2025
Modeling SMAD2 Mutations in Induced Pluripotent Stem Cells Provides Insights Into Cardiovascular Disease Pathogenesis.
Ward T, Morton S, Venturini G, Tai W, Jang M, Gorham J, Delaughter D, Wasson L, Khazal Z, Homsy J, Gelb B, Chung W, Bruneau B, Brueckner M, Tristani-Firouzi M, DePalma S, Seidman C, Seidman J. Modeling SMAD2 Mutations in Induced Pluripotent Stem Cells Provides Insights Into Cardiovascular Disease Pathogenesis. Journal Of The American Heart Association 2025, 14: e036860. PMID: 40028843, DOI: 10.1161/jaha.124.036860.Peer-Reviewed Original ResearchConceptsLoss-of-functionCongenital heart diseaseChromatin accessibilityMissense variantsCHD probandsPluripotent stem cellsHomozygous loss-of-functionCHD-associated genesHeterozygous loss-of-functionTranscription factor bindingMutant induced pluripotent stem cellsChromatin immunoprecipitation dataChromatin peaksStem cellsChromatin interactionsInduced pluripotent stem cellsFactor bindingTranscription factor NanogExome sequencingImmunoprecipitation dataTranscription factorsRNA sequencingChromatinMissenseMolecular consequencesGuidelines to Analyze ChIP-Seq Data: Journey Through QC and Analysis Considerations
De Kumar B, Krishnan J. Guidelines to Analyze ChIP-Seq Data: Journey Through QC and Analysis Considerations. Methods In Molecular Biology 2025, 2889: 193-206. PMID: 39745614, DOI: 10.1007/978-1-0716-4322-8_14.Peer-Reviewed Original ResearchConceptsChIP-seqChIP-seq analysisQC metricsProperties of transcription factorsNext-generation sequencing approachChIP-seq experimentsStudy DNA-protein interactionsGene regulatory propertiesDNA-protein interactionsENCODE consortiumChromatin stateSequencing approachTranscription factorsChromatinGenesNext-generationImmunoprecipitationSequence
2024
An integrative TAD catalog in lymphoblastoid cell lines discloses the functional impact of deletions and insertions in human genomes.
Li C, Bonder M, Syed S, Jensen M, Gerstein M, Zody M, Chaisson M, Talkowski M, Marschall T, Korbel J, Eichler E, Lee C, Shi X. An integrative TAD catalog in lymphoblastoid cell lines discloses the functional impact of deletions and insertions in human genomes. Genome Research 2024, 34: 2304-2318. PMID: 39638559, PMCID: PMC11694747, DOI: 10.1101/gr.279419.124.Peer-Reviewed Original ResearchConceptsTopologically associating domainsTopologically associating domains boundariesImpact of structural variantsLymphoblastoid cell linesStructural variantsHuman genomeGene regulationAdjacent TADsHuman lymphoblastoid cell linesCell linesSub-TADGenomic structureInsulate genesChromatin architectureImpact of deletionChromatin structureGenomeAberrant regulationAnalysis pipelineMammalian speciesGenesCCREsFunctional impactChromatinRegulationSingle-nucleus multi-omics analyses reveal cellular and molecular innovations in the anterior cingulate cortex during primate evolution
Yuan J, Dong K, Wu H, Zeng X, Liu X, Liu Y, Dai J, Yin J, Chen Y, Guo Y, Luo W, Liu N, Sun Y, Zhang S, Su B. Single-nucleus multi-omics analyses reveal cellular and molecular innovations in the anterior cingulate cortex during primate evolution. Cell Genomics 2024, 4: 100703. PMID: 39631404, PMCID: PMC11701334, DOI: 10.1016/j.xgen.2024.100703.Peer-Reviewed Original ResearchConceptsChromatin accessibilitySingle-nucleusGene expressionTranscription factor bindingPatterns of gene expressionSingle-nucleus resolutionCell lineage originACC gene expressionPrimate evolutionMulti-omics analysisAnterior cingulate cortexFactor bindingEvolutionary roleFunctional innovationSequence changesMolecular innovationsVon Economo neuronsMolecular regulationMarker genesPublished mouse dataCell typesChromatinMolecular identityHuman originCingulate cortexEpigenetics-targeted drugs: current paradigms and future challenges
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduction And Targeted Therapy 2024, 9: 332. PMID: 39592582, PMCID: PMC11627502, DOI: 10.1038/s41392-024-02039-0.Peer-Reviewed Original ResearchConceptsNon-coding RNA regulationDNA base sequenceRNA modificationsRNA regulationChromatin remodelingHistone modificationsEnhancer of zeste homolog 2Epigenetic landscapeGenetic informationOrganismal developmentDNA methyltransferasesEpigenetic enzymesDNA modificationsBase sequenceHomolog 2Zeste homolog 2Histone deacetylasesHuman diseasesIsocitrate dehydrogenaseDNAPathological contextsRegulatory systemChromatinEnzymeHistoneThe maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus
Kojima M, Hoppe C, Giraldez A. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nature Reviews Genetics 2024, 26: 245-267. PMID: 39587307, PMCID: PMC11928286, DOI: 10.1038/s41576-024-00792-0.Peer-Reviewed Original ResearchCohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion
Yuan T, Yan H, Li K, Surovtsev I, King M, Mochrie S. Cohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion. Genome Biology 2024, 25: 293. PMID: 39543681, PMCID: PMC11566905, DOI: 10.1186/s13059-024-03432-2.Peer-Reviewed Original ResearchConceptsTopologically associating domainsLoop extrusionTopologically associating domains boundariesNon-vertebrate eukaryotesChIP-seq dataChromatin spatial organizationTree of lifeHi-C mapsBinds CTCFCohesin distributionTAD boundariesCTCF sitesChromatin organizationDNA sequencesCTCFCohesinYeastChromatinSpatial organizationEukaryotesGenomeResultsToVertebratesExtrusion factorsOrganizationComparative single-cell multiome identifies evolutionary changes in neural progenitor cells during primate brain development
Liu Y, Luo X, Sun Y, Chen K, Hu T, You B, Xu J, Zhang F, Cheng Q, Meng X, Yan T, Li X, Qi X, He X, Guo X, Li C, Su B. Comparative single-cell multiome identifies evolutionary changes in neural progenitor cells during primate brain development. Developmental Cell 2024, 60: 414-428.e8. PMID: 39481377, DOI: 10.1016/j.devcel.2024.10.005.Peer-Reviewed Original ResearchEvolutionary changesDistal regulatory elementsGene regulatory mechanismsExtracellular matrixSingle-cell multiomicsProgenitor cellsTranscriptional divergenceEvolutionary divergenceChromatin regionsChromatin accessibilityNeural progenitorsRegulatory elementsSequence changesTranscriptional rewiringGenetic mechanismsMouse prefrontal cortexRegulatory mechanismsPrefrontal cortexHuman neural progenitorsHuman-specific featuresUpper-layer neuronsNeural progenitor cellsChromatinCellular propertiesProgenitor proliferationImage-based 3D genomics through chromatin tracing
Yang T, Wang S. Image-based 3D genomics through chromatin tracing. Nature Reviews Methods Primers 2024, 4: 76. DOI: 10.1038/s43586-024-00354-y.Peer-Reviewed Original ResearchChromatin tracingChromatin organizationHigh-throughput sequencing-based methodsRegulation of gene expressionSequencing-based methodsSingle-cellGenetic screening technologiesGenome foldingGenomic scaleGenome functionChromatin labelingGenomic levelSpectrum of cell typesDNA replicationModel organismsChromatinGene expressionIntact cellsSystematic profilingSingle-molecule levelCell typesGenomeScreening technologiesFilling major gapsPrimersSomatic mosaicism in schizophrenia brains reveals prenatal mutational processes
Maury E, Jones A, Seplyarskiy V, Nguyen T, Rosenbluh C, Bae T, Wang Y, Abyzov A, Khoshkhoo S, Chahine Y, Zhao S, Venkatesh S, Root E, Voloudakis G, Roussos P, Network B, Park P, Akbarian S, Brennand K, Reilly S, Lee E, Sunyaev S, Walsh C, Chess A. Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes. Science 2024, 386: 217-224. PMID: 39388546, PMCID: PMC11490355, DOI: 10.1126/science.adq1456.Peer-Reviewed Original ResearchConceptsTranscription factor binding sitesWhole-genome sequencingOpen chromatinMutational processesSomatic mutationsFactor binding sitesSchizophrenia casesSchizophrenia risk genesSomatic mosaicismSomatic variantsRisk genesG mutationGene expressionGermline mutationsBinding sitesGenesMutationsIncreased somatic mutationsChromatinMosaic somatic mutationsPrenatal neurogenesisContext of schizophreniaBrain neuronsSchizophrenia brainVariantsDetection and analysis of complex structural variation in human genomes across populations and in brains of donors with psychiatric disorders
Zhou B, Arthur J, Guo H, Kim T, Huang Y, Pattni R, Wang T, Kundu S, Luo J, Lee H, Nachun D, Purmann C, Monte E, Weimer A, Qu P, Shi M, Jiang L, Yang X, Fullard J, Bendl J, Girdhar K, Kim M, Chen X, Consortium P, Greenleaf W, Duncan L, Ji H, Zhu X, Song G, Montgomery S, Palejev D, Dohna H, Roussos P, Kundaje A, Hallmayer J, Snyder M, Wong H, Urban A. Detection and analysis of complex structural variation in human genomes across populations and in brains of donors with psychiatric disorders. Cell 2024, 187: 6687-6706.e25. PMID: 39353437, PMCID: PMC11608572, DOI: 10.1016/j.cell.2024.09.014.Peer-Reviewed Original ResearchComplex structural variationsNatural human genetic variationHuman genetic variationCell type-specific expressionHuman-specific evolutionDifferential gene expressionStructural variationsContinental populationsChromatin accessibilityHuman genomeGenetic variationNeural genesGenomeGene expressionRisk allelesMolecular etiologyCell typesGenesPostmortem brainsChromatinLociAllelesMachine-learning-based methodsMultiomicsBrain regionsFunctional Roles of H3K4 Methylation in Transcriptional Regulation
Yu H, Lesch B. Functional Roles of H3K4 Methylation in Transcriptional Regulation. Molecular And Cellular Biology 2024, 44: 505-515. PMID: 39155435, PMCID: PMC11529435, DOI: 10.1080/10985549.2024.2388254.Peer-Reviewed Original ResearchTranscriptional regulationAssociated with active transcriptionHistone 3 lysine 4 methylationFunctional roleTranscribed lociOpen chromatinActivate transcriptionChromatin modificationsH3K4 methylationRegulatory elementsHistone methyltransferaseEpigenetic editingTranscriptional activityResidue mutationsMammalian systemsCell differentiationHistoneH3K4me1H3K4meH3K4me3ChromatinRegulationH3K4YeastLociACLY and ACSS2 link nutrient-dependent chromatin accessibility to CD8 T cell effector responses
Kaymak I, Watson M, Oswald B, Ma S, Johnson B, DeCamp L, Mabvakure B, Luda K, H. E, Lau K, Fu Z, Muhire B, Kitchen-Goosen S, Vander Ark A, Dahabieh M, Samborska B, Vos M, Shen H, Fan Z, Roddy T, Kingsbury G, Sousa C, Krawczyk C, Williams K, Sheldon R, Kaech S, Roy D, Jones R. ACLY and ACSS2 link nutrient-dependent chromatin accessibility to CD8 T cell effector responses. Journal Of Experimental Medicine 2024, 221: e20231820. PMID: 39150482, PMCID: PMC11329787, DOI: 10.1084/jem.20231820.Peer-Reviewed Original ResearchConceptsAcyl-CoA synthetase short-chain family member 2Acetyl-CoA productionATP citrate lyaseChromatin accessibilityAcetyl-CoAEnzyme ATP citrate lyaseFamily member 2Function in vivoCoordination of cellular metabolismTCA cycleMetabolic nodesGene locusCitrate lyaseT cell effector responsesHistone acetylationCellular metabolismEffector functionsCD8 T cellsResponse to infectionMember 2ChromatinEffector responsesMetabolic substratesT cell response to infectionT cellsIdentifying topologically associating domains using differential kernels
Maisuradze L, King M, Surovtsev I, Mochrie S, Shattuck M, O’Hern C. Identifying topologically associating domains using differential kernels. PLOS Computational Biology 2024, 20: e1012221. PMID: 39008525, PMCID: PMC11249266, DOI: 10.1371/journal.pcbi.1012221.Peer-Reviewed Original ResearchConceptsTopologically associating domainsHi-C mapsFalse discovery rateChromatin conformation capture techniquesEnhancer-promoter interactionsLow false discovery rateSelf-interacting regionsStructure of chromatinRegulate gene expressionAverage contact probabilitiesHi-CLocus IDNA transcriptionGene expressionChromatinDiscovery rateContact probabilityBiological phenomenaState-of-the-artKernel-based techniqueComputer visionReplicationCorrelated changesDisease statesCapture techniquesBACH2 regulates diversification of regulatory and proinflammatory chromatin states in TH17 cells
Thakore P, Schnell A, Huang L, Zhao M, Hou Y, Christian E, Zaghouani S, Wang C, Singh V, Singaraju A, Krishnan R, Kozoriz D, Ma S, Sankar V, Notarbartolo S, Buenrostro J, Sallusto F, Patsopoulos N, Rozenblatt-Rosen O, Kuchroo V, Regev A. BACH2 regulates diversification of regulatory and proinflammatory chromatin states in TH17 cells. Nature Immunology 2024, 25: 1395-1410. PMID: 39009838, DOI: 10.1038/s41590-024-01901-1.Peer-Reviewed Original ResearchConceptsTransposase-accessible chromatin sequencingSingle-cell RNA sequencingTh17 heterogeneitySingle-cell assaysScATAC-seqChromatin landscapeChromatin stateChromatin sequencingRegulatory networksScRNA-seqTh17 cell pathogenicityHuman geneticsIn vivoRNA sequencingChromatin configurationRegulatory pathwaysTissue homeostasisCell statesCells in vitroBach2ChromatinSequenceCellsType 1 helper T (Th1) cellsCD4+ T cell subsetsMitochondrial regulation of erythropoiesis in homeostasis and disease
Menon V, Slavinsky M, Hermine O, Ghaffari S. Mitochondrial regulation of erythropoiesis in homeostasis and disease. British Journal Of Haematology 2024, 205: 429-439. PMID: 38946206, PMCID: PMC11619715, DOI: 10.1111/bjh.19600.Peer-Reviewed Original ResearchClearance of mitochondriaComplex maturation processCell maturation processMitochondrial DNAMitochondrial participationChromatin condensationMitochondrial regulationMaturation processRetention of mitochondriaErythroid cell maturationNuclear expulsionMitochondriaErythroblast enucleationRed blood cell productionMature red blood cellsErythroid maturationRegulation of erythropoiesisCell maturationErythroid cellsHomeostasisCellsDisease conditionsRed blood cellsChromatinOrganellesSingle-cell genomics and regulatory networks for 388 human brains
Emani P, Liu J, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee C, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken T, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard J, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman G, Huang A, Jiang Y, Jin T, Jorstad N, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran J, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan A, Riesenmy T, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini K, Wamsley B, Wang G, Xia Y, Xiao S, Yang A, Zheng S, Gandal M, Lee D, Lein E, Roussos P, Sestan N, Weng Z, White K, Won H, Girgenti M, Zhang J, Wang D, Geschwind D, Gerstein M, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Berretta S, Bharadwaj R, Bhattacharya A, Brennand K, Capauto D, Champagne F, Chatzinakos C, Chen H, Cheng L, Chess A, Chien J, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duong D, Eagles N, Edelstein J, Galani K, Girdhar K, Goes F, Greenleaf W, Guo H, Guo Q, Hadas Y, Hallmayer J, Han X, Haroutunian V, He C, Hicks S, Ho M, Ho L, Huang Y, Huuki-Myers L, Hyde T, Iatrou A, Inoue F, Jajoo A, Jiang L, Jin P, Jops C, Jourdon A, Kellis M, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Li J, Li M, Lin X, Liu S, Liu C, Loupe J, Lu D, Ma L, Mariani J, Martinowich K, Maynard K, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Mukamel E, Nairn A, Nemeroff C, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Pinto D, Pochareddy S, Pollard K, Pollen A, Przytycki P, Purmann C, Qin Z, Qu P, Raj T, Reach S, Reimonn T, Ressler K, Ross D, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Seyfried N, Shao Z, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Voloudakis G, Wang T, Wang S, Wang Y, Wei Y, Weimer A, Weinberger D, Wen C, Whalen S, Willsey A, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang Y, Ziffra R, Zeier Z, Zintel T. Single-cell genomics and regulatory networks for 388 human brains. Science 2024, 384: eadi5199. PMID: 38781369, PMCID: PMC11365579, DOI: 10.1126/science.adi5199.Peer-Reviewed Original ResearchConceptsSingle-cell genomicsSingle-cell expression quantitative trait locusExpression quantitative trait lociDrug targetsQuantitative trait lociPopulation-level variationSingle-cell expressionCell typesDisease-risk genesTrait lociGene familyRegulatory networksGene expressionCell-typeMultiomics datasetsSingle-nucleiGenomeGenesCellular changesHeterogeneous tissuesExpressionCellsChromatinLociMultiomicsNovel protein-truncating variants of a chromatin-modifying gene MSL2 in syndromic neurodevelopmental disorders
Lu X, Ng K, Pinto e Vairo F, Collins J, Cohn R, Riley K, Agre K, Gavrilova R, Klee E, Rosenfeld J, Jiang Y. Novel protein-truncating variants of a chromatin-modifying gene MSL2 in syndromic neurodevelopmental disorders. European Journal Of Human Genetics 2024, 32: 879-883. PMID: 38702431, PMCID: PMC11219747, DOI: 10.1038/s41431-024-01576-0.Peer-Reviewed Original ResearchProtein-truncating variantsSyndromic neurodevelopmental disorderGenomic studiesChromatin-modifying enzymesAcetylation of histone H4Neurodevelopmental disordersLysine 34Histone 2BMono-ubiquitinationLysine 16Epigenetic machineryGenomic evaluationMSL2Exome sequencingHistone H4Epigenetic regulationModifying enzymesEpigenetic genesFunctional importanceGenesChromatinLysineDevelopmental disordersDysmorphic faceVariantsEffect of loops on the mean-square displacement of Rouse-model chromatin
Yuan T, Yan H, Bailey M, Williams J, Surovtsev I, King M, Mochrie S. Effect of loops on the mean-square displacement of Rouse-model chromatin. Physical Review E 2024, 109: 044502. PMID: 38755928, DOI: 10.1103/physreve.109.044502.Peer-Reviewed Original ResearchConceptsStretching exponentConsistent with recent experimentsTopologically associating domainsMean square displacementRecent experimentsLoop extrusionExponent valuesTAD formationTree of lifeDynamics of chromatinExponentEffects of loopChromatin lociChromatin dynamicsRouse modelChromatin organizationChromatin mobilityGene locusContact mapsDynamicsChromatinLoopPolymer dynamicsLociPolymer simulationsTranscription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape
Boddu P, Gupta A, Roy R, De La Peña Avalos B, Olazabal-Herrero A, Neuenkirchen N, Zimmer J, Chandhok N, King D, Nannya Y, Ogawa S, Lin H, Simon M, Dray E, Kupfer G, Verma A, Neugebauer K, Pillai M. Transcription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape. Molecular Cell 2024, 84: 1475-1495.e18. PMID: 38521065, PMCID: PMC11061666, DOI: 10.1016/j.molcel.2024.02.032.Peer-Reviewed Original ResearchRate of RNA polymerase IIChromatin landscapeElongation defectsElongation rate of RNA polymerase IIImpaired protein-protein interactionsSplicing of pre-messenger RNATranscription elongation defectsRNA polymerase IIProtein-protein interactionsPre-messenger RNACancer-associated mutationsIsogenic cell linesSin3/HDAC complexGene bodiesPolymerase IIChromatin accessibilityH3K4me3 markChromatin changesMutant SF3B1ChromatinMutant mouse modelsEpigenetic disordersEpigenetic factorsHuman diseasesMutant state
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply