2025
Norovirus co-opts NINJ1 for selective protein secretion
Song J, Zhang L, Moon S, Fang A, Wang G, Gheshm N, Loeb S, Cao P, Wallace J, Alfajaro M, Strine M, Beatty W, Jamieson A, Orchard R, Robinson B, Nice T, Wilen C, Orvedahl A, Reese T, Lee S. Norovirus co-opts NINJ1 for selective protein secretion. Science Advances 2025, 11: eadu7985. PMID: 40020060, PMCID: PMC11870086, DOI: 10.1126/sciadv.adu7985.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCaliciviridae InfectionsCaspase 3Cell Adhesion Molecules, NeuronalHost-Pathogen InteractionsHumansMiceNorovirusProtein BindingViral Nonstructural ProteinsVirus ReplicationConceptsPlasma membrane ruptureDamage-associated molecular patternsNS1 secretionNinjurin-1Programmed cell deathAmino acid residuesViral replication sitesViral protein NS1CRISPR screensIntracellular viral proteinsMutagenesis studiesMembrane ruptureProtein NS1Unconventional pathwayCaspase-3Protein secretionViral proteinsReplication sitesCell deathMolecular patternsGenetic ablationNS1Pharmaceutical inhibitionDAMP releaseProtein
2024
Mucosal sugars delineate pyrazine vs pyrazinone autoinducer signaling in Klebsiella oxytoca
Hamchand R, Wang K, Song D, Palm N, Crawford J. Mucosal sugars delineate pyrazine vs pyrazinone autoinducer signaling in Klebsiella oxytoca. Nature Communications 2024, 15: 8902. PMID: 39406708, PMCID: PMC11480411, DOI: 10.1038/s41467-024-53185-6.Peer-Reviewed Original ResearchMeSH KeywordsBacteriaHost-Pathogen InteractionsHumansIronKlebsiella InfectionsKlebsiella oxytocaLeupeptinsN-Acetylneuraminic AcidPyrazinesPyrrolesReceptors, HistamineConceptsK. oxytocaGeneral carbohydrate metabolismVirulence factor productionPLP-dependent enzymesAssociated with gutEnterobactin biosynthesisAutoinducer signalBacterial virulenceKlebsiella oxytocaSpecific carbohydratesHost immune responseCarbohydrate metabolismAutoinducerMolecular signalsVirulenceHistamine receptor H4BiosynthesisHost signalAcquisition responsesProtease inhibitorsPathwayHostLung pathologyLung isolationImmune responseLaboratory Management of Mammalian Hosts for Ixodes scapularis -Host-Pathogen Interaction Studies.
Narasimhan S, Cibichakravarthy B, Wu M, Holter M, Walsh C, Goodrich J. Laboratory Management of Mammalian Hosts for Ixodes scapularis -Host-Pathogen Interaction Studies. Comparative Medicine 2024, 74: 235-245. PMID: 39289828, PMCID: PMC11373684, DOI: 10.30802/aalas-cm-24-036.Peer-Reviewed Original ResearchConceptsTick feedingHard-bodied ticksTick speciesArtificial membrane feedingHard ticksMammalian hostsAnimal healthHost-pathogen interaction studiesIxodes scapularisTicksManagement practicesNatural geographic rangePotential vectorsRabbit hostsFeedingHost healthGeographic rangePathogenic organismsInfectious prionsAnimal useRelevant speciesIxodesGuinea pigsLife cycleInteraction studiesMicrobe Profile: Bacteriophage ϕ6: a model for segmented RNA viruses and the evolutionary consequences of viral ‘sex’
Turner P, Chao L. Microbe Profile: Bacteriophage ϕ6: a model for segmented RNA viruses and the evolutionary consequences of viral ‘sex’. Microbiology 2024, 170: 001467. PMID: 39046321, PMCID: PMC11316545, DOI: 10.1099/mic.0.001467.Peer-Reviewed Original ResearchMeSH KeywordsBacteriophage phi 6Evolution, MolecularHost-Pathogen InteractionsMutationRNA VirusesVirus ReplicationConceptsEukaryotic virusesHost-pathogen interactionsEvolution of sexDsRNA virusesEvolutionary consequencesSegment reassortmentBacterial virusesRNA virusesRate of adaptationMutation ratePhenotypic complexityMutation loadLipid envelopeBacteriophageReassortmentRNAMutationsVirusMolecular modelingDsRNAExperimental systemGeneticsTraitsHostReplicationThe West Nile virus genome harbors essential riboregulatory elements with conserved and host-specific functional roles
Huston N, Tsao L, Brackney D, Pyle A. The West Nile virus genome harbors essential riboregulatory elements with conserved and host-specific functional roles. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2312080121. PMID: 38985757, PMCID: PMC11260092, DOI: 10.1073/pnas.2312080121.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineGenome, ViralHost SpecificityHost-Pathogen InteractionsHumansNucleic Acid ConformationRNA, ViralWest Nile FeverWest Nile virusConceptsWest Nile virus genomeWest Nile virusPositive-sense RNA virusesFunctional roleArthropod cell linesRiboregulatory elementsGenome foldingFlaviviral genomeRNA genomeIncreasing global threatVirus genomeGenomeRNA virusesStructural homologyHost-dependentSecondary structureLack of effective therapeuticsFunctional validationLocked nucleic acidStructural insightsRNA drugsCell linesArthropod-borneNucleic acidsAntisense locked nucleic acidEnterococcus faecalis-derived adenine enhances enterohaemorrhagic Escherichia coli Type 3 Secretion System-dependent virulence
Martins F, Rosay T, Rajan A, Carter H, Turocy T, Mejia A, Crawford J, Maresso A, Sperandio V. Enterococcus faecalis-derived adenine enhances enterohaemorrhagic Escherichia coli Type 3 Secretion System-dependent virulence. Nature Microbiology 2024, 9: 2448-2461. PMID: 38965331, PMCID: PMC11585081, DOI: 10.1038/s41564-024-01747-1.Peer-Reviewed Original ResearchMeSH KeywordsAdenineAnimalsCoculture TechniquesEnterococcus faecalisEnterocytesEnterohemorrhagic Escherichia coliEscherichia coli InfectionsEscherichia coli ProteinsGastrointestinal MicrobiomeGene Expression Regulation, BacterialHemolysin ProteinsHost-Pathogen InteractionsHumansHypoxanthineMiceType III Secretion SystemsVirulenceVirulence FactorsXanthineConceptsT3SS gene expressionType 3 secretion systemGene expressionAE lesion formationPromote colonization resistanceE. faecalisAdenine biosynthesisEHEC virulenceEffector translocationBacterial geneticsColonization resistanceEnteric pathogensT3SSLesion formationEHECSupplementation experimentsVirulencePathway activationAdenineEnhanced pathogenesisHost responseCo-infectionExpressionCo-cultureTranscriptomeHigh burden of viruses and bacterial pathobionts drives heightened nasal innate immunity in children
Watkins T, Green A, Amat J, Cheemarla N, Hänsel K, Lozano R, Dudgeon S, Germain G, Landry M, Schulz W, Foxman E. High burden of viruses and bacterial pathobionts drives heightened nasal innate immunity in children. Journal Of Experimental Medicine 2024, 221: e20230911. PMID: 38949638, PMCID: PMC11215523, DOI: 10.1084/jem.20230911.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentChildChild, PreschoolCoinfectionCOVID-19CytokinesFemaleHost-Pathogen InteractionsHumansImmunity, InnateInfantMaleNasal MucosaNasopharynxNoseSARS-CoV-2Viral LoadConceptsBacterial pathobiontsRespiratory virusesBurden of virusesSARS-CoV-2Innate immune activationSARS-CoV-2 viral loadDynamic host-pathogen interactionsInnate immune responseViral coinfectionCytokine profileViral loadNasal virusImmune activationProinflammatory responseIL-1BNasopharyngeal samplesHost-pathogen interactionsImmune responseInterferon responsePathobiontsInnate immunityPaired samplesCXCL10Healthy 1-year-oldVirusEvolutionary Invasion Analysis of Modern Epidemics Highlights the Context-Dependence of Virulence Evolution
Surasinghe S, Kabengele K, Turner P, Ogbunugafor C. Evolutionary Invasion Analysis of Modern Epidemics Highlights the Context-Dependence of Virulence Evolution. Bulletin Of Mathematical Biology 2024, 86: 88. PMID: 38877355, PMCID: PMC11178639, DOI: 10.1007/s11538-024-01313-0.Peer-Reviewed Original ResearchMeSH KeywordsBiological EvolutionCOVID-19EpidemicsEpidemiological ModelsHepacivirusHepatitis CHost-Pathogen InteractionsHumansMathematical ConceptsModels, BiologicalSARS-CoV-2Virulence
2023
The Coxiella burnetii effector EmcB is a deubiquitinase that inhibits RIG-I signaling
Duncan-Lowey J, Crabill E, Jarret A, Reed S, Roy C. The Coxiella burnetii effector EmcB is a deubiquitinase that inhibits RIG-I signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2217602120. PMID: 36893270, PMCID: PMC10089202, DOI: 10.1073/pnas.2217602120.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacterial ProteinsBacterial Secretion SystemsCoxiella burnetiiDeubiquitinating EnzymesHost-Pathogen InteractionsMammalsUbiquitinsConceptsDot/Icm systemHost-adapted pathogenUbiquitin chainsI interferon productionType I interferon productionSecretion systemHost cytosolIcm systemInterferon productionProtein secretion systemBacterial secretion systemsAcid-inducible gene IHost surveillance systemImmune sensorsObligate intracellular pathogensInducible gene ICytosolic surveillance systemsProtective immune responseEffector proteinsSpecialized organellesVacuolar nicheInhibition of RIGInnate immune sensorsSurveillance systemMammalian hostsSyntaxin 11 Contributes to the Interferon-Inducible Restriction of Coxiella burnetii Intracellular Infection
Ganesan S, Alvarez N, Steiner S, Fowler K, Corona A, Roy C. Syntaxin 11 Contributes to the Interferon-Inducible Restriction of Coxiella burnetii Intracellular Infection. MBio 2023, 14: e03545-22. PMID: 36728431, PMCID: PMC9972978, DOI: 10.1128/mbio.03545-22.Peer-Reviewed Original ResearchMeSH KeywordsCoxiella burnetiiHost-Pathogen InteractionsHumansInterferon-gammaInterferonsQ FeverQa-SNARE ProteinsRNA, Small InterferingVacuolesConceptsC. burnetii replicationSNARE proteinsHost cellsSyntaxin-11Cell-autonomous responsesIntracellular pathogensMembrane fusion eventsLysosome-derived organellesDefense mechanismsModel bacterial pathogenMultiple cell typesEukaryotic cellsDefense pathwaysDelivery of cargoReplication of pathogensHuman proteinsFusion eventsDissemination of pathogensFusion pathwayHost proteinsIntrinsic defense mechanismsHost vesiclesHost restriction factorsStable expressionSubcellular organelles
2022
Developmental Transitions Coordinate Assembly of the Coxiella burnetii Dot/Icm Type IV Secretion System
Park D, Steiner S, Shao M, Roy CR, Liu J. Developmental Transitions Coordinate Assembly of the Coxiella burnetii Dot/Icm Type IV Secretion System. Infection And Immunity 2022, 90: e00410-22. PMID: 36190257, PMCID: PMC9584302, DOI: 10.1128/iai.00410-22.Peer-Reviewed Original ResearchMeSH KeywordsBacterial ProteinsCoxiella burnetiiHost-Pathogen InteractionsLysosomesType IV Secretion SystemsVacuolesConceptsSmall cell variantLarge cell variantDot/Icm type IV secretion systemCell variantIntracellular replicationActive large cell variantHost cellsIntracellular bacterial pathogenType IV secretion systemDot/Icm T4SSObligate intracellular bacterial pathogenC. burnetiiCoxiella burnetiiBiphasic developmental cycleUnique biphasic developmental cycleInfectionNew host cellsSecretion systemBacterial pathogensInfectious formHost vacuoleBurnetiiMorphological changesCellsLater stagesStructural host immune-microbiota interactions
Brito IL, Kriegel MA. Structural host immune-microbiota interactions. Current Opinion In Structural Biology 2022, 76: 102445. PMID: 36063760, DOI: 10.1016/j.sbi.2022.102445.Peer-Reviewed Original ResearchWithin-host evolution of a gut pathobiont facilitates liver translocation
Yang Y, Nguyen M, Khetrapal V, Sonnert ND, Martin AL, Chen H, Kriegel MA, Palm NW. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 2022, 607: 563-570. PMID: 35831502, PMCID: PMC9308686, DOI: 10.1038/s41586-022-04949-x.Peer-Reviewed Original ResearchConceptsHost evolutionGene expression programsCell wall structureNon-synonymous mutationsComparative genomicsIndependent lineagesExperimental evolutionExpression programsDivergent evolutionRegulatory genesBacterial behaviorCritical regulatorBacterial translocationGut commensalsTranslocationE. gallinarumMesenteric lymph nodesInitiation of inflammationImmune evasionWall structureEvade DetectionMucosal nicheLactobacillus reuteriCommensalGut microbiotaIncreasing the resilience of plant immunity to a warming climate
Kim JH, Castroverde CDM, Huang S, Li C, Hilleary R, Seroka A, Sohrabi R, Medina-Yerena D, Huot B, Wang J, Nomura K, Marr SK, Wildermuth MC, Chen T, MacMicking JD, He SY. Increasing the resilience of plant immunity to a warming climate. Nature 2022, 607: 339-344. PMID: 35768511, PMCID: PMC9279160, DOI: 10.1038/s41586-022-04902-y.Peer-Reviewed Original ResearchConceptsSalicylic acidTranscription factorsSA productionPlant immune systemEffector-triggered immunityPlant growth temperatureFamily transcription factorsAspects of plantImmune transcription factorsElevated growth temperaturesPlant immunityArabidopsis thalianaBiosynthetic genesBasal immunityPlant growthSA receptorsCBP60Disease triangleWarming climateImpaired recruitmentGrowth temperatureAnimal lifeExtreme weather conditionsSARD1Climate changeTargeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion
Vora SM, Fontana P, Mao T, Leger V, Zhang Y, Fu TM, Lieberman J, Gehrke L, Shi M, Wang L, Iwasaki A, Wu H. Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2117198119. PMID: 35149555, PMCID: PMC8892331, DOI: 10.1073/pnas.2117198119.Peer-Reviewed Original ResearchConceptsSARS-CoV-2SARS-CoV-2 nonstructural protein 1Host protein synthesisSARS-CoV-2 5Nonstructural protein 1Viral translationNucleic acid antisenseAntiviral immunityProtein synthesisTherapeutic targetTransgenic miceViral protein synthesisViral replicationDrug resistanceHuman ACE2Infected cellsProtein 1COVID-19Virulence mechanismsNanomolar concentrationsHost translationPathogenic virusesEntry channelSuppressionTranslational suppressionRecognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules
Stravalaci M, Pagani I, Paraboschi E, Pedotti M, Doni A, Scavello F, Mapelli S, Sironi M, Perucchini C, Varani L, Matkovic M, Cavalli A, Cesana D, Gallina P, Pedemonte N, Capurro V, Clementi N, Mancini N, Invernizzi P, Bayarri-Olmos R, Garred P, Rappuoli R, Duga S, Bottazzi B, Uguccioni M, Asselta R, Vicenzi E, Mantovani A, Garlanda C. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nature Immunology 2022, 23: 275-286. PMID: 35102342, DOI: 10.1038/s41590-021-01114-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsC-Reactive ProteinCase-Control StudiesChlorocebus aethiopsComplement ActivationCoronavirus Nucleocapsid ProteinsCOVID-19FemaleGlycosylationHEK293 CellsHost-Pathogen InteractionsHumansImmunity, HumoralMaleMannose-Binding LectinPhosphoproteinsPolymorphism, GeneticProtein BindingReceptors, Pattern RecognitionSARS-CoV-2Serum Amyloid P-ComponentSignal TransductionSpike Glycoprotein, CoronavirusVero CellsConceptsFluid phase pattern recognition moleculesPattern recognition moleculesHumoral fluid phase pattern recognition moleculesMannose-binding lectinSARS-CoV-2Pentraxin 3Severe acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Spike proteinDisease severity biomarkersSyndrome coronavirus 2Coronavirus disease 2019Long pentraxin 3Antibody-like functionsVariants of concernRecognition moleculesHumoral armSeverity biomarkersCoronavirus 2Disease 2019Innate immunityDisease severityComplement activationTranslational implications
2021
SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes
Pawlica P, Yario TA, White S, Wang J, Moss WN, Hui P, Vinetz JM, Steitz JA. SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2116668118. PMID: 34903581, PMCID: PMC8719879, DOI: 10.1073/pnas.2116668118.Peer-Reviewed Original ResearchMeSH KeywordsCOVID-19Gene Expression Regulation, ViralHost-Pathogen InteractionsHumansRNA, Small UntranslatedRNA, ViralSARS-CoV-2Viral ProteinsConceptsBasic leucine zipper ATF-like transcription factor 2Small RNAsHuman lung-derived cell linesSARS-CoV-2 infectionLung-derived cell linesRNA interference (RNAi) pathwayHost miRNA levelsTranscription factor 2Cellular machineryInterference pathwayDrosha proteinSARS-CoV-2-infected individualsHost genesSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Host miRNAsPutative targetsSyndrome coronavirus 2SARS-CoV-2MiRNA levelsFactor 2Cell linesNasopharyngeal swabsCoronavirus 2RSK1 SUMOylation is required for KSHV lytic replication
Liu Z, Liu C, Wang X, Li W, Zhou J, Dong P, Xiao M, Wang C, Zhang Y, Fu J, Zhu F, Liang Q. RSK1 SUMOylation is required for KSHV lytic replication. PLOS Pathogens 2021, 17: e1010123. PMID: 34871326, PMCID: PMC8675914, DOI: 10.1371/journal.ppat.1010123.Peer-Reviewed Original ResearchMeSH KeywordsCell LineHerpesvirus 8, HumanHost-Pathogen InteractionsHumansRibosomal Protein S6 Kinases, 90-kDaSumoylationVirus ReplicationConceptsSUMO-interacting motifKSHV lytic replicationKaposi's sarcoma-associated herpesvirusSarcoma-associated herpesvirusEfficient KSHV lytic replicationLytic replicationDownstream substrate phosphorylationAmino acid position 166SUMO-SIM interactionsOverall phosphorylation levelMultiple cellular processesPost-translational modificationsKSHV ORF45Substrate phosphorylationSUMO modificationCellular processesDownstream substratesRSK1 activationDownstream kinasesMAPK pathwaySequence analysisRSK1SUMOylationPhosphorylation levelsPosition 166The science of the host–virus network
Albery G, Becker D, Brierley L, Brook C, Christofferson R, Cohen L, Dallas T, Eskew E, Fagre A, Farrell M, Glennon E, Guth S, Joseph M, Mollentze N, Neely B, Poisot T, Rasmussen A, Ryan S, Seifert S, Sjodin A, Sorrell E, Carlson C. The science of the host–virus network. Nature Microbiology 2021, 6: 1483-1492. PMID: 34819645, DOI: 10.1038/s41564-021-00999-5.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsHost-Pathogen InteractionsHumansVirus DiseasesVirus Physiological PhenomenaVirusesZoonosesAdaptive immunity induces mutualism between commensal eukaryotes
Ost KS, O’Meara T, Stephens WZ, Chiaro T, Zhou H, Penman J, Bell R, Catanzaro JR, Song D, Singh S, Call DH, Hwang-Wong E, Hanson KE, Valentine JF, Christensen KA, O’Connell R, Cormack B, Ibrahim AS, Palm NW, Noble SM, Round JL. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 2021, 596: 114-118. PMID: 34262174, PMCID: PMC8904204, DOI: 10.1038/s41586-021-03722-w.Peer-Reviewed Original ResearchConceptsAdaptive immunityIntestinal immunoglobulin A (IgA) responseIntestinal IgA responsesImmunoglobulin A ResponsesIgA responsesIntestinal damageImmune responseIntestinal microbiotaRelevant vaccinesImmune systemA responsesCommensal fungiImmune selectionCandida speciesImmunityHyphal morphotypesIgAPathogenesisMiceC. albicansPathogenic Candida speciesCandida albicansAlbicansColitisResponse
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply