2024
G9a/DNMT1 co-targeting inhibits non-small cell lung cancer growth and reprograms tumor cells to respond to cancer-drugs through SCARA5 and AOX1
Exposito F, Redrado M, Serrano D, Calabuig-Fariñas S, Bao-Caamano A, Gallach S, Jantus-Lewintre E, Diaz-Lagares A, Rodriguez-Casanova A, Sandoval J, San Jose-Eneriz E, Garcia J, Redin E, Senent Y, Leon S, Pio R, Lopez R, Oyarzabal J, Pineda-Lucena A, Agirre X, Montuenga L, Prosper F, Calvo A. G9a/DNMT1 co-targeting inhibits non-small cell lung cancer growth and reprograms tumor cells to respond to cancer-drugs through SCARA5 and AOX1. Cell Death & Disease 2024, 15: 787. PMID: 39488528, PMCID: PMC11531574, DOI: 10.1038/s41419-024-07156-w.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerNon-small cell lung cancer patientsCM-272Treatment of non-small cell lung cancerReprogram tumor cellsAssociated with poor prognosisResponse to chemotherapyCell lung cancerCancer drugsMonitor tumor progressionOverexpression of G9aNSCLC cell linesLung cancer growthCancer drug sensitivityNon-small cell lung cancer growthNon-invasive biomarkersTumor volumeAntitumor efficacyTargeted therapyPoor prognosisCancer modelsTumor cellsInduce cell deathTumor progressionLung cancerTranscriptomic dysregulation and autistic-like behaviors in Kmt2c haploinsufficient mice rescued by an LSD1 inhibitor
Nakamura T, Yoshihara T, Tanegashima C, Kadota M, Kobayashi Y, Honda K, Ishiwata M, Ueda J, Hara T, Nakanishi M, Takumi T, Itohara S, Kuraku S, Asano M, Kasahara T, Nakajima K, Tsuboi T, Takata A, Kato T. Transcriptomic dysregulation and autistic-like behaviors in Kmt2c haploinsufficient mice rescued by an LSD1 inhibitor. Molecular Psychiatry 2024, 29: 2888-2904. PMID: 38528071, PMCID: PMC11420081, DOI: 10.1038/s41380-024-02479-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutism Spectrum DisorderAutistic DisorderBehavior, AnimalBrainChromosome DeletionChromosomes, Human, Pair 9Craniofacial AbnormalitiesDisease Models, AnimalFemaleHaploinsufficiencyHeart Defects, CongenitalHistone DemethylasesHistone-Lysine N-MethyltransferaseIntellectual DisabilityMaleMiceMice, Inbred C57BLTranscriptomeConceptsLysine-specific histone demethylase 1Lysine‐specific histone demethylase 1 inhibitorAssociated with autism spectrum disorderHeterozygous loss-of-function variantsHistone H3 lysine 4Autistic-like behaviorsLoss-of-function variantsGenome-wide associationH3 lysine 4ASD risk genesRegulation of chromatinSingle-cell RNA sequencingHeterozygous frameshift mutationWorking memoryMutant miceChIP-seqLysine 4Downregulated DEGsCategories of psychiatric disordersExome sequencingPathogenesis of neurodevelopmental disordersTranscriptome analysisRisk genesDownregulated genesTranscriptomic dysregulationTwo DOT1 enzymes cooperatively mediate efficient ubiquitin-independent histone H3 lysine 76 tri-methylation in kinetoplastids
Frisbie V, Hashimoto H, Xie Y, De Luna Vitorino F, Baeza J, Nguyen T, Yuan Z, Kiselar J, Garcia B, Debler E. Two DOT1 enzymes cooperatively mediate efficient ubiquitin-independent histone H3 lysine 76 tri-methylation in kinetoplastids. Nature Communications 2024, 15: 2467. PMID: 38503750, PMCID: PMC10951340, DOI: 10.1038/s41467-024-46637-6.Peer-Reviewed Original ResearchConceptsMotif VIDot1 enzymesMechanism of substrate recognitionH2B mono-ubiquitinationHistone H3 lysine 79Active-site loopH3 lysine 79Histone H3 lysineEnzyme-substrate complexMotif IVTri-methyltransferaseSubstrate recognitionMethylation kineticsMono-ubiquitinationLysine 79Substrate preferenceH3 lysineTri-methylationDOT1BAcid residuesDot1Ala residuesKinetoplastidsMotifBiochemical analysisMLL1 regulates cytokine-driven cell migration and metastasis
Nair P, Danilova L, Gómez-de-Mariscal E, Kim D, Fan R, Muñoz-Barrutia A, Fertig E, Wirtz D. MLL1 regulates cytokine-driven cell migration and metastasis. Science Advances 2024, 10: eadk0785. PMID: 38478601, PMCID: PMC10936879, DOI: 10.1126/sciadv.adk0785.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MovementCytokinesHistone-Lysine N-MethyltransferaseHumansInterleukin-6LeukemiaMiceMyeloid-Lymphoid Leukemia Proteinrho-Associated KinasesTransforming Growth Factor beta1ConceptsMethyltransferase mixed-lineage leukemia 1Cell migrationControls actin filament assemblyRegulation of cell migrationHistone methyltransferase mixed-lineage leukemia 1Actin filament assemblyCell cycle-related pathwaysCancer cell migrationMixed-lineage leukemia 1Regulating cell proliferationMyosin contractilityFilament assemblyProtein meninAssociated with immune cellsMetastatic burdenCancer cellsCell proliferationPrimary tumor growth rateLung metastatic burdenTumor growth rateGrowth rateCellsPreexisting metastasesMetastatic diseaseTumor growth
2023
Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1
Abini-Agbomson S, Gretarsson K, Shih R, Hsieh L, Lou T, De Ioannes P, Vasilyev N, Lee R, Wang M, Simon M, Armache J, Nudler E, Narlikar G, Liu S, Lu C, Armache K. Catalytic and non-catalytic mechanisms of histone H4 lysine 20 methyltransferase SUV420H1. Molecular Cell 2023, 83: 2872-2883.e7. PMID: 37595555, DOI: 10.1016/j.molcel.2023.07.020.Peer-Reviewed Original ResearchMeSH KeywordsChromatinCryoelectron MicroscopyHeterochromatinHistone-Lysine N-MethyltransferaseHistonesHumansLysineNucleosomesConceptsNon-catalytic activitiesNon-catalytic mechanismHistone H4 lysine 20Histone variant H2A.ZH4 lysine 20Large macromolecular complexesCatalytic activityHeterochromatin formationHeterochromatin functionVariant H2A.ZLysine 20Nucleosome substratesGenomic stabilityDNA replicationNucleosomal DNAHistone methyltransferaseChromatin condensationSUV420H1Histone octamerMacromolecular complexesCryoelectron microscopyCellular analysisEssential roleDistinct phenotypesCrucial roleDOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement
Malla A, Rainsford S, Smith Z, Lesch B. DOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement. Development 2023, 150 PMID: 37082969, PMCID: PMC10259660, DOI: 10.1242/dev.201497.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationChromatin Assembly and DisassemblyHistone-Lysine N-MethyltransferaseHistonesMaleMiceProtaminesSemenSpermatidsConceptsHistone replacementMale sterilityProtamine exchangeSpermatid differentiationHistone H3 lysine 79Chromatin remodeling factorsRNA polymerase IIH3 lysine 79Expression of genesMature sperm headSperm headPostmeiotic germ cellsHistone methyltransferase DOT1LPolymerase IILysine 79Embryonic lethalityRemodeling factorsProtamine transitionProtamine replacementTranscriptional dysregulationMethyltransferase DOT1LIndispensable regulatorDOT1LHistonesGerm cells
2022
Human WDR5 promotes breast cancer growth and metastasis via KMT2-independent translation regulation
Cai WL, Chen JF, Chen H, Wingrove E, Kurley SJ, Chan LH, Zhang M, Arnal-Estape A, Zhao M, Balabaki A, Li W, Yu X, Krop ED, Dou Y, Liu Y, Jin J, Westbrook TF, Nguyen DX, Yan Q. Human WDR5 promotes breast cancer growth and metastasis via KMT2-independent translation regulation. ELife 2022, 11: e78163. PMID: 36043466, PMCID: PMC9584608, DOI: 10.7554/elife.78163.Peer-Reviewed Original ResearchMeSH KeywordsBreast NeoplasmsCell Line, TumorCell ProliferationFemaleHistone-Lysine N-MethyltransferaseHumansIntracellular Signaling Peptides and ProteinsConceptsBreast cancer cellsMetastatic breast cancerBreast cancerRibosomal gene expressionCancer cellsKnockdown of WDR5Vivo genetic screenReversible epigenetic mechanismsGenetic screenTranslation regulationTriple-negative breast cancerEpigenetic regulatorsEpigenetic mechanismsBreast cancer growthCancer-related deathTranslation efficiencyWDR5Novel therapeutic strategiesTranslation rateGene expressionCell growthAdvanced diseaseEffective therapyMetastatic capabilityPotent suppression
2021
Neuron-specific chromosomal megadomain organization is adaptive to recent retrotransposon expansions
Chandrasekaran S, Espeso-Gil S, Loh YE, Javidfar B, Kassim B, Zhu Y, Zhang Y, Dong Y, Bicks LK, Li H, Rajarajan P, Peter CJ, Sun D, Agullo-Pascual E, Iskhakova M, Estill M, Lesch BJ, Shen L, Jiang Y, Akbarian S. Neuron-specific chromosomal megadomain organization is adaptive to recent retrotransposon expansions. Nature Communications 2021, 12: 7243. PMID: 34903713, PMCID: PMC8669064, DOI: 10.1038/s41467-021-26862-z.Peer-Reviewed Original ResearchConceptsCellular stress response genesOpen chromatin domainsChromatin domain organizationRepeat-rich sequencesStress response genesRetrotransposon expansionsSPRET/EiJChromatin domainsChromosomal architectureChromosomal conformationDomain organizationAdult mouse cerebral cortexMurine germlineTranscriptional dysregulationResponse genesRegulatory mechanismsMus musculusMature neuronsNeuronal ablationStrong enrichmentMouse cerebral cortexSequenceSETDB1Single moleculesGermlineKDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements
Zhang SM, Cai WL, Liu X, Thakral D, Luo J, Chan LH, McGeary MK, Song E, Blenman KRM, Micevic G, Jessel S, Zhang Y, Yin M, Booth CJ, Jilaveanu LB, Damsky W, Sznol M, Kluger HM, Iwasaki A, Bosenberg MW, Yan Q. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature 2021, 598: 682-687. PMID: 34671158, PMCID: PMC8555464, DOI: 10.1038/s41586-021-03994-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorDNA-Binding ProteinsEpigenesis, GeneticGene SilencingHeterochromatinHistone-Lysine N-MethyltransferaseHumansInterferon Type IJumonji Domain-Containing Histone DemethylasesMaleMelanomaMiceMice, Inbred C57BLMice, KnockoutNuclear ProteinsRepressor ProteinsRetroelementsTumor EscapeConceptsImmune checkpoint blockadeImmune evasionCheckpoint blockadeImmune responseAnti-tumor immune responseRobust adaptive immune responseTumor immune evasionAnti-tumor immunityAdaptive immune responsesType I interferon responseDNA-sensing pathwayMouse melanoma modelImmunotherapy resistanceMost patientsCurrent immunotherapiesTumor immunogenicityImmune memoryMelanoma modelCytosolic RNA sensingRole of KDM5BConsiderable efficacyInterferon responseImmunotherapyEpigenetic therapyBlockadeTargeting the Atf7ip–Setdb1 Complex Augments Antitumor Immunity by Boosting Tumor Immunogenicity
Hu H, Khodadadi-Jamayran A, Dolgalev I, Cho H, Badri S, Chiriboga LA, Zeck B, De Rodas Gregorio M, Dowling CM, Labbe K, Deng J, Chen T, Zhang H, Zappile P, Chen Z, Ueberheide B, Karatza A, Han H, Ranieri M, Tang S, Jour G, Osman I, Sucker A, Schadendorf D, Tsirigos A, Schalper KA, Velcheti V, Huang HY, Jin Y, Ji H, Poirier JT, Li F, Wong KK. Targeting the Atf7ip–Setdb1 Complex Augments Antitumor Immunity by Boosting Tumor Immunogenicity. Cancer Immunology Research 2021, 9: 1298-1315. PMID: 34462284, PMCID: PMC9414288, DOI: 10.1158/2326-6066.cir-21-0543.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, NeoplasmCell Culture TechniquesCell LineCell ProliferationHistone-Lysine N-MethyltransferaseHumansMiceMice, NudeNeoplasmsRepressor ProteinsConceptsHistone lysine methyltransferase 1Common adaptive mechanismSuppressor screenChromatin modifiersIntron retentionSET domainEpigenetic regulatorsEpigenetic modificationsEpigenetic modifiersType I interferon responseMethyltransferase 1I interferon responseHuman cancersTranscription factor 7Immune invasionInterferon responseAdaptive mechanismsFactor 7GenesCritical roleExpressionImmune evasionRejection of cellsAntigen processingAntigen expressionDeficiency of histone lysine methyltransferase SETDB2 in hematopoietic cells promotes vascular inflammation and accelerates atherosclerosis
Zhang X, Sun J, Canfrán-Duque A, Aryal B, Tellides G, Chang YJ, Suárez Y, Osborne TF, Fernández-Hernando C. Deficiency of histone lysine methyltransferase SETDB2 in hematopoietic cells promotes vascular inflammation and accelerates atherosclerosis. JCI Insight 2021, 6: e147984. PMID: 34003795, PMCID: PMC8262461, DOI: 10.1172/jci.insight.147984.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisCells, CulturedCytokinesHistone-Lysine N-MethyltransferaseHumansInflammationMacrophagesMaleMicePlaque, AtheroscleroticTranscriptomeUp-RegulationConceptsHematopoietic cellsHistone methylation/acetylationSingle-cell RNA-seq analysisMethylation/acetylationHistone H3 Lys9RNA-seq analysisProgression of atherosclerosisEpigenetic marksLysine methyltransferasesH3 Lys9Epigenetic modificationsDNA methylationNoncoding RNAsCell regulatorsSETDB2Vascular inflammationAtherosclerotic lesionsAtherosclerotic plaquesMyeloid cell recruitmentGenetic deletionLDLR knockout miceEnhanced expressionHepatic lipid metabolismMurine atherosclerotic lesionsGenesEpigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity
Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, Dele-Oni D, Du PP, Halawi AG, Ishizuka JJ, Kim SY, Klaeger S, Knudsen NH, Miller BC, Nguyen TH, Olander KE, Papanastasiou M, Rachimi S, Robitschek EJ, Schneider EM, Yeary MD, Zimmer MD, Jaffe JD, Carr SA, Doench JG, Haining WN, Yates KB, Manguso RT, Bernstein BE. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 2021, 595: 309-314. PMID: 33953401, PMCID: PMC9166167, DOI: 10.1038/s41586-021-03520-4.Peer-Reviewed Original ResearchConceptsImmune checkpoint blockadeCheckpoint blockadeCytotoxic T cell responsesT cell responsesMouse tumor modelsImmune exclusionImmune clustersRetroviral antigensImmune sensitivityImmunostimulatory genesIntrinsic immunogenicityCell responsesTumor modelCentral mechanismsHuman tumorsCancer cellsBlockadeCandidate targetsImmunogenicityExpanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann‐Steiner syndrome
Sheppard S, Campbell I, Harr M, Gold N, Li D, Bjornsson H, Cohen J, Fahrner J, Fatemi A, Harris J, Nowak C, Stevens C, Grand K, Au M, Graham J, Sanchez‐Lara P, Del Campo M, Jones M, Abdul‐Rahman O, Alkuraya F, Bassetti J, Bergstrom K, Bhoj E, Dugan S, Kaplan J, Derar N, Gripp K, Hauser N, Innes A, Keena B, Kodra N, Miller R, Nelson B, Nowaczyk M, Rahbeeni Z, Ben‐Shachar S, Shieh J, Slavotinek A, Sobering A, Abbott M, Allain D, Amlie‐Wolf L, Au P, Bedoukian E, Beek G, Barry J, Berg J, Bernstein J, Cytrynbaum C, Chung B, Donoghue S, Dorrani N, Eaton A, Flores‐Daboub J, Dubbs H, Felix C, Fong C, Fung J, Gangaram B, Goldstein A, Greenberg R, Ha T, Hersh J, Izumi K, Kallish S, Kravets E, Kwok P, Jobling R, Johnson A, Kushner J, Lee B, Levin B, Lindstrom K, Manickam K, Mardach R, McCormick E, McLeod D, Mentch F, Minks K, Muraresku C, Nelson S, Porazzi P, Pichurin P, Powell‐Hamilton N, Powis Z, Ritter A, Rogers C, Rohena L, Ronspies C, Schroeder A, Stark Z, Starr L, Stoler J, Suwannarat P, Velinov M, Weksberg R, Wilnai Y, Zadeh N, Zand D, Falk M, Hakonarson H, Zackai E, Quintero‐Rivera F. Expanding the genotypic and phenotypic spectrum in a diverse cohort of 104 individuals with Wiedemann‐Steiner syndrome. American Journal Of Medical Genetics Part A 2021, 185: 1649-1665. PMID: 33783954, PMCID: PMC8631250, DOI: 10.1002/ajmg.a.62124.Peer-Reviewed Original ResearchConceptsIntellectual disabilityWiedemann-Steiner syndromeGenotype-phenotype correlationDevelopmental trajectoriesDevelopmental milestonesClinician's differential diagnosisAssociated with loss of functionLong-term outcomesDiverse cohortAutosomal dominant disorderEthnically diverse cohortAssociated with lossDevelopmental delayDisabilityMedian ageClinical featuresMonoallelic variantsShort statureDifferential diagnosisPhenotypic spectrumHypertrichosis cubitiIndividualsMedical comorbiditiesDominant disorderFeeding difficultiesThe Essential Function of SETDB1 in Homologous Chromosome Pairing and Synapsis during Meiosis
Cheng EC, Hsieh CL, Liu N, Wang J, Zhong M, Chen T, Li E, Lin H. The Essential Function of SETDB1 in Homologous Chromosome Pairing and Synapsis during Meiosis. Cell Reports 2021, 34: 108575. PMID: 33406415, PMCID: PMC8513770, DOI: 10.1016/j.celrep.2020.108575.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCentromereChromatinChromosome PairingGene Expression ProfilingGene Knockout TechniquesHistone-Lysine N-MethyltransferaseHistonesMaleMeiosisMeiotic Prophase IMiceSpermatocytesConceptsEarly meiosisEarly meiotic prophase IFunction of SETDB1Homologous chromosome pairingMeiotic prophase IHistone-lysine N-methyltransferaseMeiotic silencingSurvival of spermatocytesGermline developmentBouquet formationHomologous chromosomesLineage genesChromosome pairingBivalent formationPericentromeric regionProphase IApoptosis of spermatocytesSETDB1Essential functionsHomologous bivalentsH3K9me3Meiotic arrestMeiosisSpermatocytesN-methyltransferase
2020
Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma
Maitituoheti M, Keung E, Tang M, Yan L, Alam H, Han G, Singh A, Raman A, Terranova C, Sarkar S, Orouji E, Amin S, Sharma S, Williams M, Samant N, Dhamdhere M, Zheng N, Shah T, Shah A, Axelrad J, Anvar N, Lin Y, Jiang S, Chang E, Ingram D, Wang W, Lazar A, Lee M, Muller F, Wang L, Ying H, Rai K. Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma. Cell Reports 2020, 33: 108293. PMID: 33086062, PMCID: PMC7649750, DOI: 10.1016/j.celrep.2020.108293.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsCell Line, TumorDNA-Binding ProteinsFemaleGenes, Tumor SuppressorGlucoseGlycolysisHistone MethyltransferasesHistone-Lysine N-MethyltransferaseHumansInsulinIntercellular Signaling Peptides and ProteinsMaleMelanomaMiceMice, Inbred C57BLMice, NudeMyeloid-Lymphoid Leukemia ProteinNeoplasm ProteinsReceptor, IGF Type 1Regulatory Sequences, Nucleic AcidSignal TransductionXenograft Model Antitumor AssaysConceptsKMT2D-deficient cellsInsulin growth factorEnhancer reprogrammingIGF1R-AktMelanocyte-specific deletionMutant melanomaMouse modelTumor typesTherapeutic interventionsPharmacological inhibitionPathway inhibitorPotent tumor suppressorIGF signalingGrowth factorMelanomaPooled RNAi screensSomatic point mutationsTumor suppressorKey metabolic pathwaysFrequent lossGlycolysisGlycolysis enzymesTumorigenesisGlycolysis pathwayMetabolic pathwaysInterplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma
Braun DA, Hou Y, Bakouny Z, Ficial M, Sant’ Angelo M, Forman J, Ross-Macdonald P, Berger AC, Jegede OA, Elagina L, Steinharter J, Sun M, Wind-Rotolo M, Pignon JC, Cherniack AD, Lichtenstein L, Neuberg D, Catalano P, Freeman GJ, Sharpe AH, McDermott DF, Van Allen EM, Signoretti S, Wu CJ, Shukla SA, Choueiri TK. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nature Medicine 2020, 26: 909-918. PMID: 32472114, PMCID: PMC7499153, DOI: 10.1038/s41591-020-0839-y.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAntigen PresentationAntineoplastic Agents, ImmunologicalCarcinoma, Renal CellCD8-Positive T-LymphocytesChromosome DeletionChromosomes, Human, Pair 6Chromosomes, Human, Pair 9Class I Phosphatidylinositol 3-KinasesDNA-Binding ProteinsExome SequencingFemaleFluorescent Antibody TechniqueGene DeletionGenomicsHistocompatibility Antigens Class IIHistone DemethylasesHistone-Lysine N-MethyltransferaseHumansKidney NeoplasmsLymphocytes, Tumor-InfiltratingMaleMiddle AgedMutationNivolumabPrognosisProteasome Endopeptidase ComplexPTEN PhosphohydrolaseSequence Analysis, RNATOR Serine-Threonine KinasesTranscription FactorsTuberous Sclerosis Complex 1 ProteinTumor Suppressor ProteinsUbiquitin ThiolesteraseVon Hippel-Lindau Tumor Suppressor ProteinConceptsAdvanced clear cell renal cell carcinomaClear cell renal cell carcinomaPD-1 blockadeCell renal cell carcinomaRenal cell carcinomaCell carcinomaDegree of CD8Numerous chromosomal alterationsProspective clinical trialsSomatic alterationsInfiltrated tumorsClinical responseCell infiltrationTherapeutic responseClinical trialsTherapeutic efficacyBlockadeCcRCC tumorsTumorsPBRM1 mutationsModulates responseCD8Chromosomal alterationsImmunofluorescence analysisCarcinomaDe novo damaging variants associated with congenital heart diseases contribute to the connectome
Ji W, Ferdman D, Copel J, Scheinost D, Shabanova V, Brueckner M, Khokha MK, Ment LR. De novo damaging variants associated with congenital heart diseases contribute to the connectome. Scientific Reports 2020, 10: 7046. PMID: 32341405, PMCID: PMC7184603, DOI: 10.1038/s41598-020-63928-2.Peer-Reviewed Original ResearchMeSH KeywordsConnectomeDNA HelicasesDNA-Binding ProteinsExomeFemaleHeart Defects, CongenitalHistone-Lysine N-MethyltransferaseHomeodomain ProteinsHumansMaleMi-2 Nucleosome Remodeling and Deacetylase ComplexMutationMutation, MissenseMyeloid-Lymphoid Leukemia ProteinNerve Tissue ProteinsProtein Tyrosine Phosphatase, Non-Receptor Type 11Receptor, Notch1ConceptsDe novo variantsNDD genesCardiac patterningDe novo damaging variantsDamaging de novo variantsCHD genesDamaging variantsGenesProtein truncatingGenetic originNovo variantsGene mutationsPatterningRecent studiesDendritic developmentVariantsMutationsNeurogenesisSynaptogenesisBonferroni correctionKMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer
Alam H, Tang M, Maitituoheti M, Dhar S, Kumar M, Han C, Ambati C, Amin S, Gu B, Chen T, Lin Y, Chen J, Muller F, Putluri N, Flores E, DeMayo F, Baseler L, Rai K, Lee M. KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer. Cancer Cell 2020, 37: 599-617.e7. PMID: 32243837, PMCID: PMC7178078, DOI: 10.1016/j.ccell.2020.03.005.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinoma of LungAnimalsAntimetabolitesApoptosisBiomarkers, TumorCell ProliferationDeoxyglucoseDNA-Binding ProteinsEnhancer Elements, GeneticGene Expression Regulation, NeoplasticGlycolysisHistone-Lysine N-MethyltransferaseHistonesHumansLung NeoplasmsMiceMice, KnockoutMice, NudeMutationMyeloid-Lymphoid Leukemia ProteinNeoplasm ProteinsPeriod Circadian ProteinsPrognosisTumor Cells, CulturedXenograft Model Antitumor AssaysConceptsLung cancerLung-specific lossHuman lung cancer cellsExpression of Per2Lung cancer cellsHistone methyltransferase KMT2DLung tumor suppressorTumor suppressive roleMultiple glycolytic genesLung tumorigenesisEpigenetic modifiersPharmacological inhibitionTherapeutic vulnerabilitiesGlycolytic inhibitorCancerCancer cellsKMT2DFunction mutationsTumor suppressorPer2GlycolysisGlycolytic genesMutationsMice
2019
H2A.Z facilitates licensing and activation of early replication origins
Long H, Zhang L, Lv M, Wen Z, Zhang W, Chen X, Zhang P, Li T, Chang L, Jin C, Wu G, Wang X, Yang F, Pei J, Chen P, Margueron R, Deng H, Zhu M, Li G. H2A.Z facilitates licensing and activation of early replication origins. Nature 2019, 577: 576-581. PMID: 31875854, DOI: 10.1038/s41586-019-1877-9.Peer-Reviewed Original ResearchMeSH KeywordsDNADNA ReplicationDNA Replication TimingEpigenesis, GeneticHeLa CellsHistone-Lysine N-MethyltransferaseHistonesHumansLysineMethylationNucleosomesOrigin Recognition ComplexReplication OriginConceptsOrigin recognition complexHistone variant H2A.ZEarly replication originsReplication originsVariant H2A.ZReplication timingChromatin-based regulatory mechanismsEarly replication timingGenome-wide studiesNascent DNA strandsH2A.Z resultsNucleosome bindsDNA replicationH2A.ZHistone H4Cell cycle1Precise duplicationRegulated processDNA sequencesRegulatory mechanismsHeLa cellsDNA strandsORC1Firing efficiencyGenomeEpigenetic therapy of Prader–Willi syndrome
Kim Y, Wang SE, Jiang YH. Epigenetic therapy of Prader–Willi syndrome. Translational Research 2019, 208: 105-118. PMID: 30904443, PMCID: PMC6527448, DOI: 10.1016/j.trsl.2019.02.012.Peer-Reviewed Original ResearchConceptsPWS mouse modelEpigenetic-based therapiesMaternal chromosomesImprinted gene regulationEHMT2/G9aLysine 9 methyltransferasePatient-derived fibroblastsPrader-Willi syndromeGene regulationMethyltransferase SETDB1Epigenetic mechanismsSmall molecule librariesPWS genesHigh-content screeningSame genePerinatal lethalityEpigenetic therapyFusion proteinMolecular mechanismsG9a inhibitorChromosomesSNORD116 clusterGenesMolecular defectsPatient iPSC
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply