2021
MAL2 mediates the formation of stable HER2 signaling complexes within lipid raft-rich membrane protrusions in breast cancer cells
Jeong J, Shin JH, Li W, Hong JY, Lim J, Hwang JY, Chung JJ, Yan Q, Liu Y, Choi J, Wysolmerski J. MAL2 mediates the formation of stable HER2 signaling complexes within lipid raft-rich membrane protrusions in breast cancer cells. Cell Reports 2021, 37: 110160. PMID: 34965434, PMCID: PMC8762588, DOI: 10.1016/j.celrep.2021.110160.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic Agents, ImmunologicalBreast NeoplasmsCell ProliferationCytoskeletal ProteinsDrug Resistance, NeoplasmEndocytosisFemaleHumansMembrane MicrodomainsMyelin and Lymphocyte-Associated Proteolipid ProteinsPhosphoproteinsPlasma Membrane Calcium-Transporting ATPasesReceptor, ErbB-2Sodium-Hydrogen ExchangersTrastuzumabTumor Cells, CulturedConceptsLipid raft formationBreast cancer cellsLipid raftsLipid raft resident proteinsCancer cellsRaft formationRaft-resident proteinsProximity ligation assayProtein complexesMembrane protrusionsProtein interactionsPlasma membraneLigation assayMAL2Membrane stabilityStructural organizationPotential therapeutic targetPhysical interactionMembrane retentionProteinRaftsTherapeutic targetCellsIntracellular calcium concentrationLow intracellular calcium concentrationA local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells
Wong H, Park K, Gola A, Baptista A, Miller C, Deep D, Lou M, Boyd L, Rudensky A, Savage P, Altan-Bonnet G, Tsang J, Germain R. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell 2021, 184: 3981-3997.e22. PMID: 34157301, PMCID: PMC8390950, DOI: 10.1016/j.cell.2021.05.028.Peer-Reviewed Original Research
2020
IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells
Lee J, Robinson ME, Ma N, Artadji D, Ahmed MA, Xiao G, Sadras T, Deb G, Winchester J, Cosgun KN, Geng H, Chan LN, Kume K, Miettinen TP, Zhang Y, Nix MA, Klemm L, Chen CW, Chen J, Khairnar V, Wiita AP, Thomas-Tikhonenko A, Farzan M, Jung JU, Weinstock DM, Manalis SR, Diamond MS, Vaidehi N, Müschen M. IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature 2020, 588: 491-497. PMID: 33149299, PMCID: PMC8087162, DOI: 10.1038/s41586-020-2884-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD19B-LymphocytesCell Transformation, NeoplasticFemaleGerminal CenterHumansIntegrinsMembrane MicrodomainsMembrane ProteinsMiceMice, Inbred C57BLMice, Inbred NODModels, MolecularPhosphatidylinositol 3-KinasesPhosphatidylinositol PhosphatesPhosphorylationReceptors, Antigen, B-CellRNA-Binding ProteinsSignal TransductionConceptsPI3KCell leukemiaAntiviral effector functionsAntigen-specific antibodiesInterferon-induced transmembrane proteinsIFITM3 functionDevelopment of leukemiaCell surfacePoor outcomeOncogenic PI3KClinical cohortEffector functionsGerminal centersMouse modelB cellsExpression of IFITM3Malignant transformationAccumulation of PIP3PI3K signalsCell receptorNormal numbersLeukemiaDefective expressionEndosomal proteinIFITM3Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis
Zhang X, Ramírez CM, Aryal B, Madrigal-Matute J, Liu X, Diaz A, Torrecilla-Parra M, Suárez Y, Cuervo AM, Sessa WC, Fernández-Hernando C. Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis. Arteriosclerosis Thrombosis And Vascular Biology 2020, 40: 1510-1522. PMID: 32349535, PMCID: PMC7253189, DOI: 10.1161/atvbaha.120.314291.Peer-Reviewed Original ResearchConceptsCav-1 deficiencyCav-1-deficient miceCav-1Autophagic fluxCholesterol-rich membrane domainsCav-1 interactsATG5-ATG12 complexEndothelial Cav-1 expressionRegulation of autophagyNovel molecular mechanismExtracellular matrix remodelingAutophagosome componentsMembrane domainsLipid raftsAutophagosome formationPlasma membraneCav-1 expressionMolecular mechanismsLDL transcytosisCellular localizationImportant regulatorAutophagyAutophagy contributesRelevant regulatorMatrix remodeling
2017
Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts
Hu G, Taylor D, Liu J, Taylor K. Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts. Journal Of Structural Biology 2017, 201: 199-209. PMID: 29146292, PMCID: PMC5820182, DOI: 10.1016/j.jsb.2017.11.005.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsElectron Microscope TomographyFructose-Bisphosphate AldolaseImaging, Three-DimensionalMembrane MicrodomainsModels, MolecularRabbits
2016
Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling
Pawar A, Meier JA, Dasgupta A, Diwanji N, Deshpande N, Saxena K, Buwa N, Inchanalkar S, Schwartz MA, Balasubramanian N. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling. Cellular Signalling 2016, 28: 1225-1236. PMID: 27269287, PMCID: PMC4973806, DOI: 10.1016/j.cellsig.2016.05.023.Peer-Reviewed Original ResearchMeSH KeywordsADP-Ribosylation Factor 6ADP-Ribosylation FactorsAnimalsCell AdhesionCell Line, TumorCell ProliferationCell Transformation, NeoplasticEmbryo, MammalianExocytosisExtracellular Signal-Regulated MAP KinasesFibroblastsHumansMembrane MicrodomainsMiceProtein Transportral GTP-Binding ProteinsSignal TransductionConceptsARF6 activationRegulatory crosstalkActive RalIntegrin-dependent regulationOncogenic H-RasIndependent growthIntegrin-dependent activationAdhesion-dependent pathwayKey downstream mediatorSmall GTPase RalActive RalABladder cancer T24 cellsDependent traffickingRal functionIsoforms functionRaft microdomainsOncogenic RasPlasma membraneDependent regulationH-RasArf6Dependent activationDependent pathwayDownstream mediatorVital mediatorsEndoplasmic reticulum‐mediated signalling in cellular microdomains
Biwer L, Isakson B. Endoplasmic reticulum‐mediated signalling in cellular microdomains. Acta Physiologica 2016, 219: 162-175. PMID: 26973141, PMCID: PMC5018912, DOI: 10.1111/apha.12675.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCalcium ChannelsCytoskeletonEndoplasmic ReticulumHomeostasisMembrane MicrodomainsSignal TransductionConceptsEndoplasmic reticulumER-mitochondria junctionsImportant cellular organellesSpecific membrane proteinsSynthesis of proteinsLocalized proteinsER membraneCellular physiologyLipid signalingCellular signalingER architectureMembrane proteinsPhospholipid synthasesCellular stressCellular organellesCellular microdomainsOrganism homeostasisCytoplasmic networkSignalingPhospholipid transferIon channelsLipid synthesisTransfer proteinProteinElement expression
2014
Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall
Billaud M, Lohman A, Johnstone S, Biwer L, Mutchler S, Isakson B, Garland C. Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall. Pharmacological Reviews 2014, 66: 513-569. PMID: 24671377, PMCID: PMC3973613, DOI: 10.1124/pr.112.007351.Peer-Reviewed Original ResearchConceptsCellular communicationAccumulation of proteinsMechanism of exocytosisSignaling microdomainProper vascular functionPlasma membraneBlood vessel wallCell typesIon channelsMicrodomainsGap junctionsOxygen speciesPotassium channelsVon Willebrand factorPlethora of meansRegulationSpecific regionsEssential componentVessel wall functionWillebrand factorParacrine releaseImportant roleVessel wallExocytosisEndothelium-derived hyperpolarizationRegulation of Rac1 translocation and activation by membrane domains and their boundaries
Moissoglu K, Kiessling V, Wan C, Hoffman BD, Norambuena A, Tamm LK, Schwartz MA. Regulation of Rac1 translocation and activation by membrane domains and their boundaries. Journal Of Cell Science 2014, 127: 2565-2576. PMID: 24695858, PMCID: PMC4038948, DOI: 10.1242/jcs.149088.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MembraneFluorescence Resonance Energy TransferGTPase-Activating ProteinsHEK293 CellsHumansMembrane MicrodomainsMiceNIH 3T3 CellsProtein BindingProtein Transportrac1 GTP-Binding Proteinrho-Specific Guanine Nucleotide Dissociation InhibitorsSignal TransductionUnilamellar LiposomesConceptsFluorescence resonance energy transferMembrane domainsRac1 translocationGDP dissociation inhibitor proteinLiquid-ordered membrane domainsGTPase-activating proteinsNon-raft regionsNon-raft domainsBinding of Rac1Activation of Rac1Single-molecule analysisGTP loadingRho GTPasesLipid raftsRac1 localizationRho GTPaseInhibitor proteinResult of inactivationRac1Resonance energy transferFunctional studiesNovel mechanismLipid bilayersTranslocationRafts
2011
Inflammasome components Asc and caspase-1 mediate biomaterial-induced inflammation and foreign body response
Malik AF, Hoque R, Ouyang X, Ghani A, Hong E, Khan K, Moore LB, Ng G, Munro F, Flavell RA, Shi Y, Kyriakides TR, Mehal WZ. Inflammasome components Asc and caspase-1 mediate biomaterial-induced inflammation and foreign body response. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 20095-20100. PMID: 22109549, PMCID: PMC3250158, DOI: 10.1073/pnas.1105152108.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, OralAnimalsApoptosis Regulatory ProteinsAspirinBiocompatible MaterialsCalcium-Binding ProteinsCARD Signaling Adaptor ProteinsCarrier ProteinsCaspase 1Cluster AnalysisCytoskeletal ProteinsForeign-Body ReactionGiant CellsInflammasomesInflammationInterleukin-1betaMacrophages, PeritonealMembrane MicrodomainsMiceMice, Inbred C57BLMicrospheresNLR Family, Pyrin Domain-Containing 3 ProteinPolymethyl MethacrylateEffects of integrin-mediated cell adhesion on plasma membrane lipid raft components and signaling
Norambuena A, Schwartz MA. Effects of integrin-mediated cell adhesion on plasma membrane lipid raft components and signaling. Molecular Biology Of The Cell 2011, 22: 3456-3464. PMID: 21795400, PMCID: PMC3172269, DOI: 10.1091/mbc.e11-04-0361.Peer-Reviewed Original ResearchConceptsLipid raft componentsRaft componentsLipid raftsCyclic adenosine monophosphateCell detachmentCell adhesionLipid raft markersGlycosylphosphatidylinositol-linked proteinsRaft associationRaft markersRho GTPasesNonraft fractionsDetachment of cellsElevation of cAMPStudy of integrinsTermination of growthPlasma membraneH-RasAnchorage dependenceKey defenseCell growthFlotillin2Sucrose gradientsCancer metastasisLipid tailsMassive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: a new approach to membrane recycling and lipid domains
Fine M, Llaguno MC, Lariccia V, Lin MJ, Yaradanakul A, Hilgemann DW. Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: a new approach to membrane recycling and lipid domains. The Journal Of General Physiology 2011, 137: 137-154. PMID: 21242300, PMCID: PMC3032378, DOI: 10.1085/jgp.201010469.Peer-Reviewed Original ResearchConceptsMassive endocytosisPlasma membraneBaby hamster kidneyFM 4HEK293 cellsActin cytoskeleton remodelingNonionic detergentMembrane rufflesProtein cyclingCytoskeleton remodelingMembrane recyclingCytoplasmic sideNa/Ca exchangerTriphosphate hydrolysisCytoplasmic ATPEndocytosisMembrane monolayersCell surfaceLipid domainsG protein cyclingOuter monolayerMembrane tracerVesiclesAmphipathic drugsNP-40
2010
Ultrastructure and Regulation of Lateralized Connexin43 in the Failing Heart
Hesketh GG, Shah MH, Halperin VL, Cooke CA, Akar FG, Yen TE, Kass DA, Machamer CE, Van Eyk JE, Tomaselli GF. Ultrastructure and Regulation of Lateralized Connexin43 in the Failing Heart. Circulation Research 2010, 106: 1153-1163. PMID: 20167932, PMCID: PMC2896878, DOI: 10.1161/circresaha.108.182147.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutophagyConnexin 43Disease Models, AnimalDogsGap JunctionsHeart FailureHeart VentriclesHeLa CellsHumansMembrane MicrodomainsMicroscopy, ConfocalMicroscopy, Electron, TransmissionMicrotubule-Associated ProteinsMyocardiumPhosphorylationRatsRats, Sprague-DawleyRecombinant Fusion ProteinsTransfectionConceptsGFP-LC3Gap junctionsLateral membranesDistinct phosphorylated formsGap junction turnoverGap junction internalizationForm of LC3Internalized gap junctionsGap junction proteinJunction turnoverSubcellular locationBiochemical regulationCellular pathwaysMultilamellar membrane structuresEndogenous Cx43Phosphorylated formNeonatal rat ventricular myocytesHeLa cellsIntracellular Cx43Membrane structureJunction proteinsCx43ProteinPotential therapeutic implicationsConnexin43Haloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cells
Sánchez-Wandelmer J, Dávalos A, de la Peña G, Cano S, Giera M, Canfrán-Duque A, Bracher F, Martín-Hidalgo A, Fernández-Hernando C, Lasunción M, Busto R. Haloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cells. Neuroscience 2010, 167: 143-153. PMID: 20123000, DOI: 10.1016/j.neuroscience.2010.01.051.Peer-Reviewed Original ResearchConceptsEffects of haloperidolCholesterol contentLipid raft compositionCholesterol biosynthesisCell cholesterol contentSH-SY5Y cellsNeuroblastoma SH-SY5YHL-60 human cell linesDopamine receptorsMetabolic effectsTherapeutic effectHaloperidolInsulin-Akt signalingImpairs insulinCellular cholesterol homeostasisLipid raftsSH-SY5YFree cholesterolCholesterol homeostasisDependent insulinDrug inhibitionHuman cell linesCell linesPhysiological vehicleInsulin
2009
RalA-Exocyst Complex Regulates Integrin-Dependent Membrane Raft Exocytosis and Growth Signaling
Balasubramanian N, Meier JA, Scott DW, Norambuena A, White MA, Schwartz MA. RalA-Exocyst Complex Regulates Integrin-Dependent Membrane Raft Exocytosis and Growth Signaling. Current Biology 2009, 20: 75-79. PMID: 20005108, PMCID: PMC2822103, DOI: 10.1016/j.cub.2009.11.016.Peer-Reviewed Original ResearchConceptsPlasma membraneRecycling endosomesGrowth signalingActivation of Arf6Small GTPase RalACaveolin-dependent internalizationLipid raft microdomainsAnchorage-independent growthEffects of integrinsExocyst complexActive RalARaft microdomainsMembrane raftsRaft markersIntegrin signalingPancreatic cancer cellsRalAAnchorage dependenceAnchorage independenceCell growthSignalingCell detachmentCancer cellsEndosomesExocytosisHeterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury
Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nature Medicine 2009, 15: 384-391. PMID: 19305412, PMCID: PMC2772164, DOI: 10.1038/nm.1939.Peer-Reviewed Original Research
2008
CD1a and MHC Class I Follow a Similar Endocytic Recycling Pathway
Barral D, Cavallari M, McCormick P, Garg S, Magee A, Bonifacino J, De Libero G, Brenner M. CD1a and MHC Class I Follow a Similar Endocytic Recycling Pathway. Traffic 2008, 9: 1446-1457. PMID: 18564371, PMCID: PMC3839101, DOI: 10.1111/j.1600-0854.2008.00781.x.Peer-Reviewed Original ResearchMeSH KeywordsADP-Ribosylation Factor 6ADP-Ribosylation FactorsAnimalsAntigen PresentationAntigens, CD1ClathrinCytoplasmDendritic CellsEndocytosisEndosomesHeLa CellsHistocompatibility Antigens Class IHumansLeukocytes, MononuclearMembrane MicrodomainsMutationProtein Modification, TranslationalProtein SubunitsProtein Transportrab GTP-Binding ProteinsT-LymphocytesTransfectionConceptsDetergent-resistant membrane microdomainsRecycling pathwayCytoplasmic tailSorting motifCD1 isoformsMajor histocompatibility complexTyrosine-based sorting motifHuman CD1 isoformsIndependent of clathrinEndocytic recycling pathwayPathway of internalizationInternalization of proteinsClathrin-mediated pathwayMode of internalizationDynamin-independentCD1 proteinsS-acylationRate of internalizationFamilies of major histocompatibility complexPosttranslational modificationsMembrane microdomainsClathrinAntigen loading compartmentsMajor histocompatibility complex class IProtein
2007
Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts
Balasubramanian N, Scott DW, Castle JD, Casanova JE, Schwartz MA. Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biology 2007, 9: 1381-1391. PMID: 18026091, PMCID: PMC2715295, DOI: 10.1038/ncb1657.Peer-Reviewed Original ResearchConceptsPlasma membraneLipid raftsAnchorage-dependent signalingArf6-dependent mannerCaveolin-dependent internalizationSmall GTPase Arf6Microtubule-dependent traffickingIntegrin-mediated adhesionRecycling endosomesGTPase Arf6Membrane raftsDetachment of cellsCell spreadingF-actinRaftsArf6MicrotubulesEndosomesRac1TraffickingMembraneCellsEndocytosisSignalingPathwayImaging receptor microdomains on leukocyte subsets in live mice
Chiang EY, Hidalgo A, Chang J, Frenette PS. Imaging receptor microdomains on leukocyte subsets in live mice. Nature Methods 2007, 4: 219-222. PMID: 17322889, DOI: 10.1038/nmeth1018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, SurfaceFluorescence Polarization ImmunoassayLeukocytesMembrane MicrodomainsMiceMice, Inbred C57BLMicroscopy, Fluorescence, Multiphoton
2006
The Inner Loop of Tetraspanins CD82 and CD81 Mediates Interactions with Human T Cell Lymphotrophic Virus Type 1 Gag Protein*
Mazurov D, Heidecker G, Derse D. The Inner Loop of Tetraspanins CD82 and CD81 Mediates Interactions with Human T Cell Lymphotrophic Virus Type 1 Gag Protein*. Journal Of Biological Chemistry 2006, 282: 3896-3903. PMID: 17166843, DOI: 10.1074/jbc.m607322200.Peer-Reviewed Original ResearchConceptsTetraspanin-enriched microdomainsC-terminusN-terminusTetraspanin superfamily proteinsSite-directed mutationsMembrane protein complexesExtracellular loopCytoplasmic N-terminusHTLV-1T cell adhesionIntegrin functionPalmitoylated cysteinesSuperfamily proteinsProtein complexesTetraspanin CD82Cytoplasmic facePlasma membraneHTLV-1 GagColocalization approachesAmino acidsCD82IntegrinTetraspaninMutationsCD81
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply