2025
Germline and Somatic Genomic Testing for Metastatic Prostate Cancer: ASCO Guideline
Yu E, Rumble R, Agarwal N, Cheng H, Eggener S, Bitting R, Beltran H, Giri V, Spratt D, Mahal B, Lu K, Crispino T, Trabulsi E. Germline and Somatic Genomic Testing for Metastatic Prostate Cancer: ASCO Guideline. Journal Of Clinical Oncology 2025, 43: 748-758. PMID: 39787437, DOI: 10.1200/jco-24-02608.Peer-Reviewed Original ResearchMeSH KeywordsGenetic TestingGenomicsGerm-Line MutationHumansMaleNeoplasm MetastasisProstatic NeoplasmsConceptsMetastatic prostate cancerSomatic genomic testingProstate cancerMetastatic castration-resistant prostate cancerClinical trialsCastration-resistant prostate cancerGenomic testingPoly(ADP-ribose) polymerase inhibitorsSystematic reviewMetastatic biopsiesSurvival benefitASCO guidelinesPrognostic informationClinical statusGermline testingPolymerase inhibitorsPatientsScreening implicationsPubMed databaseCancerMultidisciplinary panelEligibility criteriaGermlineLiterature searchSequencing findings
2024
Metastasis of colon cancer requires Dickkopf-2 to generate cancer cells with Paneth cell properties.
Shin J, Park J, Lim J, Jeong J, Dinesh R, Maher S, Kim J, Park S, Hong J, Wysolmerski J, Choi J, Bothwell A. Metastasis of colon cancer requires Dickkopf-2 to generate cancer cells with Paneth cell properties. ELife 2024, 13 PMID: 39535280, PMCID: PMC11560131, DOI: 10.7554/elife.97279.Peer-Reviewed Original ResearchConceptsCancer cellsDickkopf-2Analysis of transcriptomeGeneration of cancer cellsPositive cancer cellsStem cell niche factorsColon cancer cellsPaneth cell differentiationHepatocyte nuclear factor 4 alphaLysozyme positive cellsChromatin accessibilityHNF4A proteinSingle-cell RNA sequencing analysisCell propertiesPaneth cell markersSequence analysisChromatin immunoprecipitationPromoter regionTranscription factorsTranscriptome analysisColon cancerColon cancer metastasisReduction of liver metastasisDownstream targetsCell differentiationModeling lung adenocarcinoma metastases using patient-derived organoids
Liu Y, Lankadasari M, Rosiene J, Johnson K, Zhou J, Bapat S, Chow-Tsang L, Tian H, Mastrogiacomo B, He D, Connolly J, Lengel H, Caso R, Dunne E, Fick C, Rocco G, Sihag S, Isbell J, Bott M, Li B, Lito P, Brennan C, Bilsky M, Rekhtman N, Adusumilli P, Mayo M, Imielinski M, Jones D. Modeling lung adenocarcinoma metastases using patient-derived organoids. Cell Reports Medicine 2024, 5: 101777. PMID: 39413736, PMCID: PMC11513837, DOI: 10.1016/j.xcrm.2024.101777.Peer-Reviewed Original ResearchConceptsMetastasis modelLung adenocarcinomaAutologous peripheral blood mononuclear cellsEarly-stage lung cancerMechanisms of drug resistancePeripheral blood mononuclear cellsBlood mononuclear cellsEfficacy of treatmentLung cancer metastasisLung adenocarcinoma metastasisDistant metastasisStudy clonalityAdenocarcinoma metastasisLung cancerMononuclear cellsDrug resistanceMetastasisSuppress metastasisIndividual patientsTumor evolutionCancer metastasisHuman metastasesPatientsBiological featuresRNA sequencingCirculating Tumor Cell Count and Overall Survival in Patients With Metastatic Hormone-Sensitive Prostate Cancer
Goldkorn A, Tangen C, Plets M, Bsteh D, Xu T, Pinski J, Ingles S, Triche T, MacVicar G, Vaena D, Crispino A, McConkey D, Lara P, Hussain M, Quinn D, Dorff T, Lerner S, Thompson I, Agarwal N. Circulating Tumor Cell Count and Overall Survival in Patients With Metastatic Hormone-Sensitive Prostate Cancer. JAMA Network Open 2024, 7: e2437871. PMID: 39374015, PMCID: PMC11581504, DOI: 10.1001/jamanetworkopen.2024.37871.Peer-Reviewed Original ResearchConceptsMetastatic hormone-sensitive prostate cancerMetastatic castration-resistant prostate cancerCirculating tumor cell countCirculating tumor cellsHormone-sensitive prostate cancerTumor cell countOverall survivalProstate cancerPrognostic valueCTC countsPrognostic factorsProgression to metastatic castration-resistant prostate cancerDiagnosed mHSPCPeripheral blood circulating tumor cellsClinical trialsBlood circulating tumor cellsCastration-resistant prostate cancerPrognostic studyCell countBaseline CTC countProgression-free survivalLines of therapyEnhanced overall survivalProstate-specific antigenIncreased prognostic valueTROPHY-U-01 Cohort 2: A Phase II Study of Sacituzumab Govitecan in Cisplatin-Ineligible Patients With Metastatic Urothelial Cancer Progressing After Previous Checkpoint Inhibitor Therapy
Petrylak D, Tagawa S, Jain R, Bupathi M, Balar A, Kalebasty A, George S, Palmbos P, Nordquist L, Davis N, Ramamurthy C, Sternberg C, Loriot Y, Agarwal N, Park C, Tonelli J, Vance M, Zhou H, Grivas P, Petrylak D, Tagawa S, Jain R, Bupathi M, Balar A, Kalebasty A, George S, Palmbos P, Nordquist L, Davis N, Ramamurthy C, Sternberg C, Agarwal N, Park C, Tonelli J, Vance M, Zhou H, Grivas P, Loriot Y. TROPHY-U-01 Cohort 2: A Phase II Study of Sacituzumab Govitecan in Cisplatin-Ineligible Patients With Metastatic Urothelial Cancer Progressing After Previous Checkpoint Inhibitor Therapy. Journal Of Clinical Oncology 2024, 42: 3410-3420. PMID: 39186707, PMCID: PMC11458109, DOI: 10.1200/jco.23.01720.Peer-Reviewed Original ResearchConceptsMetastatic urothelial cancerClinical benefit rateProgression-free survivalDuration of responseCisplatin-ineligible patientsCheckpoint inhibitor therapyPhase II studyCheckpoint inhibitorsSacituzumab govitecanCohort 2Central reviewOpen-label phase II studyPlatinum (Pt)-based chemotherapyMedian duration of responseMedian progression-free survivalTreatment-emergent adverse eventsMedian overall survivalSN-38 payloadUrothelial cancer progressionSecondary end pointsAntibody-drug conjugatesCisplatin-ineligibleInhibitor therapyOverall survivalII studyTislelizumab plus cetuximab and irinotecan in refractory microsatellite stable and RAS wild-type metastatic colorectal cancer: a single-arm phase 2 study
Xu X, Ai L, Hu K, Liang L, Lv M, Wang Y, Cui Y, Li W, Li Q, Yu S, Feng Y, Liu Q, Yang Y, Zhang J, Xu F, Yu Y, Liu T. Tislelizumab plus cetuximab and irinotecan in refractory microsatellite stable and RAS wild-type metastatic colorectal cancer: a single-arm phase 2 study. Nature Communications 2024, 15: 7255. PMID: 39179622, PMCID: PMC11343749, DOI: 10.1038/s41467-024-51536-x.Peer-Reviewed Original ResearchConceptsMetastatic colorectal cancerVariant allele frequencyPhase 2 studyEpidermal growth factor receptorAdverse eventsRAS wild-type metastatic colorectal cancerRAS wt metastatic colorectal cancerSingle-arm phase 2 studyWild-type metastatic colorectal cancerColorectal cancerTreatment-related adverse eventsAnti-PD-1Disease control rateProgression-free survivalRAS wild-typeTumor immune responseCombined treatment regimenWild-typeGrowth factor receptorIrinotecan combinationOverall survivalAnti-EGFRPrimary endpointTumor DNASingle-armImmunotherapy For US Patients With Metastatic Cancer at the End of Life—Reply
Kerekes D, Khan S. Immunotherapy For US Patients With Metastatic Cancer at the End of Life—Reply. JAMA Oncology 2024, 10: 1134-1134. PMID: 38842840, DOI: 10.1001/jamaoncol.2024.1566.Peer-Reviewed Original ResearchA nomogram combining neutrophil to lymphocyte ratio (NLR) and prognostic nutritional index (PNI) to predict distant metastasis in gastric cancer
Liu J, Sun R, Cai K, Xu Y, Yuan W. A nomogram combining neutrophil to lymphocyte ratio (NLR) and prognostic nutritional index (PNI) to predict distant metastasis in gastric cancer. Scientific Reports 2024, 14: 15391. PMID: 38965325, PMCID: PMC11224267, DOI: 10.1038/s41598-024-65307-7.Peer-Reviewed Original ResearchConceptsNeutrophil-to-lymphocyte ratioPrognostic nutritional indexPlatelet-to-lymphocyte ratioSystemic immune-inflammatory indexLymphocyte to monocyte ratioMultivariate logistic regression analysisDistant metastasisLogistic regression analysisLymphocyte ratioReceiver operating characteristicGastric cancerValidation cohortPredictive factorsRisk factors of distant metastasisDistant metastasis of gastric cancerNutritional indexImmune-inflammatory indexClinical practiceNomogram's predictive performanceDecision curve analysisGastric cancer patientsMetastasis of gastric cancerEfficient nomogramRegression analysisMonocyte ratioOverexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment
Martinez-Terroba E, Plasek-Hegde L, Chiotakakos I, Li V, de Miguel F, Robles-Oteiza C, Tyagi A, Politi K, Zamudio J, Dimitrova N. Overexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment. Science Immunology 2024, 9: eadh5462. PMID: 38875320, DOI: 10.1126/sciimmunol.adh5462.Peer-Reviewed Original ResearchConceptsTumor microenvironmentLung adenocarcinomaMetastatic diseasePromoting metastatic diseaseGlobal chromatin accessibilityMetastasis-associated lung adenocarcinoma transcript 1Overexpression of MALAT1Lung adenocarcinoma transcript 1Lung adenocarcinoma metastasisCCL2 blockadeInflammatory reprogrammingEnhanced cell mobilityMacrophage depletionMechanism of actionTumor typesTumor progressionMouse modelCell mobilizationTumorLong noncoding RNAsParacrine secretionMetastasisCell linesTranscript 1MicroenvironmentInhibition of lysine acetyltransferase KAT6 in ER+HER2− metastatic breast cancer: a phase 1 trial
Mukohara T, Park Y, Sommerhalder D, Yonemori K, Hamilton E, Kim S, Kim J, Iwata H, Yamashita T, Layman R, Mita M, Clay T, Chae Y, Oakman C, Yan F, Kim G, Im S, Lindeman G, Rugo H, Liyanage M, Saul M, Le Corre C, Skoura A, Liu L, Li M, LoRusso P. Inhibition of lysine acetyltransferase KAT6 in ER+HER2− metastatic breast cancer: a phase 1 trial. Nature Medicine 2024, 30: 2242-2250. PMID: 38824244, PMCID: PMC11333285, DOI: 10.1038/s41591-024-03060-0.Peer-Reviewed Original ResearchConceptsProgression-free survivalAntitumor activityEpidermal growth factor receptor-negativeBreast cancer preclinical modelsMedian progression-free survivalPhase 1 dose-escalationTreatment-related adverse eventsDose-expansion studyEstrogen receptor-positiveMetastatic breast cancerPhase 1 trialFirst-in-humanFulvestrant combinationReceptor-negativeReceptor-positiveEvaluation of antitumor activitySecondary endpointsPreclinical modelsSafety profileAdverse eventsBreast cancerApproximately doseClinical proofMonotherapyResponse rateSurvivorship care for people affected by advanced or metastatic cancer: MASCC-ASCO standards and practice recommendations
Hart N, Nekhlyudov L, Smith T, Yee J, Fitch M, Crawford G, Koczwara B, Ashbury F, Lustberg M, Mollica M, Smith A, Jefford M, Chino F, Zon R, Agar M, Chan R. Survivorship care for people affected by advanced or metastatic cancer: MASCC-ASCO standards and practice recommendations. Supportive Care In Cancer 2024, 32: 313. PMID: 38679639, PMCID: PMC11056340, DOI: 10.1007/s00520-024-08465-8.Peer-Reviewed Original ResearchConceptsQuality survivorship careSurvivorship carePractice recommendationsUnmet supportive care needsPalliative care frameworkSupportive care needsSystematic reviewModified Delphi consensus processEnd-of-lifeResultsA systematic reviewDelphi consensus processMethodsAn expert panelCancer survivorshipCare goalsCancer careCare experiencesCare needsCare frameworkHealth outcomesASCO membersConsensus processCareDelphi studyExpert panelMetastatic cancerInconsistencies in the predictive value of PD-L1 in metastatic gastroesophageal cancer
Sundar R, Smyth E. Inconsistencies in the predictive value of PD-L1 in metastatic gastroesophageal cancer. The Lancet Gastroenterology & Hepatology 2024, 9: 495-497. PMID: 38492581, DOI: 10.1016/s2468-1253(24)00043-8.Commentaries, Editorials and LettersThe impact of cancer metastases on COVID‐19 outcomes: A COVID‐19 and Cancer Consortium registry‐based retrospective cohort study
Castellano C, Sun T, Ravindranathan D, Hwang C, Balanchivadze N, Singh S, Griffiths E, Puzanov I, Ruiz‐Garcia E, Vilar‐Compte D, Cárdenas‐Delgado A, McKay R, Nonato T, Ajmera A, Yu P, Nadkarni R, O’Connor T, Berg S, Ma K, Farmakiotis D, Vieira K, Arvanitis P, Saliby R, Labaki C, Zarif T, Wise‐Draper T, Zamulko O, Li N, Bodin B, Accordino M, Ingham M, Joshi M, Polimera H, Fecher L, Friese C, Yoon J, Mavromatis B, Brown J, Russell K, Nanchal R, Singh H, Tachiki L, Moria F, Nagaraj G, Cortez K, Abbasi S, Wulff‐Burchfield E, Puc M, Weissmann L, Bhatt P, Mariano M, Mishra S, Halabi S, Beeghly A, Warner J, French B, Bilen M, Consortium F. The impact of cancer metastases on COVID‐19 outcomes: A COVID‐19 and Cancer Consortium registry‐based retrospective cohort study. Cancer 2024, 130: 2191-2204. PMID: 38376917, PMCID: PMC11141719, DOI: 10.1002/cncr.35247.Peer-Reviewed Original ResearchConceptsSupplemental O<sub>2</sub>COVID-19 severityMetastatic cancerLogistic regression modelsMetastases to other sitesSite of metastatic cancerCOVID-19 outcomesMetastasis to boneRetrospective cohort studyAll-cause mortalityIntensive care unitDay mortalityLymph nodesIncreased hospitalization ratesMechanical ventilationCohort studyMetastasisCare unitPatientsCancer metastasisRegression modelsCancerSevere outcomesCancer ConsortiumOrdinal logistic regression model
2023
Bilateral Breast Cancer With Contralateral Axillary Metastasis Warrants Aggressive Treatment: Let's Go for It!
Mokhtech M, Knowlton C. Bilateral Breast Cancer With Contralateral Axillary Metastasis Warrants Aggressive Treatment: Let's Go for It! International Journal Of Radiation Oncology • Biology • Physics 2023, 117: 527-528. PMID: 37739602, DOI: 10.1016/j.ijrobp.2023.03.039.Peer-Reviewed Original ResearchDe Novo Oligometastatic Breast Cancer
Pusztai L, Rozenblit M, Dubsky P, Bachelot T, Kirby A, Linderholm B, White J, Chmura S, Carey L, Chua B, Miller K. De Novo Oligometastatic Breast Cancer. Journal Of Clinical Oncology 2023, 41: 5237-5241. PMID: 37607325, PMCID: PMC10691789, DOI: 10.1200/jco.23.00911.Peer-Reviewed Original ResearchLocal Therapeutics for the Treatment of Oligo Metastatic Prostate Cancer
Jalfon M, Sakhalkar O, Lokeshwar S, Marks V, Choksi A, Klaassen Z, Leapman M, Kim I. Local Therapeutics for the Treatment of Oligo Metastatic Prostate Cancer. Current Urology Reports 2023, 24: 455-461. PMID: 37369828, DOI: 10.1007/s11934-023-01173-6.Peer-Reviewed Original ResearchMeSH KeywordsAndrogen AntagonistsCytoreduction Surgical ProceduresHumansMaleNeoplasm MetastasisProstateProstatectomyProstatic NeoplasmsRetrospective StudiesConceptsOligometastatic prostate cancerCytoreductive radical prostatectomyMetastatic prostate cancerProstate cancerLocal therapyRadiation therapySystemic therapyClinical trialsDe novo metastatic prostate cancerProgression-free survivalWidespread metastatic diseaseStandard of careRecent FindingsTo dateClinician decision makingCytoreductive prostatectomySystemic chemotherapyMetastatic diseaseWidespread metastasesRetrospective studyRadical prostatectomyEarly treatmentLocal treatmentTreatment selectionTherapyPatientsTracking early lung cancer metastatic dissemination in TRACERx using ctDNA
Abbosh C, Frankell A, Harrison T, Kisistok J, Garnett A, Johnson L, Veeriah S, Moreau M, Chesh A, Chaunzwa T, Weiss J, Schroeder M, Ward S, Grigoriadis K, Shahpurwalla A, Litchfield K, Puttick C, Biswas D, Karasaki T, Black J, Martínez-Ruiz C, Bakir M, Pich O, Watkins T, Lim E, Huebner A, Moore D, Godin-Heymann N, L’Hernault A, Bye H, Odell A, Kalavakur P, Gomes F, Patel A, Manzano E, Hiley C, Carey N, Riley J, Cook D, Hodgson D, Stetson D, Barrett J, Kortlever R, Evan G, Hackshaw A, Daber R, Shaw J, Aerts H, Licon A, Stahl J, Jamal-Hanjani M, Birkbak N, McGranahan N, Swanton C. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 2023, 616: 553-562. PMID: 37055640, PMCID: PMC7614605, DOI: 10.1038/s41586-023-05776-4.Peer-Reviewed Original ResearchConceptsCirculating tumor DNANon-small-cell lung cancerMetastatic disseminationClinical outcomesPlasma samplesEarly-stage non-small-cell lung cancerCirculating tumor DNA levelsCirculating tumor DNA detectionCytotoxic adjuvant therapyPreoperative ctDNA detectionResidual tumor cellsLongitudinal plasma samplesCancer cell fractionBiomarker of relapseProcess of metastatic disseminationAnalysis of plasma samplesClinical relapseDisease relapseAdjuvant therapyTumor DNAPreoperative plasmaRadiological surveillanceCtDNA detectionPatient cohortTumor cells
2022
Coupled fibromodulin and SOX2 signaling as a critical regulator of metastatic outgrowth in melanoma
Oria VO, Zhang H, Zito CR, Rane CK, Ma XY, Provance OK, Tran TT, Adeniran A, Kluger Y, Sznol M, Bosenberg MW, Kluger HM, Jilaveanu LB. Coupled fibromodulin and SOX2 signaling as a critical regulator of metastatic outgrowth in melanoma. Cellular And Molecular Life Sciences 2022, 79: 377. PMID: 35737114, PMCID: PMC9226089, DOI: 10.1007/s00018-022-04364-5.Peer-Reviewed Original ResearchMeSH KeywordsBrain NeoplasmsFibromodulinHumansMelanomaNeoplasm MetastasisSignal TransductionSOXB1 Transcription FactorsTranscription FactorsConceptsTumor suppressor Hippo pathwayNovel regulatory mechanismTumor vasculogenic mimicryMetastatic outgrowthExtracellular matrix componentsHippo pathwayRegulatory mechanismsMolecular eventsTumor-stroma interactionsCritical regulatorMetastatic competenceProgenitor markersProliferative stateFunctional roleFunctional studiesSOX2Vasculogenic mimicryDistinct phenotypesMatrix componentsEarly developmentFmodHigh expressionCritical processOutgrowthImportant roleGhost mitochondria drive metastasis through adaptive GCN2/Akt therapeutic vulnerability
Ghosh JC, Perego M, Agarwal E, Bertolini I, Wang Y, Goldman AR, Tang HY, Kossenkov AV, Landis CJ, Languino LR, Plow EF, Morotti A, Ottobrini L, Locatelli M, Speicher DW, Caino MC, Cassel J, Salvino JM, Robert ME, Vaira V, Altieri DC. Ghost mitochondria drive metastasis through adaptive GCN2/Akt therapeutic vulnerability. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2115624119. PMID: 35177476, PMCID: PMC8872753, DOI: 10.1073/pnas.2115624119.Peer-Reviewed Original ResearchMeSH KeywordsCell DeathCell Line, TumorCell MovementCell ProliferationEpithelial-Mesenchymal TransitionHumansMitochondriaMitochondrial DynamicsMitochondrial ProteinsMuscle ProteinsNeoplasm InvasivenessNeoplasm MetastasisNeoplasmsNeoplastic ProcessesProtein Serine-Threonine KinasesProto-Oncogene Proteins c-aktReactive Oxygen SpeciesSignal TransductionConceptsEpithelial-mesenchymal transitionGene expression programsTherapeutic vulnerabilitiesTumor cell movementCytokine/chemokine signalingExpression programsTherapeutic targetCell movementMitochondrial dynamicsEssential scaffoldMitochondrial structureSurvival signalingMitochondrial integrityCancer metabolismStress responseActionable therapeutic targetsCell deathChemokine signalingMitochondriaSmall-molecule drug screensCell proliferationOxidative damageInnate immunityMetastatic disseminationHuman tumorsCECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression
Zhang M, Liu ZZ, Aoshima K, Cai WL, Sun H, Xu T, Zhang Y, An Y, Chen JF, Chan LH, Aoshima A, Lang SM, Tang Z, Che X, Li Y, Rutter SJ, Bossuyt V, Chen X, Morrow JS, Pusztai L, Rimm DL, Yin M, Yan Q. CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Science Translational Medicine 2022, 14: eabf5473. PMID: 35108062, PMCID: PMC9003667, DOI: 10.1126/scitranslmed.abf5473.Peer-Reviewed Original ResearchConceptsBreast cancer metastasisReticuloendotheliosis viral oncogene homolog ACancer metastasisImmune suppressionM2 macrophagesWorse metastasis-free survivalMetastatic breast cancerMetastasis-free survivalV-rel avian reticuloendotheliosis viral oncogene homolog ACancer-related deathPrimary breast tumorsMultiple mouse modelsNF-κB signalingImmunocompetent settingNuclear factor-κB family membersMetastasis-promoting genesDistant metastasisMetastatic sitesPrimary tumorEffective therapyBreast cancerMetastasis treatmentMouse modelBreast tumorsMetastasis
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply