2025
Safety and Antitumor Activity of a Novel aCD25 Treg Depleter RG6292 as a Single Agent and in Combination with Atezolizumab in Patients with Solid Tumors
Gambardella V, Ong M, Rodriguez-Ruiz M, Machiels J, Sanmamed M, Galvao V, Spreafico A, Renouf D, Luen S, Galot R, de Spéville B, Calvo E, Naing A, Curdt S, Kolben T, Rossmann E, Tanos T, Smart K, Amann M, Xie Y, Xu L, Alcaide E, Städler N, Justies N, Boetsch C, Karanikas V, Schnetzler G, Rohrberg K. Safety and Antitumor Activity of a Novel aCD25 Treg Depleter RG6292 as a Single Agent and in Combination with Atezolizumab in Patients with Solid Tumors. Cancer Research Communications 2025, 5: 422-432. PMID: 39983024, PMCID: PMC11891644, DOI: 10.1158/2767-9764.crc-24-0638.Peer-Reviewed Original ResearchConceptsRecommended phase II dosePhase II doseMaximum tolerated dosePhase I studyTreg depletionSolid tumorsII doseTolerated doseResistance to cancer immunotherapyRegulatory T-cell depletionImmunosuppressive regulatory T cellsEffector T cell functionAdvanced solid tumorsT-cell depletionRegulatory T cellsAnti-CD25 antibodyFrequent adverse eventsT cell functionDose-dependent depletionIL-2 signalingAtezolizumab combinationDeplete TregsTreg reductionDose escalationPeripheral Tregs
2024
Serine Depletion Promotes Antitumor Immunity by Activating Mitochondrial DNA-Mediated cGAS-STING Signaling.
Saha S, Ghosh M, Li J, Wen A, Galluzzi L, Martinez L, Montrose D. Serine Depletion Promotes Antitumor Immunity by Activating Mitochondrial DNA-Mediated cGAS-STING Signaling. Cancer Research 2024, 84: 2645-2659. PMID: 38861367, PMCID: PMC11326969, DOI: 10.1158/0008-5472.can-23-1788.Peer-Reviewed Original ResearchAnti-tumor immunityImmune checkpoint inhibitors targeting PD-1Improved response to immune checkpoint inhibitorsCheckpoint inhibitors targeting PD-1Infiltration of immune effector cellsSuppressors of anti-tumor immunityColorectal cancerResponse to immune checkpoint inhibitorsEnhance tumor immunogenicityI interferonImmune checkpoint inhibitorsT-cell depletionCancer metabolismSerine deprivationImmune effector cellsSensitivity of tumorsType I IFN signalingAnti-neoplastic effectsImmune-enhancing effectsDisrupted metabolic pathwaysColorectal cancer cellsType I interferonCheckpoint inhibitorsIntratumoral infiltrationPD-1
2023
A phase 2 trial of mosunetuzumab with lenalidomide augmentation as first-line therapy for follicular (FL) and marginal zone lymphoma (MZL).
Olszewski A, Huntington S, Ollila T, Pelcovits A, McMahon J, Yakirevich I, Sturtevant A, Chorzalska A, Morgan J, Dubielecka P. A phase 2 trial of mosunetuzumab with lenalidomide augmentation as first-line therapy for follicular (FL) and marginal zone lymphoma (MZL). Journal Of Clinical Oncology 2023, 41: tps7588-tps7588. DOI: 10.1200/jco.2023.41.16_suppl.tps7588.Peer-Reviewed Original ResearchMarginal zone lymphomaCytokine release syndromeFirst-line therapyCR rateT cell-engaging bispecific antibodiesFirst-line systemic therapyCytotoxic T cell responsesLow-dose lenalidomideComplete response rateFirst-line treatmentLines of therapyPhase 2 trialT-cell depletionT cell immunityT cell responsesHost immune environmentRate of progressionRates of toxicityNovel therapeutic approachesHigh-burden diseasesImmunosuppressive modalitiesRefractory FLRelease syndromeStable diseaseStudy therapy379 The Impact of Current Conditioning Regimen, T Cell Depletion and Graft Versus Host Disease Prophylaxis on the Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation for Sickle Cell Disease
Shah N, Flagg A, Hamidi R, Hugo H, Deng Y, Krishnamurti L. 379 The Impact of Current Conditioning Regimen, T Cell Depletion and Graft Versus Host Disease Prophylaxis on the Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation for Sickle Cell Disease. Transplantation And Cellular Therapy 2023, 29: s286-s287. DOI: 10.1016/s2666-6367(23)00448-7.Peer-Reviewed Original Research
2022
Mutant IDH Inhibits IFNγ–TET2 Signaling to Promote Immunoevasion and Tumor Maintenance in CholangiocarcinomaMutant-IDH1 Promotes Immunoevasion in Cholangiocarcinoma
Wu M, Shi L, Dubrot J, Merritt J, Vijay V, Wei T, Kessler E, Olander K, Adil R, Pankaj A, Tummala K, Weeresekara V, Zhen Y, Wu Q, Luo M, Shen W, García-Beccaria M, Fernández-Vaquero M, Hudson C, Ronseaux S, Sun Y, Saad-Berreta R, Jenkins R, Wang T, Heikenwälder M, Ferrone C, Goyal L, Nicolay B, Deshpande V, Kohli R, Zheng H, Manguso R, Bardeesy N. Mutant IDH Inhibits IFNγ–TET2 Signaling to Promote Immunoevasion and Tumor Maintenance in CholangiocarcinomaMutant-IDH1 Promotes Immunoevasion in Cholangiocarcinoma. Cancer Discovery 2022, 12: 812-835. PMID: 34848557, PMCID: PMC8904298, DOI: 10.1158/2159-8290.cd-21-1077.Peer-Reviewed Original ResearchConceptsTumor maintenanceKetoglutarate-dependent enzymesDiscovery of mechanismsDNA demethylaseResponse genesCell-specific ablationCTLA4 blockadeMouse modelEnzyme inhibitsImmune checkpoint activationCytotoxic T-cell functionTumor cellsSuppression of CD8T-cell depletionIssue featureT cell activityT cell recruitmentT cell functionNew therapeutic strategiesInterferon γ expressionIsocitrate dehydrogenase 1 (IDH1) mutationTET2Receptor 1Γ expressionInhibitor efficacyOutcomes of Allogeneic Hematopoietic Cell Transplantation in T Cell Prolymphocytic Leukemia: A Contemporary Analysis from the Center for International Blood and Marrow Transplant Research
Murthy HS, Ahn KW, Estrada-Merly N, Alkhateeb HB, Bal S, Kharfan-Dabaja MA, Dholaria B, Foss F, Gowda L, Jagadeesh D, Sauter C, Abid MB, Aljurf M, Awan FT, Bacher U, Badawy SM, Battiwalla M, Bredeson C, Cerny J, Chhabra S, Deol A, Diaz MA, Farhadfar N, Freytes C, Gajewski J, Gandhi MJ, Ganguly S, Grunwald MR, Halter J, Hashmi S, Hildebrandt GC, Inamoto Y, Jimenez-Jimenez AM, Kalaycio M, Kamble R, Krem MM, Lazarus HM, Lazaryan A, Maakaron J, Munshi PN, Munker R, Nazha A, Nishihori T, Oluwole OO, Ortí G, Pan DC, Patel SS, Pawarode A, Rizzieri D, Saba NS, Savani B, Seo S, Ustun C, van der Poel M, Verdonck LF, Wagner JL, Wirk B, Oran B, Nakamura R, Scott B, Saber W. Outcomes of Allogeneic Hematopoietic Cell Transplantation in T Cell Prolymphocytic Leukemia: A Contemporary Analysis from the Center for International Blood and Marrow Transplant Research. Transplantation And Cellular Therapy 2022, 28: 187.e1-187.e10. PMID: 35081472, PMCID: PMC8977261, DOI: 10.1016/j.jtct.2022.01.017.Peer-Reviewed Original ResearchConceptsDisease-free survivalTreatment-related mortalityKarnofsky performance statusT-cell depletionVivo T-cell depletionAllogeneic hematopoietic cell transplantationInferior disease-free survivalHematopoietic cell transplantationOverall survivalT-cell prolymphocytic leukemiaT-PLLPerformance statusInternational BloodCell transplantationProlymphocytic leukemiaLong-term disease-free survivalMarrow Transplant Research databasePoor long-term survivalOutcomes of alloHCTPart of conditioningPost-transplantation relapseSuboptimal performance statusMyeloablative conditioning regimenReduced-intensity conditioningInferior overall survivalNaive T-Cell Depletion to Prevent Chronic Graft-Versus-Host Disease
Bleakley M, Sehgal A, Seropian S, Biernacki MA, Krakow EF, Dahlberg A, Persinger H, Hilzinger B, Martin PJ, Carpenter PA, Flowers ME, Voutsinas J, Gooley TA, Loeb K, Wood BL, Heimfeld S, Riddell SR, Shlomchik WD. Naive T-Cell Depletion to Prevent Chronic Graft-Versus-Host Disease. Journal Of Clinical Oncology 2022, 40: 1174-1185. PMID: 35007144, PMCID: PMC8987226, DOI: 10.1200/jco.21.01755.Peer-Reviewed Original ResearchConceptsChronic GVHDAcute GVHDHost diseaseNonrelapse mortalityT cellsPeripheral blood stem cell graftsBlood stem cell graftsGrade II acute GVHDGrade III acute GVHDNaive T-cell depletionAllogeneic hematopoietic cell transplantationPhase II clinical trialChronic Graft-VersusUnrelated donor graftsT-cell depletionHematopoietic cell transplantationTotal body irradiationMemory T cellsRelapse-free survivalStem cell graftsNaive T cellsApparent excess riskCell transplantation approachesGastrointestinal GVHDGraft-Versus
2021
Targeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis
Knitz MW, Bickett TE, Darragh LB, Oweida AJ, Bhatia S, Van Court B, Bhuvane S, Piper M, Gadwa J, Mueller AC, Nguyen D, Nangia V, Osborne DG, Bai X, Ferrara SE, Boss MK, Goodspeed A, Burchill MA, Tamburini BAJ, Chan ED, Pickering CR, Clambey ET, Karam SD. Targeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis. Journal For ImmunoTherapy Of Cancer 2021, 9: e001955. PMID: 33883256, PMCID: PMC8061827, DOI: 10.1136/jitc-2020-001955.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic Agents, ImmunologicalBasic-Leucine Zipper Transcription FactorsCell Line, TumorCombined Modality TherapyDendritic CellsDrug Resistance, NeoplasmHead and Neck NeoplasmsImmune Checkpoint InhibitorsImmunotherapyInterleukin-2 Receptor alpha SubunitLymphocyte DepletionMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutPhenotypeRadiation Dose HypofractionationRadiation ToleranceRepressor ProteinsSquamous Cell Carcinoma of Head and NeckT-Lymphocytes, RegulatoryTumor BurdenTumor MicroenvironmentTumor Necrosis Factor Receptor Superfamily, Member 9ConceptsCombination radiation therapyRadiation therapyDendritic cellsLymph nodesMouse modelRadioresistant tumorsRegulatory T-cell depletionT cell effector responsesTumor-draining lymph nodesNeck squamous cell carcinomaOral squamous cell carcinoma tumorsT cell-dependent responsesSquamous cell carcinoma tumorsAnti-CD137 treatmentDC activation statusGy x 5Higher Treg numbersPlasticity of TregsAdoptive transfer studiesT-cell depletionSquamous cell carcinomaCell-dependent responsesOrthotopic mouse modelTumor necrosis factorαNew therapeutic opportunitiesMarginal zone B cells mediate a CD4 T-cell–dependent extrafollicular antibody response following RBC transfusion in mice
Zerra PE, Patel SR, Jajosky RP, Arthur CM, McCoy JW, Allen JWL, Chonat S, Fasano RM, Roback JD, Josephson CD, Hendrickson J, Stowell SR. Marginal zone B cells mediate a CD4 T-cell–dependent extrafollicular antibody response following RBC transfusion in mice. Blood 2021, 138: 706-721. PMID: 33876205, PMCID: PMC8394907, DOI: 10.1182/blood.2020009376.Peer-Reviewed Original ResearchConceptsMarginal zone B cellsRBC transfusionMZ B cellsB cellsHOD RBCsAlloantibody formationAntibody responseAntibody formationAntigen-specific germinal center B cellsB cell-deficient recipientsCD4 T-cell depletionRed blood cell transfusionCD4 T cell activationRBC alloantibody formationBlood cell transfusionT-cell depletionCD4 T cellsProbability of complicationsExtrafollicular antibody responsesGerminal center B cellsFollicular B cellsT cell activationRBC alloimmunizationCell transfusionSubsequent transfusionsBone marrow transplant using fludarabine‐based reduced intensity conditioning regimen with in vivo T cell depletion in patients with Fanconi anemia
Gorfinkel L, Demsky C, Pashankar F, Kupfer G, Shah NC. Bone marrow transplant using fludarabine‐based reduced intensity conditioning regimen with in vivo T cell depletion in patients with Fanconi anemia. Pediatric Transplantation 2021, 25: e14009. PMID: 33755277, DOI: 10.1111/petr.14009.Peer-Reviewed Original ResearchConceptsUnrelated donor transplantsDonor transplantsBM graftsVivo T-cell depletionReduced intensity conditioning regimenStem cell transplant programInclusion of alemtuzumabNon-TBI conditioningPost-transplant complicationsSuccess of HSCTDevelopment of GVHDT-cell depletionIntensity conditioning regimenBone marrow transplantFull immune reconstitutionChronic GVHDCyclophosphamide conditioningGVHD prophylaxisMSD transplantsImmune reconstitutionConditioning regimenLate complicationsConditioning regimensSecondary neoplasmsSecondary malignancies5‐Fluorouracil efficacy requires anti‐tumor immunity triggered by cancer‐cell‐intrinsic STING
Tian J, Zhang D, Kurbatov V, Wang Q, Wang Y, Fang D, Wu L, Bosenberg M, Muzumdar MD, Khan S, Lu Q, Yan Q, Lu J. 5‐Fluorouracil efficacy requires anti‐tumor immunity triggered by cancer‐cell‐intrinsic STING. The EMBO Journal 2021, 40: embj2020106065. PMID: 33615517, PMCID: PMC8013832, DOI: 10.15252/embj.2020106065.Peer-Reviewed Original ResearchConceptsAnti-tumor immunityTumor burdenSubsequent type I interferon productionHigh STING expressionIntratumoral T cellsT-cell depletionType I interferon productionI interferon productionLoss of STINGImmunocompetent hostsColorectal specimensT cellsSTING expressionBetter survivalHigh doseTherapeutic effectivenessHuman colorectal specimensMelanoma tumorsInterferon productionChemotherapeutic drugsMurine colonImmunityEfficacyStingsColon
2020
The single-cell landscape of immunological responses of CD4+ T cells in HIV versus severe acute respiratory syndrome coronavirus 2.
Collora JA, Liu R, Albrecht K, Ho YC. The single-cell landscape of immunological responses of CD4+ T cells in HIV versus severe acute respiratory syndrome coronavirus 2. Current Opinion In HIV And AIDS 2020, 16: 36-47. PMID: 33165008, PMCID: PMC8162470, DOI: 10.1097/coh.0000000000000655.Peer-Reviewed Original ResearchConceptsHIV-1 infectionSARS-CoV-2 infectionCD4 T cellsT cellsLymphoid tissueHIV-1SARS-CoV-2-specific CD4 T cellsAcute respiratory syndrome coronavirus 2 infectionHIV-1-specific CD4 T cellsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSevere SARS-CoV-2 infectionSevere acute respiratory syndrome coronavirus 2CD4 T-cell depletionSyndrome coronavirus 2 infectionAcute respiratory syndrome coronavirus 2CD4 T-cell lossFollicular helper T cellsHIV-1-infected cellsRespiratory syndrome coronavirus 2Coronavirus 2 infectionCytokine release syndromeT cell lossT-cell depletionHIV-1 reservoirProtective antibody responsesDepletion of CD4 T cells provides therapeutic benefits in aged mice after ischemic stroke
Harris NM, Roy-O'Reilly M, Ritzel RM, Holmes A, Sansing LH, O'Keefe LM, McCullough LD, Chauhan A. Depletion of CD4 T cells provides therapeutic benefits in aged mice after ischemic stroke. Experimental Neurology 2020, 326: 113202. PMID: 31954116, PMCID: PMC7059209, DOI: 10.1016/j.expneurol.2020.113202.Peer-Reviewed Original ResearchConceptsIP-10 levelsMiddle cerebral artery occlusionCD4 T cellsT cellsIschemic strokeStroke patientsIsotype controlBrain-infiltrating T cellsCD4 T-cell depletionCerebral artery occlusionT-cell depletionAged mouse modelAged male micePro-inflammatory factorsT cell dysfunctionPro-inflammatory cytokinesAnti-CD4 antibodiesAged stroke patientsIgG isotype controlCD4 treatmentDepletion antibodyArtery occlusionExperimental strokeStroke onsetSham surgeryFeasibility and safety of research sigmoid colon biopsy in a cohort of Thai men who have sex with men with acute HIV-1
Chintanaphol M, Sacdalan C, Pinyakorn S, Rerknimitr R, Ridtitid W, Prueksapanich P, Sereti I, Schuetz A, Crowell TA, Colby DJ, Robb ML, Phanuphak N, Ananworanich J, Spudich SS, Kroon E. Feasibility and safety of research sigmoid colon biopsy in a cohort of Thai men who have sex with men with acute HIV-1. Journal Of Virus Eradication 2020, 6: 7-10. PMID: 32175085, PMCID: PMC7043900, DOI: 10.1016/s2055-6640(20)30011-x.Peer-Reviewed Original ResearchAcute HIV-1 infectionGut-associated lymphoid tissueHIV-1 reservoirSigmoid colon biopsiesAdverse eventsAE riskSigmoid colonColon biopsiesHIV-1CD4 T-cell depletionCD4 T-cell countAcute HIV-1Mild rectal bleedingAdverse event incidenceT-cell countsHigh viral replicationT-cell depletionHIV-1 infectionHIV-1 RNATime of biopsyIncidence rate ratiosRectal bleedingAbdominal discomfortEvent incidenceViral load
2019
Selective Brain Network and Cellular Responses Upon Dimethyl Fumarate Immunomodulation in Multiple Sclerosis
Ciolac D, Luessi F, Gonzalez-Escamilla G, Koirala N, Riedel C, Fleischer V, Bittner S, Krämer J, Meuth S, Muthuraman M, Groppa S. Selective Brain Network and Cellular Responses Upon Dimethyl Fumarate Immunomodulation in Multiple Sclerosis. Frontiers In Immunology 2019, 10: 1779. PMID: 31417557, PMCID: PMC6682686, DOI: 10.3389/fimmu.2019.01779.Peer-Reviewed Original ResearchConceptsCortical atrophyDisease activityMultiple sclerosisDMF groupDeep GM volumesDimethyl fumarate treatmentT-cell depletionDisease-modifying drugsWhite matter damageImmune cell dynamicsDMF therapyNAT patientsStrong CD8Lymphocyte subsetsDisease durationDisease courseMS patientsCell depletionMatter damageLess atrophyFumarate treatmentTreatment paradigmBrain network responsesLesion volumeTherapy responseIntratumoral delivery of RIG-I agonist induces robust anti-tumor immune responses
Jiang X, Fedorova O, Linehan M, Dong H, Pyle A, Iwasaki A. Intratumoral delivery of RIG-I agonist induces robust anti-tumor immune responses. The Journal Of Immunology 2019, 202: 194.28-194.28. DOI: 10.4049/jimmunol.202.supp.194.28.Peer-Reviewed Original ResearchAnti-tumor efficacyRobust anti-tumor immune responseAnti-tumor immune responseTumor microenvironmentNucleic acid-sensing pathwaysT-cell depletionTumor-infiltrating lymphocytesCytosolic nucleic acid-sensing pathwaysB16 melanoma growthVivo anti-tumor efficacyPromising therapeutic agentLong-term survivalRemarkable antitumor effectImmunogenic tumorsInnate cellsCell depletionCancer immunotherapyMouse survivalImmune responseTumor volumeCombination treatmentIntratumoral deliveryAntitumor effectsMelanoma growthTumor subtypes
2017
IL-27 LIMITS TYPE 2 IMMUNOPATHOLOGY FOLLOWING PARAINFLUENZA VIRUS INFECTION
Muallem G, Wagage S, Sun Y, DeLong JH, Valenzuela A, Christian DA, Pritchard G, Fang Q, Buza EL, Jain D, Elloso MM, López CB, Hunter CA. IL-27 LIMITS TYPE 2 IMMUNOPATHOLOGY FOLLOWING PARAINFLUENZA VIRUS INFECTION. PLOS Pathogens 2017, 13: e1006173. PMID: 28129374, PMCID: PMC5305264, DOI: 10.1371/journal.ppat.1006173.Peer-Reviewed Original ResearchConceptsParainfluenza virus infectionTh2 responsesIL-27Control miceT cellsVirus infectionParamyxovirus infectionDisease severityWeight lossPathogenic Th2 responsesQuality of CD4Type 2 immunopathologyT-cell depletionT cell responsesSevere lung lesionsPopulation of IFNParainfluenza infectionsPulmonary eosinophilsRespiratory paramyxovirusesT helperCell depletionLung lesionsImmune responseLimit pathologyCD4
2015
HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy
Agosto LM, Uchil PD, Mothes W. HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy. Trends In Microbiology 2015, 23: 289-295. PMID: 25766144, PMCID: PMC4417442, DOI: 10.1016/j.tim.2015.02.003.Peer-Reviewed Original ResearchConceptsAntiretroviral therapyVirological synapsesT-cell depletionCell transmissionHIV infectionCell depletionHIV cellMatter of debateViral replicationTherapyUninfected cellsReduced efficacyHigh MOISynapsesHIVPathogenesisRecent dataInfectionCell deathTrigger cell deathCellsVivoCell-cell contactCellular surveillanceHigher number
2014
Polyreactivity and Autoreactivity among HIV-1 Antibodies
Liu M, Yang G, Wiehe K, Nicely N, Vandergrift N, Rountree W, Bonsignori M, Alam S, Gao J, Haynes B, Kelsoe G. Polyreactivity and Autoreactivity among HIV-1 Antibodies. Journal Of Virology 2014, 89: 784-798. PMID: 25355869, PMCID: PMC4301171, DOI: 10.1128/jvi.02378-14.Peer-Reviewed Original ResearchConceptsNeutralization breadthMembrane-proximal external regionMultiple HIV-1 cladesCD4 T-cell depletionChronic antigen exposureHIV-1 AbT-cell depletionHIV-1 infectionHIV-1 vaccineHIV-1 antibodiesHIV-1 cladesHIV-1 CD4HIV-1 envelopeHIV-1 neutralizationAntigen exposureChronic inflammationHumoral responseInfected patientsProtective vaccineImmune regulationHIV-1AutoreactivityAutoreactive propertiesAg exposureHost AgNOD2 Regulates CXCR3-Dependent CD8+ T Cell Accumulation in Intestinal Tissues with Acute Injury
Wu X, Lahiri A, Haines GK, Flavell RA, Abraham C. NOD2 Regulates CXCR3-Dependent CD8+ T Cell Accumulation in Intestinal Tissues with Acute Injury. The Journal Of Immunology 2014, 192: 3409-3418. PMID: 24591373, PMCID: PMC4064676, DOI: 10.4049/jimmunol.1302436.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalBone Marrow CellsCD3 ComplexCD8-Positive T-LymphocytesCell MovementCells, CulturedChemokine CXCL10Chemokine CXCL9ColitisDendritic CellsFlow CytometryGene ExpressionInterferon-gammaInterleukin-10Intestinal MucosaIntestinesMacrophagesMiceMice, Inbred C57BLMice, KnockoutModels, ImmunologicalNod2 Signaling Adaptor ProteinReceptors, CXCR3Reverse Transcriptase Polymerase Chain ReactionConceptsT cell accumulationT cell migrationT cell activationT cellsIntestinal injuryIntestinal tissueCell accumulationCell activationSmall intestinal lamina propriaIFN-γ neutralizationIntestinal T cellsT-cell depletionIntestinal immune homeostasisIL-10 productionT cell recruitmentHuman autoimmune diseasesIntestinal lamina propriaTreatment of miceIL-10 expressionIntestinal stromal cellsT cell outcomesCell migrationCXCR3 blockadeMAb administrationDendritic cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply