2023
Design of Class I/IV Bromodomain-Targeting Degraders for Chromatin Remodeling Complexes
Zahid H, Costello J, Li Y, Kimbrough J, Actis M, Rankovic Z, Yan Q, Pomerantz W. Design of Class I/IV Bromodomain-Targeting Degraders for Chromatin Remodeling Complexes. ACS Chemical Biology 2023, 18: 1278-1293. PMID: 37260298, PMCID: PMC10698694, DOI: 10.1021/acschembio.2c00902.Peer-Reviewed Original ResearchConceptsChromatin Remodeling ComplexNon-BET bromodomainsRemodeling complexProtein degradationHeterobifunctional moleculesBET familyProtein targetsPyrimidine base analogsNumber of degradersDegradersOncogenic roleTernary complexExit vectorsWestern blottingProteinFirst exampleClass IChallenging targetComplexesCECR2ChromatinBromodomainsBPTFFamilyNanoBRET
2022
Imine Directed Cp*RhIII‐Catalyzed N−H Functionalization and Annulation with Amino Amides, Aldehydes, and Diazo Compounds
Zoll A, Molas J, Mercado B, Ellman J. Imine Directed Cp*RhIII‐Catalyzed N−H Functionalization and Annulation with Amino Amides, Aldehydes, and Diazo Compounds. Angewandte Chemie International Edition 2022, 62: e202210822. PMID: 36331194, PMCID: PMC9805510, DOI: 10.1002/anie.202210822.Peer-Reviewed Original ResearchConceptsDiazo compoundsH functionalizationAmino amidesX-ray crystallographic characterizationFive-membered rhodacycleAmino acid side chainsAcid side chainsRange of functionalitiesCrystallographic characterizationAlkyl aldehydesSide chainsEfficient reactantsFunctionalizationMinimal racemizationFirst exampleMechanistic studiesIminesAldehydesAnnulationEfficient transformationAmidesCompoundsCatalyzedPiperazinonesRhodacycleImine Directed Cp*RhIII‐Catalyzed N−H Functionalization and Annulation with Amino Amides, Aldehydes, and Diazo Compounds
Zoll A, Molas J, Mercado B, Ellman J. Imine Directed Cp*RhIII‐Catalyzed N−H Functionalization and Annulation with Amino Amides, Aldehydes, and Diazo Compounds. Angewandte Chemie 2022, 135 DOI: 10.1002/ange.202210822.Peer-Reviewed Original ResearchDiazo compoundsAmino amidesX-ray crystallographic characterizationFive-membered rhodacycleAmino acid side chainsAcid side chainsRange of functionalitiesCrystallographic characterizationAlkyl aldehydesSide chainsEfficient reactantsFunctionalizationMinimal racemizationFirst exampleMechanistic studiesIminesAldehydesAnnulationAmidesEfficient transformationCompoundsCatalyzedPiperazinonesRhodacycleReactantsStereoselective Synthesis of Allenyl Alcohols by Cobalt(III)‐Catalyzed Sequential C−H Bond Addition to 1,3‐Enynes and Aldehydes
Xu C, Tassone JP, Mercado BQ, Ellman JA. Stereoselective Synthesis of Allenyl Alcohols by Cobalt(III)‐Catalyzed Sequential C−H Bond Addition to 1,3‐Enynes and Aldehydes. Angewandte Chemie International Edition 2022, 61: e202202364. PMID: 35420724, PMCID: PMC9189073, DOI: 10.1002/anie.202202364.Peer-Reviewed Original ResearchConceptsH bond additionBond additionX-ray structural characterizationH bond substratesFirst exampleCoupling partnersSilyl groupStructural characterizationStereoselective synthesisBond substratesCyclization conditionsEnynesAdjacent alcoholsAllenyl alcoholsLarge substituentsHigh stereoselectivityBrook rearrangementAldehydesAlcohol productsCatalyzed SequentialEffective substrateAlkynesAlcoholCobaltacycleSubstituentsStereoselective Synthesis of Allenyl Alcohols by Cobalt(III)‐Catalyzed Sequential C−H Bond Addition to 1,3‐Enynes and Aldehydes
Xu C, Tassone J, Mercado B, Ellman J. Stereoselective Synthesis of Allenyl Alcohols by Cobalt(III)‐Catalyzed Sequential C−H Bond Addition to 1,3‐Enynes and Aldehydes. Angewandte Chemie 2022, 134 DOI: 10.1002/ange.202202364.Peer-Reviewed Original ResearchBond additionX-ray structural characterizationFirst exampleCoupling partnersSilyl groupStructural characterizationStereoselective synthesisBond substratesCyclization conditionsAdjacent alcoholsAllenyl alcoholsCo IIIEnynesLarge substituentsHigh stereoselectivityBrook rearrangementAlcohol productsAldehydesCatalyzed SequentialEffective substrateAlkynesAlcoholCobaltacycleSubstituentsAllenes
2021
Synthesis of α‑Branched Amines by Three- and Four-Component C–H Functionalization Employing a Readily Diversifiable Hydrazone Directing Group
Brandes DS, Muma AD, Ellman JA. Synthesis of α‑Branched Amines by Three- and Four-Component C–H Functionalization Employing a Readily Diversifiable Hydrazone Directing Group. Organic Letters 2021, 23: 9597-9601. PMID: 34881902, PMCID: PMC8785212, DOI: 10.1021/acs.orglett.1c03807.Peer-Reviewed Original ResearchMeSH KeywordsAminesConceptsH functionalizationDirecting groupH functionalization reactionsFunctionalization reactionsEfficient synthesisAmine productsTransition metalsCarboxylic acidsFirst exampleDesirable functionalitiesFunctionalizationAminesMultiple desirable functionalitiesSynthesisHeterocyclesChemistryAlkenesHydrazonesNitrilesReactionMetalsAcidProducts
2020
ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy
Vohidov F, Milling L, Chen Q, Zhang W, Bhagchandani S, Nguyen H, Irvine D, Johnson J. ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy. Chemical Science 2020, 11: 5974-5986. PMID: 34094088, PMCID: PMC8159417, DOI: 10.1039/d0sc02611e.Peer-Reviewed Original ResearchRing-opening metathesis polymerizationBottlebrush copolymersDrug deliveryCritical solution temperatureSustained drug releasePolyethylene glycolPolylactic acidActive small moleculesMetathesis polymerizationMacromolecular architecturesTBC micellesAqueous mediaPolymer networksDrug releaseVersatile scaffoldHydrogel formationPNIPAM domainsPLA domainsVersatile classSolution temperatureMicellar solutionsPhysical crosslinksSmall moleculesFirst exampleHydrogels
2018
Rhodium(III)-Catalyzed Imidoyl C–H Activation for Annulations to Azolopyrimidines
Halskov KS, Witten MR, Hoang GL, Mercado BQ, Ellman JA. Rhodium(III)-Catalyzed Imidoyl C–H Activation for Annulations to Azolopyrimidines. Organic Letters 2018, 20: 2464-2467. PMID: 29582661, PMCID: PMC5941131, DOI: 10.1021/acs.orglett.8b00816.Peer-Reviewed Original Research
2014
Cobalt(III)-Catalyzed Synthesis of Indazoles and Furans by C–H Bond Functionalization/Addition/Cyclization Cascades
Hummel JR, Ellman JA. Cobalt(III)-Catalyzed Synthesis of Indazoles and Furans by C–H Bond Functionalization/Addition/Cyclization Cascades. Journal Of The American Chemical Society 2014, 137: 490-498. PMID: 25494296, PMCID: PMC4304451, DOI: 10.1021/ja5116452.Peer-Reviewed Original ResearchConceptsH bond functionalizationSynthesis of furansFirst exampleH bond additionAir-stable cationicCost-effective routeBond functionalizationHeterocycle synthesisBond additionCatalyzed SynthesisH bondsAliphatic derivativesCyclization cascadeAlkenyl CSitu cyclizationSubstoichiometric amountsFuranSynthesisFunctionalizationHeterocyclesIndazoleMaterials researchAldehydesCatalystCationic
2010
Functionally defective germline variants of sialic acid acetylesterase in autoimmunity
Surolia I, Pirnie SP, Chellappa V, Taylor KN, Cariappa A, Moya J, Liu H, Bell DW, Driscoll DR, Diederichs S, Haider K, Netravali I, Le S, Elia R, Dow E, Lee A, Freudenberg J, De Jager PL, Chretien Y, Varki A, MacDonald ME, Gillis T, Behrens TW, Bloch D, Collier D, Korzenik J, Podolsky DK, Hafler D, Murali M, Sands B, Stone JH, Gregersen PK, Pillai S. Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature 2010, 466: 243-247. PMID: 20555325, PMCID: PMC2900412, DOI: 10.1038/nature09115.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAcetylesteraseAllelesAnimalsAntibodies, AntinuclearArthritis, RheumatoidAutoimmune DiseasesAutoimmunityBiocatalysisB-LymphocytesCarboxylic Ester HydrolasesCase-Control StudiesCell LineDiabetes Mellitus, Type 1EuropeExonsGenetic Predisposition to DiseaseGerm-Line MutationHumansMiceN-Acetylneuraminic AcidOdds RatioPolymorphism, Single NucleotideSample SizeSequence Analysis, DNA
2008
A Nanospring Named Erythrocyte. The Biomembrane Force Probe
Gourier C, Jegou A, Husson J, Pincet F. A Nanospring Named Erythrocyte. The Biomembrane Force Probe. Cellular And Molecular Bioengineering 2008, 1: 263. DOI: 10.1007/s12195-008-0030-x.Peer-Reviewed Original Research
2006
Kin distribution of amphibian larvae in the wild
HALVERSON M, SKELLY D, CACCONE A. Kin distribution of amphibian larvae in the wild. Molecular Ecology 2006, 15: 1139-1145. PMID: 16599972, DOI: 10.1111/j.1365-294x.2006.02819.x.Peer-Reviewed Original ResearchConceptsAmphibian larvaeKin selection theoryKin selection hypothesisWood frog tadpolesVertebrate groupsAnuran amphibian larvaeAnuran speciesNonreproductive animalsAnuran larvaeMicrosatellite analysisSelection hypothesisSelection theoryFrog tadpolesLarvaeSpeciesNatural conditionsTadpolesWildPondsImportant ramificationsRelativesFitnessFirst exampleFirst time
2004
Catalytic Enantioselective Synthesis of Sulfinate Esters through the Dynamic Resolution of tert-Butanesulfinyl Chloride
Evans JW, Fierman MB, Miller SJ, Ellman JA. Catalytic Enantioselective Synthesis of Sulfinate Esters through the Dynamic Resolution of tert-Butanesulfinyl Chloride. Journal Of The American Chemical Society 2004, 126: 8134-8135. PMID: 15225052, DOI: 10.1021/ja047845l.Peer-Reviewed Original ResearchSulfinate estersCatalytic dynamic resolutionNew synthetic routeCatalytic Enantioselective SynthesisChiral amine catalystSynthetic routeDynamic resolutionArylmethyl alcoholsAmine catalystSulfinyl derivativesExcellent yieldsQuantitative yieldEnantioselective synthesisEnantiomeric excessFirst exampleEstersChlorideCatalystYieldSynthesisDerivativesRouteAlcoholTransfer
1999
Low-Temperature Optical and Resonance Raman Spectra of a Carotenoid Cation Radical in Photosystem II
Vrettos J, Stewart D, de Paula J, Brudvig G. Low-Temperature Optical and Resonance Raman Spectra of a Carotenoid Cation Radical in Photosystem II. The Journal Of Physical Chemistry B 1999, 103: 6403-6406. DOI: 10.1021/jp991464q.Peer-Reviewed Original ResearchCarotenoid cation radicalsCarotenoid cationResonance Raman spectraCation radicalsSecondary electron transfer pathwayRaman spectraFT-Raman spectraPhotosystem II core complexElectron transfer pathwayII core complexesPhotosystem IIReversible photooxidationChemical oxidationCationsLow-temperature illuminationFirst exampleCytochrome b559Absorbance maximumPhotooxidationRadicalsSpectraCore complexPossible natureOxidationSpectrum characteristics
1998
Catalytic Asymmetric Oxidation of tert-Butyl Disulfide. Synthesis of tert-Butanesulfinamides, tert-Butyl Sulfoxides, and tert-Butanesulfinimines
Cogan D, Liu G, Kim K, Backes B, Ellman J. Catalytic Asymmetric Oxidation of tert-Butyl Disulfide. Synthesis of tert-Butanesulfinamides, tert-Butyl Sulfoxides, and tert-Butanesulfinimines. Journal Of The American Chemical Society 1998, 120: 8011-8019. DOI: 10.1021/ja9809206.Peer-Reviewed Original ResearchCatalytic asymmetric oxidationTert-butyl disulfideAsymmetric oxidationChiral Schiff base ligandsEster 2Schiff base ligandTert-butyl sulfoxidesBase ligandStoichiometric oxidantChiral sulfoxidesGrignard reagentsTert-butanesulfinamideExcellent precursorDisulfide 1Liquid ammoniaLithium amideNucleophilic displacementGood yieldsEnantiomeric excessOverall yieldFirst exampleSingle recrystallizationOxidationSulfoxideDisulfide
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply