2025
Advancing drug development in myelodysplastic syndromes
Mina A, McGraw K, Cunningham L, Kim N, Jen E, Calvo K, Ehrlich L, Aplan P, Garcia-Manero G, Foran J, Garcia J, Zeidan A, DeZern A, Komrokji R, Sekeres M, Scott B, Buckstein R, Tinsley-Vance S, Verma A, Wroblewski T, Pavletic S, Norsworthy K. Advancing drug development in myelodysplastic syndromes. Blood Advances 2025, 9: 1095-1104. PMID: 39786387, PMCID: PMC11914162, DOI: 10.1182/bloodadvances.2024014865.Peer-Reviewed Original ResearchConceptsAllogeneic hematopoietic stem cell transplantationHematopoietic stem cell transplantationEnd pointsStem cell malignanciesTime-to-event end pointsStem cell transplantationUS Food and Drug AdministrationTreatment of patientsFood and Drug AdministrationClinical trial designDrug developmentMyelodysplastic syndromeCell transplantationCurative therapyRisk stratificationPoor prognosisCell malignancyTransformative therapiesDrug AdministrationBiomarker developmentResponse definitionsTrial designFunctional assessmentTherapyPatientsAtrial Functional Tricuspid Regurgitation Contemporary Characteristics, Outcomes, and Novel Risk Score
Fava A, Nakhla M, Hajj Ali A, Akintoye E, Akyuz K, Arockiam A, Haroun E, El Dahdah J, Liao Y, Popovic Z, Gillinov M, Pettersson G, Griffin B, Desai M, Wang T. Atrial Functional Tricuspid Regurgitation Contemporary Characteristics, Outcomes, and Novel Risk Score. JACC Advances 2025, 4: 101623. PMID: 40009906, PMCID: PMC11908566, DOI: 10.1016/j.jacadv.2025.101623.Peer-Reviewed Original ResearchRegurgitant orifice areaRight atrial volumeAF-TRTricuspid regurgitationAtrial volumeOrifice areaAtrial functional tricuspid regurgitationAssociated with 1-year mortalityEffective regurgitant orifice areaRisk scoreFunctional tricuspid regurgitationSevere tricuspid regurgitationEffective regurgitant orificeRight heart failureCohort of patientsSystolic pressure ratioIncreasing clinical recognitionMultivariate logistic regressionMedian survivalAdverse prognosticatorEchocardiographic characteristicsConsecutive patientsValve lesionsPoor prognosisRisk stratificationColorectal adenosquamous carcinoma: clinicopathologic analysis of two large cohorts and literature review confirm poor prognosis and reveal prognostic aspects
Gonzalez R, Horton R, Zhang X, Graham R, Longacre T, Mehrotra A, Allende D, McHugh K, Shia J, Westerhoff M, Srivastava A, Chen W, Vazzano J, Swanson P, Chatterjee D, Cheema H, Ma C, Mannan R, Chetty R, Nowak K, Serra S, Agostini‐Vulaj D, Kazemimood R, Henn P, Kakar S, Choi W, Adeyi O, Jenkins S, Nagtegaal I. Colorectal adenosquamous carcinoma: clinicopathologic analysis of two large cohorts and literature review confirm poor prognosis and reveal prognostic aspects. Histopathology 2025 PMID: 39887413, DOI: 10.1111/his.15412.Peer-Reviewed Original ResearchTumor-infiltrating lymphocytesAdenosquamous carcinomaColorectal adenosquamous carcinomaTumor buddingPoor prognosisMedian time to progressionMeta-analysis of cohortLow tumor buddingTime to progressionMale:female ratioReview of casesIndividual case seriesNodal metastasisRecurrent diseaseSquamous componentPatient ageRecurrence rateAcademic medical centreCase seriesImmunohistochemical featuresPrognostic aspectsClinicopathological analysisFemale ratioFollow-upColorectal cancerDiverse stromal phenotypes at spatial resolution in colorectal cancer peritoneal metastasis.
Zhao J, Ong J, Liu Y, Srivastava S, Teo M, Lee J, Walsh R, Loo L, Tan Q, Ng G, Tan J, Ma H, Ong X, Tay S, Sheng T, Lum J, Yong W, Pietrantonio F, Tan P, Sundar R. Diverse stromal phenotypes at spatial resolution in colorectal cancer peritoneal metastasis. Journal Of Clinical Oncology 2025, 43: 218-218. DOI: 10.1200/jco.2025.43.4_suppl.218.Peer-Reviewed Original ResearchCancer-associated fibroblastsT cell exhaustionPeritoneal metastasisT cellsStromal phenotypeColorectal cancerTissue microarrayStromal compartmentPoor prognosisSpatial distribution of T cellsColorectal cancer peritoneal metastasesIncreased CAFsClusters of T cellsCRC PMDistribution of T cellsTumor stroma compartmentAssociated with poor prognosisMemory B cellsDigital spatial profilingTranscoelomic disseminationTumor compartmentsStromal clustersPrognostic significanceTNF-alphaB cellsMultivalvular vs single-valve infective endocarditis: a systematic review and meta-analysis
Kyriakoulis I, Tzoumas A, Kyriakoulis K, Kardoutsos I, Ntoumaziou A, Nagraj S, Kokkinidis D, Palaiodimos L. Multivalvular vs single-valve infective endocarditis: a systematic review and meta-analysis. Future Cardiology 2025, 21: 113-121. PMID: 39882735, PMCID: PMC11812418, DOI: 10.1080/14796678.2025.2457898.Peer-Reviewed Original ResearchConceptsSystemic embolic eventsInfective endocarditisEmbolic eventsHeart failureAssociated with increased risk of short-term mortalityRisk of short-term mortalityAssociated with increased riskLikelihood of poor prognosisRisk of complicationsOne-year mortalityStudy of patientsShort-term mortalityHeart valvesClinical suspicionSurgical managementPoor prognosisEndocarditisVirulent microorganismsPatientsInclusion criteriaIdentified studiesMortalityPrognosisSystematic searchHeartExploring Glypican-3 targeted CAR-NK treatment and potential therapy resistance in hepatocellular carcinoma
Yang L, Pham K, Xi Y, Wu Q, Liu D, Robertson K, Liu C. Exploring Glypican-3 targeted CAR-NK treatment and potential therapy resistance in hepatocellular carcinoma. PLOS ONE 2025, 20: e0317401. PMID: 39841705, PMCID: PMC11753693, DOI: 10.1371/journal.pone.0317401.Peer-Reviewed Original ResearchConceptsGlypican-3Hepatocellular carcinomaCAR-NKNatural killerCell linesCAR-NK therapyCAR-NK cellsTreatment of hepatocellular carcinomaNK cell lineAnti-tumor effectsCancer-related mortalitySuppressed tumor growthPrimary liver cancerInfluence therapeutic outcomesCells in vitroHepatocellular carcinoma treatmentHepG2 cells in vitroNK92MI cellsImmunotherapy strategiesNSG miceImmunotherapy targetOncofetal glycoproteinTherapy resistanceImprove patient outcomesPoor prognosisComprehensive Molecular Profiling of Metastatic Pancreatic Adenocarcinomas
Antony V, Sun T, Dolezal D, Cai G. Comprehensive Molecular Profiling of Metastatic Pancreatic Adenocarcinomas. Cancers 2025, 17: 335. PMID: 39941707, PMCID: PMC11815932, DOI: 10.3390/cancers17030335.Peer-Reviewed Original ResearchMetastatic pancreatic ductal adenocarcinomaPancreatic ductal adenocarcinomaPrimary pancreatic ductal adenocarcinomaMolecular profilingGene mutationsGene copy number alterationsAdvanced-stage pancreatic cancerInsufficient tumor cellsOncomine Comprehensive AssayRate of TP53Copy number alterationsMetastatic diseasePDAC casesPIK3CA mutationsPancreatic cancerPoor prognosisTreatment optionsDuctal adenocarcinomaTumor cellsTumor progressionMolecular alterationsStudy cohortMolecular testingComprehensive assayTherapeutic target
2024
Mechanisms of immunotherapy resistance in small cell lung cancer
Nie Y, Schalper K, Chiang A. Mechanisms of immunotherapy resistance in small cell lung cancer. Cancer Drug Resistance 2024, 7: n/a-n/a. PMID: 39802951, PMCID: PMC11724353, DOI: 10.20517/cdr.2024.154.Peer-Reviewed Original ResearchSmall-cell lung cancerImmune checkpoint inhibitorsSociety for Immunotherapy of CancerImmunotherapy resistanceTumor microenvironmentPrimary resistanceAcquired resistancePrimary resistance to immune checkpoint inhibitorsLung cancerResistance to immune checkpoint inhibitorsMechanisms of immunotherapy resistanceSmall cell lung cancerImmunosuppressive immune cellsImmunotherapy to chemotherapyResistance to immunotherapySociety for ImmunotherapyImmunotherapy of cancerAggressive neuroendocrine tumorCell lung cancerCheckpoint inhibitorsTumor immunogenicityEffective immunotherapyNeuroendocrine tumorsPoor prognosisAntigen presentationThe dynamics of hematopoiesis over the human lifespan
Li H, Côté P, Kuoch M, Ezike J, Frenis K, Afanassiev A, Greenstreet L, Tanaka-Yano M, Tarantino G, Zhang S, Whangbo J, Butty V, Moiso E, Falchetti M, Lu K, Connelly G, Morris V, Wang D, Chen A, Bianchi G, Daley G, Garg S, Liu D, Chou S, Regev A, Lummertz da Rocha E, Schiebinger G, Rowe R. The dynamics of hematopoiesis over the human lifespan. Nature Methods 2024, 22: 422-434. PMID: 39639169, PMCID: PMC11908799, DOI: 10.1038/s41592-024-02495-0.Peer-Reviewed Original ResearchConceptsHematopoietic stem cellsHematopoietic stemProgenitor cellsClassification of acute myeloid leukemiaDifferentiation of hematopoietic stem cellsAssociated with poor prognosisAcute myeloid leukemiaHuman hematopoietic stemWave of hematopoiesisGene expression networksMyeloid leukemiaPoor prognosisLineage outputMultilineage capacityDynamics of hematopoiesisCell ontogenyStem cellsLineage primingFate decisionsModel organismsTranscriptomic statesExpression networksHuman lifespanTranscriptional programsHematopoiesisAn Artificial Intelligence-Driven Preoperative Radiomic Subtype for Predicting the Prognosis and Treatment Response of Patients with Papillary Thyroid Carcinoma.
Li Q, Zhang W, Liao T, Gao Y, Zhang Y, Jin A, Ma B, Qu N, Zhang H, Zheng X, Li D, Yun X, Zhao J, Yu H, Gao M, Wang Y, Qian B. An Artificial Intelligence-Driven Preoperative Radiomic Subtype for Predicting the Prognosis and Treatment Response of Patients with Papillary Thyroid Carcinoma. Clinical Cancer Research 2024, 31: 139-150. PMID: 39535738, DOI: 10.1158/1078-0432.ccr-24-2356.Peer-Reviewed Original ResearchPapillary thyroid carcinomaPapillary thyroid carcinoma patientsDisease-free survivalThyroid carcinomaInflammatory subtypeRadiomics signatureTreatment responseSubtype of papillary thyroid carcinomaTianjin Medical University Cancer Institute and HospitalAssociated with poor disease-free survivalFudan University Shanghai Cancer CenterPoor disease-free survivalCancer Institute and HospitalTreatment response of patientsComplications risk stratificationShanghai Cancer CenterAnti-inflammatory traditional Chinese medicinesResponse of patientsPreoperative ultrasound imagingValidation set 2Clinicopathological variablesTraining set 1Evaluate prognosisPoor prognosisRisk stratificationCNSC-54. CENTRAL AND BOUNDARY-DRIVEN GROWTH PATTERNS DOMINATE RESPECTIVELY IDH WILD-TYPE AND MUTANT GLIOMAS
Kyriakidou M, Urbaniak K, Mbegbu M, Rockne R, Wesseling P, Eijgelaar R, Anderson K, Verhaak R, de Witt-Hamer P, Verburg N, Branciamore S, Barthel F. CNSC-54. CENTRAL AND BOUNDARY-DRIVEN GROWTH PATTERNS DOMINATE RESPECTIVELY IDH WILD-TYPE AND MUTANT GLIOMAS. Neuro-Oncology 2024, 26: viii53-viii53. PMCID: PMC11553254, DOI: 10.1093/neuonc/noae165.0210.Peer-Reviewed Original ResearchConsistent with neutral evolutionDiffuse gliomasLocal treatmentEvolutionary processWhole-genome sequencingSpread to distant sitesIDH wild-typePrimary malignant brain tumorImage-guided samplingPhylogeographic relationshipsDN/dS ratiosMalignant brain tumorsNeutral evolutionSomatic variantsGenetic heterogeneityIDHmut tumorsTumor centerMRI abnormalitiesStochastic mutationsTumor diffusionAdult patientsPoor prognosisTumor cellsIDH mutantTumor developmentG9a/DNMT1 co-targeting inhibits non-small cell lung cancer growth and reprograms tumor cells to respond to cancer-drugs through SCARA5 and AOX1
Exposito F, Redrado M, Serrano D, Calabuig-Fariñas S, Bao-Caamano A, Gallach S, Jantus-Lewintre E, Diaz-Lagares A, Rodriguez-Casanova A, Sandoval J, San Jose-Eneriz E, Garcia J, Redin E, Senent Y, Leon S, Pio R, Lopez R, Oyarzabal J, Pineda-Lucena A, Agirre X, Montuenga L, Prosper F, Calvo A. G9a/DNMT1 co-targeting inhibits non-small cell lung cancer growth and reprograms tumor cells to respond to cancer-drugs through SCARA5 and AOX1. Cell Death & Disease 2024, 15: 787. PMID: 39488528, PMCID: PMC11531574, DOI: 10.1038/s41419-024-07156-w.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerNon-small cell lung cancer patientsCM-272Treatment of non-small cell lung cancerReprogram tumor cellsAssociated with poor prognosisResponse to chemotherapyCell lung cancerCancer drugsMonitor tumor progressionOverexpression of G9aNSCLC cell linesLung cancer growthCancer drug sensitivityNon-small cell lung cancer growthNon-invasive biomarkersTumor volumeAntitumor efficacyTargeted therapyPoor prognosisCancer modelsTumor cellsInduce cell deathTumor progressionLung cancerOverall survival in TP53-mutated AML and MDS
Puzo C, Hager K, Rinder H, Weinberg O, Siddon A. Overall survival in TP53-mutated AML and MDS. Annals Of Hematology 2024, 103: 5359-5369. PMID: 39443370, DOI: 10.1007/s00277-024-06054-7.Peer-Reviewed Original ResearchOverall survivalBlast countTP53 mutationsSignificant predictors of OSP53 mutation typePredictors of OSAggressive disease biologyRetrospective chart reviewKaplan-Meier curvesYale-New Haven HospitalNext generation sequencingCox proportional hazards modelsProportional hazards modelComplex karyotypePoor OSP53 mutationsWHO criteriaChart reviewNew Haven HospitalPoor prognosisCo-mutationsPathogenic mutationsAMLICCS guidelinesMutation typeSquamous Cell Carcinoma of the Pancreas: A Case Report
Nagar A, Rao A, Protiva P. Squamous Cell Carcinoma of the Pancreas: A Case Report. Cureus 2024, 16: e70247. PMID: 39329044, PMCID: PMC11425980, DOI: 10.7759/cureus.70247.Peer-Reviewed Original ResearchViral antibody response predicts morbidity and mortality in alcohol-associated hepatitis.
Hsu C, Wang L, Maestri E, Jacob A, Do W, Mayo S, Bosques-Padilla F, Verna E, Abraldes J, Brown R, Vargas V, Altamirano J, Caballería J, Shawcross D, Louvet A, Lucey M, Mathurin P, Garcia-Tsao G, Stärkel P, Bataller R, Investigators A, Wang X, Schnabl B. Viral antibody response predicts morbidity and mortality in alcohol-associated hepatitis. Hepatology 2024 PMID: 39325984, DOI: 10.1097/hep.0000000000001046.Peer-Reviewed Original ResearchAlcohol-associated hepatitisAlcohol use disorderHigher Child-Pugh scoreSerological profileAntibody responseAssociated with very high mortalityUse disorderDecompensation of liver diseaseChild-Pugh scoreActive alcohol useNinety-day mortalityAssociated with decompensationMulticenter observational studyViral antibody responseMonths of diagnosisAntibody repertoireSera of patientsMultiorgan dysfunctionPoor prognosisNinety-daySerological biomarkersHealthy controlsPatient seraLiver diseaseAntibody targetingHigher sensitivity of pericardial fluid cytology than biopsy in malignant effusions with potential explanation of false‐negative cytology: A multi‐institutional analysis
Takeda K, Gereg C, Liu X, Ma W, Bearse M, Tang H, Delfino I, Huang E, Lin X, Chandler J, Wang H. Higher sensitivity of pericardial fluid cytology than biopsy in malignant effusions with potential explanation of false‐negative cytology: A multi‐institutional analysis. Cytopathology 2024, 36: 31-40. PMID: 39301772, DOI: 10.1111/cyt.13447.Peer-Reviewed Original ResearchPericardial fluid cytologySensitivity of cytologyMalignant pericardial effusionMulti-institutional analysisFluid cytologyCytology casesPericardial effusionDiagnostic sensitivity of cytologyFalse-negative cytologyFalse-negative resultsSite of originConcurrent biopsyPericardial biopsyHistological subtypesMalignant effusionsHistologic reviewPericardial involvementRetrospective reviewMalignant casesPoor prognosisImmunohistochemistry studiesClinical historyDiagnostic superiorityBiopsyCytologyChitinase 3-like-1 Inhibits Innate Antitumor and Tissue Remodeling Immune Responses by Regulating CD47-SIRPα- and CD24-Siglec10-Mediated Phagocytosis.
Ma B, Kamle S, Sadanaga T, Lee C, Lee J, Yee D, Zhu Z, Silverman E, DeMeo D, Choi A, Lee C, Elias J. Chitinase 3-like-1 Inhibits Innate Antitumor and Tissue Remodeling Immune Responses by Regulating CD47-SIRPα- and CD24-Siglec10-Mediated Phagocytosis. The Journal Of Immunology 2024, 213: 1279-1291. PMID: 39291933, DOI: 10.4049/jimmunol.2400035.Peer-Reviewed Original ResearchImmune checkpoint moleculesChronic obstructive pulmonary diseaseInhibit adaptive immune responsesAdaptive immune responsesInnate immune responseImmune responseInhibition of innate immune responsesInhibits T cell costimulationGeneration of adaptive immune responsesMacrophage phagocytosisInhibit innate immune responsesChitinase 3-like 1T cell costimulationEpithelial cell deathObstructive pulmonary diseaseCheckpoint moleculesPoor prognosisLung injuryInhibit macrophagesPulmonary diseaseCHI3L1Inflammation pathwaysCancerSHP-2 phosphataseCell deathTalking About Suffering in the Intensive Care Unit
Kious B, Vick J, Ubel P, Sutton O, Blumenthal-Barby J, Cox C, Ashana D. Talking About Suffering in the Intensive Care Unit. AJOB Empirical Bioethics 2024, 16: 52-59. PMID: 39250770, PMCID: PMC11785475, DOI: 10.1080/23294515.2024.2399534.Peer-Reviewed Original ResearchSecondary qualitative content analysisIntensive care unitInductive approach to data analysisEnd of lifeSuffering of personsAdult intensive care unitQualitative content analysisCare unitFamily meetingsReviewed transcriptsEmotional distressPatient's familyCritically ill patientsApproach to data analysisLimited treatmentCoding guideStudy authorsResearch teamContent analysisMulticenter trialPoor prognosisCliniciansLow qualityIll patientsSufferingHuman AKR1C3 binds agonists of GPR84 and participates in an expanded polyamine pathway
Dudkina N, Park H, Song D, Jain A, Khan S, Flavell R, Johnson C, Palm N, Crawford J. Human AKR1C3 binds agonists of GPR84 and participates in an expanded polyamine pathway. Cell Chemical Biology 2024, 32: 126-144.e18. PMID: 39163853, PMCID: PMC11748234, DOI: 10.1016/j.chembiol.2024.07.011.Peer-Reviewed Original ResearchHuman aldo-keto reductase family 1 member C3Mammalian fatty acid synthaseDNA double-strand break responseDouble-strand break responseAldo-keto reductase family 1 member C3Associated with poor prognosisPolyamine pathwayFatty acid synthesisFatty acid synthaseAcid synthaseAKR1C3 activityPoor prognosisBiochemical roleAcid synthesisClinical significanceLigand screeningFerroptosis resistanceDNA damageAKR1C3Metabolic diseasesDiverse cancersDNANADPHAgonists of GPR84GPR84Disulfiram/copper complex improves the effectiveness of the WEE1 inhibitor Adavosertib in p53 deficient non-small cell lung cancer via ferroptosis
Liu D, Cao J, Ding X, Xu W, Yao X, Dai M, Tai Q, Shi M, Fei K, Xu Y, Su B. Disulfiram/copper complex improves the effectiveness of the WEE1 inhibitor Adavosertib in p53 deficient non-small cell lung cancer via ferroptosis. Biochimica Et Biophysica Acta (BBA) - Molecular Basis Of Disease 2024, 1870: 167455. PMID: 39111630, DOI: 10.1016/j.bbadis.2024.167455.Peer-Reviewed Original ResearchWEE1 inhibitorNon-small cell lung cancerNSCLC cellsCell lung cancerSynergistic therapeutic approachesProtein levelsEffective treatment strategiesPro-oxidant drugsKinase activity of Wee1P53-deficient cellsActivity of Wee1Tumor volumeCombination therapyDSF-CuRepurposing disulfiramTumor weightSolute carrier family 7 memberWee1 protein levelsP53 deficiencyPoor prognosisReduced cell viabilityFunctional p53Lung cancerTreatment strategiesXenograft model
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply