14{:}29.577$ Benjamini occupied in order to.

NOTE Confidence: 0.88450238036

 $00:14:29.580 \longrightarrow 00:14:32.280$ Calculate the FDR.

NOTE Confidence: 0.88450238036

 $00:14:32.280 \longrightarrow 00:14:34.188$ But sometimes it's left ambiguous most

NOTE Confidence: 0.88450238036

 $00:14:34.188 \longrightarrow 00:14:37.027$ of the time it will be the Benjamin IAL,

NOTE Confidence: 0.88450238036

 $00:14:37.030 \longrightarrow 00:14:40.909$ but in any case. Perfect thank you.

NOTE Confidence: 0.88450238036

 $00:14:40.910 \longrightarrow 00:14:41.885$ And, uh, yeah.

NOTE Confidence: 0.88450238036

 $00:14:41.885 \longrightarrow 00:14:44.500$ And finally the first gene as you see,

NOTE Confidence: 0.88450238036

 $00:14:44.500 \longrightarrow 00:14:46.243$ only the first gene has the same

NOTE Confidence: 0.88450238036

 $00{:}14{:}46.243 \dashrightarrow 00{:}14{:}47.590$ correction as the Bonferroni,

NOTE Confidence: 0.88450238036

00:14:47.590 --> 00:14:50.222 because this is the only case where

NOTE Confidence: 0.88450238036

 $00:14:50.222 \longrightarrow 00:14:51.786$ these multiplication since the

00:14:51.786 --> 00:14:53.666 rank is one corresponds exactly

NOTE Confidence: 0.88450238036

00:14:53.666 --> 00:14:55.170 to the Bonferroni formula.

NOTE Confidence: 0.88450238036

 $00:14:55.170 \longrightarrow 00:14:55.882$ Unless so,

NOTE Confidence: 0.88450238036

 $00:14:55.882 \longrightarrow 00:14:58.374$ unless the value of these is higher

NOTE Confidence: 0.88450238036

 $00:14:58.374 \longrightarrow 00:15:00.898$ than the value of the second jeans.

NOTE Confidence: 0.88450238036

 $00:15:00.900 \longrightarrow 00:15:01.604$ Because remember,

NOTE Confidence: 0.88450238036

 $00:15:01.604 \longrightarrow 00:15:04.068$ in this case you take the you

NOTE Confidence: 0.88450238036

 $00:15:04.068 \longrightarrow 00:15:06.388$ take the minor of the two values,

NOTE Confidence: 0.88450238036

 $00:15:06.390 \longrightarrow 00:15:08.575$ the formula or the corrected

NOTE Confidence: 0.88450238036

 $00:15:08.575 \longrightarrow 00:15:11.600$ values of the gene that precedes.

NOTE Confidence: 0.88450238036

 $00{:}15{:}11.600 \dashrightarrow 00{:}15{:}13.504$ And as you see, in this case,

NOTE Confidence: 0.88450238036

 $00{:}15{:}13.510 \dashrightarrow 00{:}15{:}15.465$ after you apply the Benjamini

NOTE Confidence: 0.88450238036

00:15:15.465 --> 00:15:17.354 awkward after the correction,

NOTE Confidence: 0.88450238036

 $00:15:17.354 \longrightarrow 00:15:20.840$ four of the genes are selected because

NOTE Confidence: 0.88450238036

 $00:15:20.930 \longrightarrow 00:15:23.630$ the adjusted P value is below 5.

NOTE Confidence: 0.88450238036

 $00{:}15{:}23.630 \dashrightarrow 00{:}15{:}25.660$ So this is an example showing also

 $00{:}15{:}25.660 \dashrightarrow 00{:}15{:}28.262$ that the Bonferroni is much less much

NOTE Confidence: 0.88450238036

 $00:15:28.262 \longrightarrow 00:15:30.790$ more stringent than the Benjamini awkward.

NOTE Confidence: 0.88450238036

00:15:30.790 --> 00:15:32.870 Because here you you accept

NOTE Confidence: 0.88450238036

 $00{:}15{:}32.870 --> 00{:}15{:}35.002$ 5% of a false positive.

NOTE Confidence: 0.88450238036

00:15:35.002 --> 00:15:37.540 Here you accept the 5% probably

NOTE Confidence: 0.88450238036

 $00:15:37.540 \longrightarrow 00:15:39.490$ to have one false positive,

NOTE Confidence: 0.88450238036

 $00:15:39.490 \longrightarrow 00:15:42.158$ and that's the difference

NOTE Confidence: 0.88450238036

00:15:42.158 --> 00:15:44.159 in the interpretation.

NOTE Confidence: 0.88450238036 00:15:44.160 --> 00:15:44.410 No, NOTE Confidence: 0.9489760044

 $00{:}15{:}44.420 \dashrightarrow 00{:}15{:}46.244$ it is not the one that I mentioned

NOTE Confidence: 0.9489760044

 $00{:}15{:}46.244 \dashrightarrow 00{:}15{:}48.488$ on the nomenclature is truly a big

NOTE Confidence: 0.9489760044

 $00:15:48.488 \longrightarrow 00:15:50.213$ issue in the scientific literature

NOTE Confidence: 0.9489760044

 $00{:}15{:}50.277 \dashrightarrow 00{:}15{:}51.977$ because different people use different

NOTE Confidence: 0.9489760044

 $00:15:51.977 \longrightarrow 00:15:53.963$ ways to refer to these things.

NOTE Confidence: 0.9489760044

00:15:53.963 --> 00:15:55.661 For example, in some papers you

00:15:55.661 --> 00:15:57.489 will see the original P value,

NOTE Confidence: 0.9489760044

 $00:15:57.490 \longrightarrow 00:15:59.020$ which is what Thomas listed

NOTE Confidence: 0.9489760044

 $00:15:59.020 \longrightarrow 00:16:00.244$ on the third column.

NOTE Confidence: 0.9489760044

 $00:16:00.250 \longrightarrow 00:16:01.390$ Here as P value.

NOTE Confidence: 0.9489760044

 $00:16:01.390 \longrightarrow 00:16:02.815$ Some people refer this to

NOTE Confidence: 0.9489760044

00:16:02.815 --> 00:16:04.440 this as a nominal P value,

NOTE Confidence: 0.9489760044

00:16:04.440 --> 00:16:06.988 and some people just refer directly as

NOTE Confidence: 0.9489760044

00:16:06.988 --> 00:16:09.910 P value and on the adjusted P value.

NOTE Confidence: 0.9489760044

 $00{:}16{:}09.910 \dashrightarrow 00{:}16{:}11.590$ Some people refer to as FDR.

NOTE Confidence: 0.9489760044

00:16:11.590 --> 00:16:14.174 Some people refer to as a Q value.

NOTE Confidence: 0.9489760044

 $00:16:14.180 \longrightarrow 00:16:16.394$ Some people refer to as like

NOTE Confidence: 0.9489760044

00:16:16.394 --> 00:16:18.539 a tomasetta pH adjust P value.

NOTE Confidence: 0.9489760044

 $00:16:18.540 \longrightarrow 00:16:20.376$ Some people even will just tell

NOTE Confidence: 0.9489760044

 $00:16:20.376 \longrightarrow 00:16:22.729$ you that it's FDR adjusted P value.

NOTE Confidence: 0.9489760044

 $00:16:22.730 \longrightarrow 00:16:24.995$ So there are many different

NOTE Confidence: 0.9489760044

 $00:16:24.995 \longrightarrow 00:16:26.807$ normal creatures for basically

 $00:16:26.807 \longrightarrow 00:16:29.238$ the same things and different.

NOTE Confidence: 0.9489760044

 $00:16:29.240 \longrightarrow 00:16:30.248$ Authors use different ways

NOTE Confidence: 0.9489760044

 $00:16:30.248 \longrightarrow 00:16:31.508$ to refer to those things.

NOTE Confidence: 0.98594059

 $00:16:32.330 \longrightarrow 00:16:33.680$ Yeah, yeah there is no.

NOTE Confidence: 0.98594059

 $00:16:33.680 \longrightarrow 00:16:34.910$ Yeah I think yeah there

NOTE Confidence: 0.98594059

 $00:16:34.910 \longrightarrow 00:16:36.140$ is a lot of redundancy.

NOTE Confidence: 0.98594059

 $00:16:36.140 \longrightarrow 00:16:39.390$ Let's say now in terminology.

NOTE Confidence: 0.98594059

 $00:16:39.390 \longrightarrow 00:16:41.534$ And no specific rules.

NOTE Confidence: 0.98594059

 $00:16:41.534 \longrightarrow 00:16:44.750$ That depends on the reviewers mail.

NOTE Confidence: 0.98594059

 $00:16:44.750 \longrightarrow 00:16:48.528$ I see OK, so this was like this,

NOTE Confidence: 0.98594059

 $00:16:48.530 \longrightarrow 00:16:48.998$ uh, an introduction.