2023
Babesia BdFE1 esterase is required for the anti-parasitic activity of the ACE inhibitor fosinopril
Vydyam P, Choi J, Gihaz S, Chand M, Gewirtz M, Thekkiniath J, Lonardi S, Gennaro J, Mamoun C. Babesia BdFE1 esterase is required for the anti-parasitic activity of the ACE inhibitor fosinopril. Journal Of Biological Chemistry 2023, 299: 105313. PMID: 37797695, PMCID: PMC10663679, DOI: 10.1016/j.jbc.2023.105313.Peer-Reviewed Original ResearchConceptsAngiotensin converting enzyme (ACE) inhibitorsACE inhibitor fosinoprilTick-borne illnessConverting Enzyme InhibitorsVector-borne parasitic diseaseClass of drugsNovel drug targetsApicomplexan parasitesMass spectrometry analysisAnti-parasitic activityHeart failureSafe therapyParasite developmentDrug targetsEnzyme inhibitorsParasitic diseasesDrug resistanceTreatment of diseasesHuman babesiosisBabesia parasitesIntraerythrocytic parasitesSuch diseasesDiseaseSpectrometry analysisParasitesApplications of CRISPR technology in cellular immunotherapy
Zhou X, Renauer P, Zhou L, Fang S, Chen S. Applications of CRISPR technology in cellular immunotherapy. Immunological Reviews 2023, 320: 199-216. PMID: 37449673, PMCID: PMC10787818, DOI: 10.1111/imr.13241.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsDYRK1A promotes viral entry of highly pathogenic human coronaviruses in a kinase-independent manner
Strine M, Cai W, Wei J, Alfajaro M, Filler R, Biering S, Sarnik S, Chow R, Patil A, Cervantes K, Collings C, DeWeirdt P, Hanna R, Schofield K, Hulme C, Konermann S, Doench J, Hsu P, Kadoch C, Yan Q, Wilen C. DYRK1A promotes viral entry of highly pathogenic human coronaviruses in a kinase-independent manner. PLOS Biology 2023, 21: e3002097. PMID: 37310920, PMCID: PMC10263356, DOI: 10.1371/journal.pbio.3002097.Peer-Reviewed Original ResearchConceptsGenome-wide CRISPR/Cas9 screenCRISPR/Cas9 screenPathogenic human coronavirusesKinase-independent mannerRegulated kinase 1AProviral host factorNovel drug targetsMultiple cell typesDNA accessibilityHost factorsKinase functionHuman coronavirusesHost genesDistal enhancerNovel regulatorCas9 screenKinase 1AGene expressionNeuronal developmentDYRK1ADrug targetsDiverse coronavirusesProviral activityCell typesSevere acute respiratory syndrome coronavirus 2
2022
Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases
Zhou R, Liang H, Hu W, Ding J, Li S, Chen Y, Zhao Y, Lu C, Chen F, Hu W. Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases. Ageing Research Reviews 2022, 83: 101785. PMID: 36371015, DOI: 10.1016/j.arr.2022.101785.Peer-Reviewed Original ResearchConceptsAcid-sensing ion channel 1aAge-related diseasesTherapeutic targetPotential therapeutic targetMost age-related diseasesIon channel 1aNovel drug targetsEffective drugsMultiple organsPathophysiological processesChannel 1aDiseaseChannel family membersPharmacological propertiesImproved treatmentSuch diseasesTissue degenerationCellular apoptosisTreatmentDrug targetsFamily membersPhysiological functionsUrgent needWorldwide populationIschemiaCalcium-Permeable Channels Cooperation for Rheumatoid Arthritis: Therapeutic Opportunities
Liang H, Yin H, Li S, Chen Y, Zhao Y, Hu W, Zhou R. Calcium-Permeable Channels Cooperation for Rheumatoid Arthritis: Therapeutic Opportunities. Biomolecules 2022, 12: 1383. PMID: 36291594, PMCID: PMC9599458, DOI: 10.3390/biom12101383.Peer-Reviewed Original ResearchConceptsPathogenesis of RARheumatoid arthritisCalcium-permeable channelsIntra-articular inflammationCommon autoimmune diseaseTreatment of RAEntry of CaDrug targetsSynovial invasionPatients' qualityAutoimmune diseasesNovel drug targetsCartilage damageArthritisTherapeutic opportunitiesPathological processesCalcium signalingInflammationPathogenesisSpecific roleRAHuman cellsTargetCell membraneDiseaseCentral and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Andrade-Brito DE, Forero DA, Orozco-Castaño CA, Montalvo-Ortiz JL. Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines 2022, 10: 1107. PMID: 35625844, PMCID: PMC9138536, DOI: 10.3390/biomedicines10051107.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsPosttraumatic stress disorderPeripheral immune systemImmune systemInflammatory systemTrauma exposureStress disorderPeripheral immune dysregulationToll-like receptorsLifetime trauma exposurePotential novel drug targetsEtiology of PTSDImmune dysregulationInflammatory dysregulationHPA axisNovel drug targetsImmunological responseInflammatory signalingGeneral populationAnimal modelsIntegrative multi-omics approachPTSD treatmentMultifactorial disorderBrain tissueHallmark featureDysregulation
2021
The Spliced Leader RNA Silencing (SLS) Pathway in Trypanosoma brucei Is Induced by Perturbations of Endoplasmic Reticulum, Golgi Complex, or Mitochondrial Protein Factors: Functional Analysis of SLS-Inducing Kinase PK3
Okalang U, Bar-Ner B, Rajan K, Friedman N, Aryal S, Egarmina K, Hope R, Khazanov N, Senderowitz H, Alon A, Fass D, Michaeli S. The Spliced Leader RNA Silencing (SLS) Pathway in Trypanosoma brucei Is Induced by Perturbations of Endoplasmic Reticulum, Golgi Complex, or Mitochondrial Protein Factors: Functional Analysis of SLS-Inducing Kinase PK3. MBio 2021, 12: e02602-21. PMID: 34844425, PMCID: PMC8630539, DOI: 10.1128/mbio.02602-21.Peer-Reviewed Original ResearchConceptsSpliced leader RNA silencingER oxidoreductin 1Quiescin sulfhydryl oxidaseER-resident chaperone BiPMitochondrial protein importEndoplasmic reticulumProtein importChaperone BiPRNA silencingSpliced leader (SL) RNACausative agent of human African sleeping sicknessSulfhydryl oxidasePerturbation of endoplasmic reticulumSL RNA transcriptionInduction of programmed cell deathHuman African sleeping sicknessATP-binding domainPotential novel drug targetsParasite Trypanosoma bruceiSerine-threonine kinaseNovel drug targetsProtein sortingAfrican sleeping sicknessProtein translocationPhosphorylation events
2020
19. PLEKHA5 REGULATES TUMOR GROWTH IN METASTATIC MELANOMA
Oria V, Zhang H, Zhu H, Deng G, Zito C, Rane C, Zhang S, Weiss S, Tran T, Adeniran A, Zhang F, Zhou J, Kluger Y, Bosenberg M, Kluger H, Jilaveanu L. 19. PLEKHA5 REGULATES TUMOR GROWTH IN METASTATIC MELANOMA. Neuro-Oncology Advances 2020, 2: ii3-ii3. PMCID: PMC7401364, DOI: 10.1093/noajnl/vdaa073.009.Peer-Reviewed Original ResearchMelanoma brain metastasesBrain metastasesTumor growthPI3K/Akt/mTORCell cycle transitionAkt/mTORGrowth of tumorsS cell cycle transitionPhosphorylation of AktMelanoma patientsPoor prognosisNovel drug targetsPatient populationRegulation of PDCD4Metastatic melanomaUnique cohortXenograft modelClinical relevanceNude miceMetastasisCycle transitionMelanomaBrain developmentKey mediatorMelanoma cells
2016
Transcriptional Regulatory Landscape of TCF3-PBX1-Positive Leukemia and Novel Targeted Treatments
Teppo S, Mehtonen J, Eldfors S, Heckman C, Müschen M, Heinäniemi M, Lohi O. Transcriptional Regulatory Landscape of TCF3-PBX1-Positive Leukemia and Novel Targeted Treatments. Blood 2016, 128: 4077. DOI: 10.1182/blood.v128.22.4077.4077.Peer-Reviewed Original ResearchTranscriptional regulatory landscapeTranscription factorsRegulatory landscapeCell line modelsFusion proteinGenome-wide mapsGlobal nuclear runNovel long non-coding RNANetwork inference analysisDruggable targetsLong non-coding RNAsGene expression differencesNon-coding RNAsGene Expression OmnibusGRO-seq analysisTumor suppressor genePBX1 functionsNovel drug targetsNascent transcriptionTranscriptional landscapeEnhancer RNAsGenomic regionsGRO-seqNetwork inference algorithmsExpression differences
2015
FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis
Staab-Weijnitz CA, Fernandez IE, Knüppel L, Maul J, Heinzelmann K, Juan-Guardela BM, Hennen E, Preissler G, Winter H, Neurohr C, Hatz R, Lindner M, Behr J, Kaminski N, Eickelberg O. FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2015, 192: 455-467. PMID: 26039104, PMCID: PMC4595665, DOI: 10.1164/rccm.201412-2233oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisPrimary human lung fibroblastsGrowth factor-β1Endoplasmic reticulum stressPulmonary fibrosisFKBP10 expressionLung fibrosisNovel drug targetsControl subjectsFactor-β1Protein 10Immunofluorescent stainingReticulum stressReverse transcriptase-polymerase chain reactionQuantitative reverse transcriptase-polymerase chain reactionTranscriptase-polymerase chain reactionSmooth muscle actinPotential novel drug targetsHuman lung fibroblastsCollagen secretionDrug targetsWestern blot analysisProfibrotic mediatorsU.S. cohortGerman cohortDeciphering Signaling Pathway Networks to Understand the Molecular Mechanisms of Metformin Action
Sun J, Zhao M, Jia P, Wang L, Wu Y, Iverson C, Zhou Y, Bowton E, Roden D, Denny J, Aldrich M, Xu H, Zhao Z. Deciphering Signaling Pathway Networks to Understand the Molecular Mechanisms of Metformin Action. PLOS Computational Biology 2015, 11: e1004202. PMID: 26083494, PMCID: PMC4470683, DOI: 10.1371/journal.pcbi.1004202.Peer-Reviewed Original ResearchConceptsGWAS datasetsPathway networkDisease genesGenome-wide association study datasetDrug targetsSignal transduction networksSignal transduction cascadeMultiple signaling pathwaysDrug-induced gene expressionNovel drug targetsTransduction networksTransduction cascadeEnrichment analysisGene expressionCommon genesMolecular mechanismsSignaling pathwaysGenesNovel MycLiterature miningMolecular modePathwayMetformin actionDrug actionDisease pathogenesisA comparative study of disease genes and drug targets in the human protein interactome
Sun J, Zhu K, Zheng W, Xu H. A comparative study of disease genes and drug targets in the human protein interactome. BMC Bioinformatics 2015, 16: s1. PMID: 25861037, PMCID: PMC4402590, DOI: 10.1186/1471-2105-16-s5-s1.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesDisease genesDrug targetsHuman protein-coding genesHuman protein-protein interaction networkProtein-protein interaction networkProtein-coding genesHuman protein interactomeComplex diseasesNovel drug targetsProtein interactomeAnatomical Therapeutic Chemical (ATC) classificationInteraction networksDisease proteinAssociation studiesGenesDisease categoriesInteractomeProteinMajor disease categoriesDifferent disease categoriesFirst comprehensive comparisonTargetTreatment efficacyHigh betweennessTranscriptional Adaptation of Drug-tolerant Mycobacterium tuberculosis During Treatment of Human Tuberculosis
Walter ND, Dolganov GM, Garcia BJ, Worodria W, Andama A, Musisi E, Ayakaka I, Van TT, Voskuil MI, de Jong BC, Davidson RM, Fingerlin TE, Kechris K, Palmer C, Nahid P, Daley CL, Geraci M, Huang L, Cattamanchi A, Strong M, Schoolnik GK, Davis JL. Transcriptional Adaptation of Drug-tolerant Mycobacterium tuberculosis During Treatment of Human Tuberculosis. The Journal Of Infectious Diseases 2015, 212: 990-998. PMID: 25762787, PMCID: PMC4548467, DOI: 10.1093/infdis/jiv149.Peer-Reviewed Original ResearchConceptsDrug-tolerant bacilliDrug exposureDrug-susceptible pulmonary tuberculosisDrug-tolerant Mycobacterium tuberculosisDrug-susceptible Mycobacterium tuberculosisMycobacterium tuberculosisTuberculosis treatment regimensInitial drug exposureReverse transcription-polymerase chain reactionMessenger RNA expressionM. tuberculosis gene expressionDrug efflux pumpsSerial sputaPulmonary tuberculosisTreatment initiationNovel drug targetsTreatment regimensPolymerase chain reactionToxin-antitoxin genesHuman tuberculosisRate of declineDrug responsivenessStress signatureMarked downregulationDrug tolerance
2011
Update of the human secretoglobin (SCGB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily
Jackson BC, Thompson DC, Wright MW, McAndrews M, Bernard A, Nebert DW, Vasiliou V. Update of the human secretoglobin (SCGB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily. Human Genomics 2011, 5: 691. PMID: 22155607, PMCID: PMC3251818, DOI: 10.1186/1479-7364-5-6-691.Peer-Reviewed Original ResearchConceptsGene familyLarge gene familyNovel drug targetsMammalian lineagesProtein geneMammalian secretionsDrug targetsGenesMate selectionProteinSecretoglobinTissue repairBloomsBiological activityFamilyAndrogen-binding proteinPseudogenesHuman healthImportant roleModulation of inflammationLineagesSalivary glandsRoleTumorigenesisBetter understanding
2009
Molecular Classification of Normal and Cancer Mammospheres.
Agarwal S, Camp R, Lannin D, Halligan K, Stern D, Tuck D, Harris L, Rimm D. Molecular Classification of Normal and Cancer Mammospheres. Cancer Research 2009, 69: 501-501. DOI: 10.1158/0008-5472.sabcs-09-501.Peer-Reviewed Original ResearchCancer stem cellsPrimary tumorBreast cancerTumor cellsStem cellsAbsence of CD24Breast cancer specimensHuman breast cancerFine-needle aspirationNormal breast tissueExpression of CD44Tumor tissue samplesPutative stem cell markersCD44-positive cellsKey protein markersEx vivo cultureStem cell markersNovel drug targetsSpecific therapyTreatment successNeedle aspirationCancer specimensMyoepithelial markersBT-20Positive cells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply