2024
Leveraging altered lipid metabolism in treating B cell malignancies
Lee J, Mani A, Shin M, Krauss R. Leveraging altered lipid metabolism in treating B cell malignancies. Progress In Lipid Research 2024, 95: 101288. PMID: 38964473, PMCID: PMC11347096, DOI: 10.1016/j.plipres.2024.101288.Peer-Reviewed Original ResearchB-cell malignanciesMalignant B cellsB cell receptorAltered lipid metabolismLipid metabolismOncogenic signalingB cellsTreating B-cell malignanciesReprogram lipid metabolismLipid raft integrityB-cell receptor activationHeterogeneous blood cancerImprove risk stratificationUncontrolled cell proliferationB cell activationRaft integrityLipid raftsMYC translocationCytotoxic therapyHeightened metabolic demandsGenetic driversSignaling cascadesMalignant subtypeRisk stratificationObese individuals
2022
Molecular determinants of peri‐apical targeting of inositol 1,4,5‐trisphosphate receptor type 3 in cholangiocytes
Rodrigues MA, Gomes DA, Fiorotto R, Guerra MT, Weerachayaphorn J, Bo T, Sessa WC, Strazzabosco M, Nathanson MH. Molecular determinants of peri‐apical targeting of inositol 1,4,5‐trisphosphate receptor type 3 in cholangiocytes. Hepatology Communications 2022, 6: 2748-2764. PMID: 35852334, PMCID: PMC9512452, DOI: 10.1002/hep4.2042.Peer-Reviewed Original ResearchConceptsLipid raftsCaveolin-1Intact lipid raftsType 3 inositol trisphosphate receptorApical regionC-terminal amino acidsTrisphosphate receptor type 3Madin-Darby canine kidney cellsCanine kidney cellsFluorescence microscopy techniquesInositol trisphosphate receptorApical localizationTrisphosphate receptorHeavy chain 9Molecular determinantsChemical disruptionAmino acidsITPR3RaftsKidney cellsIntracellular CaFinal common eventReceptor type 3Release channelMYH9
2021
MAL2 mediates the formation of stable HER2 signaling complexes within lipid raft-rich membrane protrusions in breast cancer cells
Jeong J, Shin JH, Li W, Hong JY, Lim J, Hwang JY, Chung JJ, Yan Q, Liu Y, Choi J, Wysolmerski J. MAL2 mediates the formation of stable HER2 signaling complexes within lipid raft-rich membrane protrusions in breast cancer cells. Cell Reports 2021, 37: 110160. PMID: 34965434, PMCID: PMC8762588, DOI: 10.1016/j.celrep.2021.110160.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic Agents, ImmunologicalBreast NeoplasmsCell ProliferationCytoskeletal ProteinsDrug Resistance, NeoplasmEndocytosisFemaleHumansMembrane MicrodomainsMyelin and Lymphocyte-Associated Proteolipid ProteinsPhosphoproteinsPlasma Membrane Calcium-Transporting ATPasesReceptor, ErbB-2Sodium-Hydrogen ExchangersTrastuzumabTumor Cells, CulturedConceptsLipid raft formationBreast cancer cellsLipid raftsLipid raft resident proteinsCancer cellsRaft formationRaft-resident proteinsProximity ligation assayProtein complexesMembrane protrusionsProtein interactionsPlasma membraneLigation assayMAL2Membrane stabilityStructural organizationPotential therapeutic targetPhysical interactionMembrane retentionProteinRaftsTherapeutic targetCellsIntracellular calcium concentrationLow intracellular calcium concentrationIdentification of a Conserved Intracellular Loop (CIL) Structure That Scaffolds PIP3 to Amplify Oncogenic Signaling during Malignant B-Cell Transformation
Lee J, Robinson M, Ma N, Sadras T, Cosgun K, Chan L, Kume K, Thomas-Tikhonenko A, Weinstock D, Diamond M, Vaidehi N, Müschen M. Identification of a Conserved Intracellular Loop (CIL) Structure That Scaffolds PIP3 to Amplify Oncogenic Signaling during Malignant B-Cell Transformation. Blood 2021, 138: 868. DOI: 10.1182/blood-2021-149646.Peer-Reviewed Original ResearchLipid raftsB cell receptorB cell activationB cell activation signalsConstitutive membrane localizationMalignant B-cell transformationPleckstrin homology domainCell membrane lipid compositionMembrane lipid compositionNormal B-cell activationEndosomal proteinCell membrane lipidsBasic lysine residueHomology domainPH domainMembrane localizationB-cell transformationProteomic analysisEndosomal membranesPIP3PIP3 accumulationOncogenic signalingOncogenic transformationGene expressionInducible activation
2020
Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis
Zhang X, Ramírez CM, Aryal B, Madrigal-Matute J, Liu X, Diaz A, Torrecilla-Parra M, Suárez Y, Cuervo AM, Sessa WC, Fernández-Hernando C. Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis. Arteriosclerosis Thrombosis And Vascular Biology 2020, 40: 1510-1522. PMID: 32349535, PMCID: PMC7253189, DOI: 10.1161/atvbaha.120.314291.Peer-Reviewed Original ResearchConceptsCav-1 deficiencyCav-1-deficient miceCav-1Autophagic fluxCholesterol-rich membrane domainsCav-1 interactsATG5-ATG12 complexEndothelial Cav-1 expressionRegulation of autophagyNovel molecular mechanismExtracellular matrix remodelingAutophagosome componentsMembrane domainsLipid raftsAutophagosome formationPlasma membraneCav-1 expressionMolecular mechanismsLDL transcytosisCellular localizationImportant regulatorAutophagyAutophagy contributesRelevant regulatorMatrix remodeling
2018
IFITM3-Mediated Regulation of Cell Membrane Dynamics Is Essential for Malignant B-Cell Transformation
Lee J, Geng H, Dinson D, Xiao G, Cosgun K, Chan L, Chen Z, Farzan M, Jung J, Wiita A, Muschen M. IFITM3-Mediated Regulation of Cell Membrane Dynamics Is Essential for Malignant B-Cell Transformation. Blood 2018, 132: 552. DOI: 10.1182/blood-2018-99-117472.Peer-Reviewed Original ResearchB cell receptorLipid raftsOncogenic tyrosine kinasesTyrosine kinasePlasma membraneCentral regulatorNormal B-cell receptorType II transmembrane topologyPI3KMalignant B-cell transformationIntracellular N terminusHomotypic cellular aggregationCell membraneCo-receptor CD19Assembly of membraneMRNA levelsLipid raft formationCell membrane dynamicsPotent tumor suppressorDifferent cell typesCholesterol accumulationCell cycle arrestCell receptorEndocytic motifTransmembrane topology
2015
Mono-ubiquitylated ORF45 Mediates Association of KSHV Particles with Internal Lipid Rafts for Viral Assembly and Egress
Wang X, Zhu N, Li W, Zhu F, Wang Y, Yuan Y. Mono-ubiquitylated ORF45 Mediates Association of KSHV Particles with Internal Lipid Rafts for Viral Assembly and Egress. PLOS Pathogens 2015, 11: e1005332. PMID: 26650119, PMCID: PMC4674120, DOI: 10.1371/journal.ppat.1005332.Peer-Reviewed Original ResearchKaposi's sarcoma-associated herpesvirusLipid raftsSarcoma-associated herpesvirusFinal envelopmentVesicle membraneRecombinant Kaposi's sarcoma-associated herpesvirusTrans-Golgi networkCytoplasmic membrane vesiclesCellular cargo transportVirion particlesInfectious virion particlesHost cell membraneViral particlesTrans-GolgiEndosome vesiclesLR associationBudding processORF45Virion assemblyWild typeIntracellular signalingTegument proteinsCellular membranesMembrane vesiclesViral assemblyFatty acid‐binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin‐1
Kagawa Y, Yasumoto Y, Sharifi K, Ebrahimi M, Islam A, Miyazaki H, Yamamoto Y, Sawada T, Kishi H, Kobayashi S, Maekawa M, Yoshikawa T, Takaki E, Nakai A, Kogo H, Fujimoto T, Owada Y. Fatty acid‐binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin‐1. Glia 2015, 63: 780-794. PMID: 25601031, DOI: 10.1002/glia.22784.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesCaveolaeCaveolin 1Cell SurvivalCells, CulturedCerebral CortexCholesterolCytokinesFatty Acid-Binding Protein 7Fatty Acid-Binding ProteinsGene Expression ProfilingGene Expression RegulationGlial Cell Line-Derived Neurotrophic FactorLipopolysaccharidesMiceMice, Inbred C57BLMice, KnockoutNerve Tissue ProteinsOligonucleotide Array Sequence AnalysisSignal TransductionTransduction, GeneticConceptsLipid raft functionCaveolin-1Raft functionLipid raftsFatty Acid Binding Protein 7Function of caveolaeReceptor-mediated signal transductionMitogen-activated protein kinaseRole of FABP7Toll-like receptor 4Caveolin-1 expressionExtracellular stimuliCavin-1Protein bindsSignal transductionCaveolin-2Flotillin-1Protein kinaseReceptor alpha 1Transcriptional levelLong-chain fatty acidsLipid dynamicsWild-type astrocytesLipid homeostasisTLR4 recruitment
2014
Regulation of Rac1 translocation and activation by membrane domains and their boundaries
Moissoglu K, Kiessling V, Wan C, Hoffman BD, Norambuena A, Tamm LK, Schwartz MA. Regulation of Rac1 translocation and activation by membrane domains and their boundaries. Journal Of Cell Science 2014, 127: 2565-2576. PMID: 24695858, PMCID: PMC4038948, DOI: 10.1242/jcs.149088.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MembraneFluorescence Resonance Energy TransferGTPase-Activating ProteinsHEK293 CellsHumansMembrane MicrodomainsMiceNIH 3T3 CellsProtein BindingProtein Transportrac1 GTP-Binding Proteinrho-Specific Guanine Nucleotide Dissociation InhibitorsSignal TransductionUnilamellar LiposomesConceptsFluorescence resonance energy transferMembrane domainsRac1 translocationGDP dissociation inhibitor proteinLiquid-ordered membrane domainsGTPase-activating proteinsNon-raft regionsNon-raft domainsBinding of Rac1Activation of Rac1Single-molecule analysisGTP loadingRho GTPasesLipid raftsRac1 localizationRho GTPaseInhibitor proteinResult of inactivationRac1Resonance energy transferFunctional studiesNovel mechanismLipid bilayersTranslocationRafts
2011
Effects of integrin-mediated cell adhesion on plasma membrane lipid raft components and signaling
Norambuena A, Schwartz MA. Effects of integrin-mediated cell adhesion on plasma membrane lipid raft components and signaling. Molecular Biology Of The Cell 2011, 22: 3456-3464. PMID: 21795400, PMCID: PMC3172269, DOI: 10.1091/mbc.e11-04-0361.Peer-Reviewed Original ResearchConceptsLipid raft componentsRaft componentsLipid raftsCyclic adenosine monophosphateCell detachmentCell adhesionLipid raft markersGlycosylphosphatidylinositol-linked proteinsRaft associationRaft markersRho GTPasesNonraft fractionsDetachment of cellsElevation of cAMPStudy of integrinsTermination of growthPlasma membraneH-RasAnchorage dependenceKey defenseCell growthFlotillin2Sucrose gradientsCancer metastasisLipid tails
2010
Innate Immunity to Viruses
Iwasaki A. Innate Immunity to Viruses. 2010, 183-196. DOI: 10.1128/9781555816872.ch15.Peer-Reviewed Original ResearchDNA virusesEndosomal trafficking eventsHost cell machineryMechanism of RNAiAbsence of VpuInnate immunityTrafficking eventsEndonuclease familyCell machineryCytoplasmic DNAE3 ubiquitinLipid raftsCaspase-1 inflammasomeAnalysis of animalCell surfaceViral dsRNADistinct rolesNeighboring cellsAntiviral stateBillions of yearsLike receptorsI IFN productionComplementary sequencesViral RNARNACellular Endocytosis and Gene Delivery
Ziello J, Huang Y, Jovin I. Cellular Endocytosis and Gene Delivery. Molecular Medicine 2010, 16: 222-229. PMID: 20454523, PMCID: PMC2864810, DOI: 10.2119/molmed.2009.00101.Peer-Reviewed Original ResearchConceptsGene therapyNonviral vectorsClathrin-independent endocytic processVariety of vectorsUnderstanding of endocytosisClathrin-dependent endocytosisCurrent molecular medicineMechanism of endocytosisGene deliveryLipid raftsEndocytic processVector deliveryCellular traffickingCellular endocytosisEndocytosisMolecular medicineTraffickingTarget cellsCellsMetabolic diseasesTherapeutic potentialCaveolaeGenesDeliveryAdenoHaloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cells
Sánchez-Wandelmer J, Dávalos A, de la Peña G, Cano S, Giera M, Canfrán-Duque A, Bracher F, Martín-Hidalgo A, Fernández-Hernando C, Lasunción M, Busto R. Haloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cells. Neuroscience 2010, 167: 143-153. PMID: 20123000, DOI: 10.1016/j.neuroscience.2010.01.051.Peer-Reviewed Original ResearchConceptsEffects of haloperidolCholesterol contentLipid raft compositionCholesterol biosynthesisCell cholesterol contentSH-SY5Y cellsNeuroblastoma SH-SY5YHL-60 human cell linesDopamine receptorsMetabolic effectsTherapeutic effectHaloperidolInsulin-Akt signalingImpairs insulinCellular cholesterol homeostasisLipid raftsSH-SY5YFree cholesterolCholesterol homeostasisDependent insulinDrug inhibitionHuman cell linesCell linesPhysiological vehicleInsulin
2009
Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers
Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 2009, 457: 1128-1132. PMID: 19242475, PMCID: PMC2748841, DOI: 10.1038/nature07761.Peer-Reviewed Original ResearchMeSH KeywordsAlzheimer DiseaseAmyloid beta-PeptidesAmyloid Precursor Protein SecretasesAmyloidosisAnimalsChlorocebus aethiopsCOS CellsHippocampusHumansLong-Term PotentiationMiceMice, Inbred C57BLNeuronal PlasticityNeuronsPeptide FragmentsPrionsProtein BindingProtein MultimerizationReceptors, Cell SurfaceSynapsesConceptsCellular prion protein PrPCPrion protein PrPCSoluble amyloid-β peptide (Aβ) oligomersAlzheimer's diseaseCellular prion proteinDisease pathologyPlasma membrane glycoproteinsCell surface receptorsHigh affinity cell surface receptorsAlzheimer's disease pathologySoluble Aβ oligomersLipid raftsInfectious prion diseasesUnexpected linkMechanistic basisMembrane glycoproteinsPrion proteinAmyloid-β peptide (Aβ) oligomersSynaptic plasticityPrion diseasesTherapeutic potentialDiseaseAβ oligomersCentral roleDeleterious effects
2007
Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts
Balasubramanian N, Scott DW, Castle JD, Casanova JE, Schwartz MA. Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biology 2007, 9: 1381-1391. PMID: 18026091, PMCID: PMC2715295, DOI: 10.1038/ncb1657.Peer-Reviewed Original ResearchConceptsPlasma membraneLipid raftsAnchorage-dependent signalingArf6-dependent mannerCaveolin-dependent internalizationSmall GTPase Arf6Microtubule-dependent traffickingIntegrin-mediated adhesionRecycling endosomesGTPase Arf6Membrane raftsDetachment of cellsCell spreadingF-actinRaftsArf6MicrotubulesEndosomesRac1TraffickingMembraneCellsEndocytosisSignalingPathwayRegulation of Caveolin‐2 Phosphorylation at Serines 23 and 36
Sowa G, Sessa W. Regulation of Caveolin‐2 Phosphorylation at Serines 23 and 36. The FASEB Journal 2007, 21: a1424-a1424. DOI: 10.1096/fasebj.21.6.a1424-b.Peer-Reviewed Original ResearchLipid rafts/caveolaeSerine 36 phosphorylationRafts/caveolaeSerine 23Cav-2Serine phosphorylationCav-1Phospho-specific antibodiesSubcellular fractionation dataSubcellular fractionation techniquesN-terminal serineEndothelial cellsCaveolar compartmentCaveolae assemblyLipid raftsSubcellular locationRegulated processSerine 36Caveolin-2Human endothelial cellsAdenoviral expressionIntracellular compartmentsPhosphorylationCaveolaeResidues 23
2005
Spying on IgE receptor signaling
Toomre D. Spying on IgE receptor signaling. Journal Of Cell Biology 2005, 171: 415-417. PMID: 16275748, PMCID: PMC2171246, DOI: 10.1083/jcb.200510105.Peer-Reviewed Original ResearchConceptsSignal transductionPlasma membrane organizationProtein-protein interactionsLipid raft microdomainsFluorescent correlation spectroscopyRaft microdomainsLipid raftsMembrane organizationIgE receptorTransductionPotential roleReceptorsCorrelation spectroscopyMicrodomainsRaftsCellsNew complexitiesComplexesDomainLipid segregation and IgE receptor signaling: A decade of progress
Holowka D, Gosse J, Hammond A, Han X, Sengupta P, Smith N, Wagenknecht-Wiesner A, Wu M, Young R, Baird B. Lipid segregation and IgE receptor signaling: A decade of progress. Biochimica Et Biophysica Acta 2005, 1746: 252-259. PMID: 16054713, DOI: 10.1016/j.bbamcr.2005.06.007.Peer-Reviewed Original ResearchConceptsLipid raftsReceptor phosphorylationSrc family kinase LynTransmembrane tyrosine phosphataseLipid segregationPlasma membrane resultsIgE receptor signalingCell surface receptorsActive LynKinase LynTyrosine phosphataseCytoskeletal interactionsSignal transductionRaft environmentMembrane skeletonDisordered regionsReceptor signalingSurface receptorsSegregation of liquidIgE receptorMembrane structureLynPhosphorylationMembrane resultsComplex role
2004
Visualization of plasma membrane compartmentalization with patterned lipid bilayers
Wu M, Holowka D, Craighead HG, Baird B. Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 13798-13803. PMID: 15356342, PMCID: PMC518836, DOI: 10.1073/pnas.0403835101.Peer-Reviewed Original ResearchConceptsLipid raftsLeaflet componentsPlasma membrane compartmentalizationReceptor clustersMembrane structural organizationLipid bilayersFcepsilon receptor ITyrosine phosphorylation activityMembrane compartmentalizationLyn kinaseInner leafletPhosphorylation activityActin polymerizationCellular componentsStructural organizationCell receptorRaftsCell activationReceptor IMast cell receptorsStructural reorganizationKinaseUnique insightsBilayersProteinA new role for Nogo as a regulator of vascular remodeling
Acevedo L, Yu J, Erdjument-Bromage H, Miao RQ, Kim JE, Fulton D, Tempst P, Strittmatter SM, Sessa WC. A new role for Nogo as a regulator of vascular remodeling. Nature Medicine 2004, 10: 382-388. PMID: 15034570, DOI: 10.1038/nm1020.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsVascular remodelingMuscle cellsVascular smooth muscle cellsCentral nervous systemIntact blood vesselsVascular injuryAxonal regenerationNeointimal proliferationMice promotesKnockout miceNervous systemVascular homeostasisFamily of proteinsVascular expansionEndothelial cellsBlood vesselsNogoNogo isoformsLipid raftsProteomic analysisN-terminusRemodelingGene transferCells
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply