2024
Nanomodulators targeting endothelial WNT and pericytes to reversibly open the blood–tumor barrier for boosted brain tumor therapy
Mu R, Sun H, Zeng Y, Tong Y, Tang P, Zhao M, Lv Z, Yu J, Chen Y, Lan Q, Zhen X, Han L. Nanomodulators targeting endothelial WNT and pericytes to reversibly open the blood–tumor barrier for boosted brain tumor therapy. Journal Of Controlled Release 2024, 369: 458-474. PMID: 38575077, DOI: 10.1016/j.jconrel.2024.03.047.Peer-Reviewed Original ResearchBreast cancer brain metastasesCancer brain metastasesBrain metastasesMedian survival of miceWnt signalingTumor-associated blood vesselsBlood-tumor barrierSurvival of miceBrain tumor therapyImproving chemotherapeutic efficiencyBrain-targeting drugsMedian survivalIntracranial edemaChemotherapeutic drugsICAM-1Tumor pericytesBrain entryTumor therapyChemotherapeutic efficiencyMetastasisInactivate Wnt signalingPericytesBlood vesselsIbrutinibBreastOvercoming Resistance in Prostate Cancer Therapy Using a DZ-Simvastatin Conjugate
Ou Y, Chu G, Lyu J, Yin L, Lim A, Zhai N, Cui X, Lewis M, Edderkaoui M, Pandol S, Wang R, Zhang Y. Overcoming Resistance in Prostate Cancer Therapy Using a DZ-Simvastatin Conjugate. Molecular Pharmaceutics 2024, 21: 873-882. PMID: 38229228, PMCID: PMC11025579, DOI: 10.1021/acs.molpharmaceut.3c00993.Peer-Reviewed Original ResearchConceptsProstate cancerTherapeutic resistanceTarget PC cellsAndrogen receptor statusTraditional systemic treatmentsSuppressed xenograft tumor formationProstate cancer therapyCastration-resistant formTumor cell targetsPC cellsSignificant side effectsCancer-related deathsCell deathHeptamethine carbocyanine dyeXenograft tumor formationPC cell linesXenograft tumor modelReceptor statusHormone therapySystemic treatmentSafety profileTumor cellsChemotherapeutic drugsTumor modelCancer therapyAntitumor efficacy of a sequence-specific DNA-targeted γPNA-based c-Myc inhibitor
Malik S, Pradeep S, Kumar V, Xiao Y, Deng Y, Fan R, Vasquez J, Singh V, Bahal R. Antitumor efficacy of a sequence-specific DNA-targeted γPNA-based c-Myc inhibitor. Cell Reports Medicine 2024, 5: 101354. PMID: 38183981, PMCID: PMC10829792, DOI: 10.1016/j.xcrm.2023.101354.Peer-Reviewed Original ResearchConceptsTarget genomic DNAGenomic DNASequencing of genomic DNAGenomic DNA levelInhibit c-myc transcriptionC-myc transcriptionGenomic DNA targetsTarget oncogenesMultiple cell linesC-Myc inhibitorCancer therapyHistone deacetylase inhibitorsRNA targetsDNA targetsPatient-derived xenograftsPre-clinical modelsDNADeacetylase inhibitorsCell linesOncogeneInhibiting oncogenesDNA levelsAntitumor efficacyPrecision medicineChemotherapeutic drugs
2023
P-613 Deletion of the CLPP gene in oocytes exacerbates chemotherapy-induced ovarian damage
Gu J, Guo C, Xiao Y, Hua R, Hai Z, Zhao P, Su J, Wang T. P-613 Deletion of the CLPP gene in oocytes exacerbates chemotherapy-induced ovarian damage. Human Reproduction 2023, 38 DOI: 10.1093/humrep/dead093.942.Peer-Reviewed Original ResearchChemotherapy-induced ovarian damageOvarian damageOocyte functionOocyte competenceChemotherapeutic drugsPremature ovarian insufficiencyChemotherapeutic drug cyclophosphamideOocyte-specific deletionTest of miceCaseinolytic peptidase PEarly embryo developmentClpP geneCyclophosphamide modelAneuploidy rateMII oocytesProportion of folliclesMII stageOvarian insufficiencyCKO miceWIDER IMPLICATIONSChemotherapy drugsMouse modelMitochondrial distributionDrug cyclophosphamideOocyte maturation
2022
Cancer Drug Dosing in Chronic Kidney Disease and Dialysis
Shirali AC, Sprangers B. Cancer Drug Dosing in Chronic Kidney Disease and Dialysis. Advances In Kidney Disease And Health 2022, 29: 208-216.e1. PMID: 35817528, DOI: 10.1053/j.ackd.2021.12.002.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsChronic kidney diseaseKidney diseaseKidney functionEnd-stage kidney diseasePatient's kidney functionRenal replacement therapyCurrent dosing strategiesClassic chemotherapeutic drugsReplacement therapyDosing strategiesHigh prevalenceDrug dosingKidney metabolismAntineoplastic agentsPharmacokinetic propertiesChemotherapeutic drugsDiseaseSpecific agentsPatientsDosingTherapyDrugsAgentsImmunotherapyMalignancy
2021
5‐Fluorouracil efficacy requires anti‐tumor immunity triggered by cancer‐cell‐intrinsic STING
Tian J, Zhang D, Kurbatov V, Wang Q, Wang Y, Fang D, Wu L, Bosenberg M, Muzumdar MD, Khan S, Lu Q, Yan Q, Lu J. 5‐Fluorouracil efficacy requires anti‐tumor immunity triggered by cancer‐cell‐intrinsic STING. The EMBO Journal 2021, 40: embj2020106065. PMID: 33615517, PMCID: PMC8013832, DOI: 10.15252/embj.2020106065.Peer-Reviewed Original ResearchConceptsAnti-tumor immunityTumor burdenSubsequent type I interferon productionHigh STING expressionIntratumoral T cellsT-cell depletionType I interferon productionI interferon productionLoss of STINGImmunocompetent hostsColorectal specimensT cellsSTING expressionBetter survivalHigh doseTherapeutic effectivenessHuman colorectal specimensMelanoma tumorsInterferon productionChemotherapeutic drugsMurine colonImmunityEfficacyStingsColon
2020
P375 To evaluate the effectiveness of primary prevention of anthracycline cardiotoxicity using modern STE technologies
Nesvetov V, Vasyuk Y, Shkolnik E, Yushuk E. P375 To evaluate the effectiveness of primary prevention of anthracycline cardiotoxicity using modern STE technologies. European Heart Journal - Cardiovascular Imaging 2020, 21 DOI: 10.1093/ehjci/jez319.223.Peer-Reviewed Original ResearchPrevention of anthracycline cardiotoxicityAnthracycline cardiotoxicityBreast cancerLeft ventricleMonths of follow-upSubclinical systolic dysfunctionLV ejection fractionEffects of ivabradineGlobal longitudinal strainCollection of anamnesisAppearance of clinical manifestationsControl groupHeart rateDevelopment of cardiomyopathySix-month treatmentHeart rate >Beats per minuteSystolic dysfunctionEjection fractionEchocardiographic indicesPrescribed chemotherapyDaily doseClinical manifestationsChemotherapeutic drugsHeart failure
2019
Peritoneal Perfusion Techniques
Berger Y, Mogal H, Turaga K. Peritoneal Perfusion Techniques. 2019, 199-211. DOI: 10.1007/978-3-030-28891-4_17.Peer-Reviewed Original ResearchHyperthermic intraperitoneal chemotherapyEarly postoperative intraperitoneal chemotherapyPressurized intraperitoneal aerosol chemotherapyCurative cytoreductive surgeryIntraperitoneal chemotherapyPeritoneal metastasisIntraperitoneal drug concentrationsPeritoneal-plasma barrierPostoperative intraperitoneal chemotherapyPrimary peritoneal originIntraperitoneal drug deliverySpecifically to cancer cellsDrug tissue penetrationIntraperitoneal chemotherapy deliveryComposition of perfusatesBidirectional chemotherapyCytoreductive surgeryAerosol chemotherapyChemotherapy deliveryPeritoneal originChemotherapeutic drugsChemotherapyTreatment strategiesIntraperitoneal useCancer cellsHistomorphology of pancreatic cancer in patients with inherited ATM serine/threonine kinase pathogenic variants
Hutchings D, Jiang Z, Skaro M, Weiss M, Wolfgang C, Makary M, He J, Cameron J, Zheng L, Klimstra D, Brand R, Singhi A, Goggins M, Klein A, Roberts N, Hruban R. Histomorphology of pancreatic cancer in patients with inherited ATM serine/threonine kinase pathogenic variants. Modern Pathology 2019, 32: 1806-1813. PMID: 31285527, PMCID: PMC7403604, DOI: 10.1038/s41379-019-0317-6.Peer-Reviewed Original ResearchConceptsATM pathogenic variantsIntraductal papillary mucinous neoplasmGermline pathogenic variantsPapillary mucinous neoplasmPancreatic cancerPathogenic variantsHistological subtypesMucinous neoplasmsDuctal adenocarcinomaIncreased risk of pancreatic ductal adenocarcinomaIncipient intraductal papillary mucinous neoplasmsRisk of pancreatic ductal adenocarcinomaSporadic pancreatic cancerGermline genetic testingPancreatic intraepithelial neoplasiaPancreatic cancer patientsNon-invasive precursor lesionsPancreatic ductal adenocarcinomaAdenosquamous carcinomaIntraepithelial neoplasiaPrecursor lesionsChemotherapeutic drugsCancer patientsIncreased riskATM serine/threonine kinase
2018
PO-136 Studying pathway interactions and dynamics to predict cell responses to chemotherapeutic treatment in breast cancer cells
Tuffery L, Kholodenko B, Kolch W, Halasz M, Fey D. PO-136 Studying pathway interactions and dynamics to predict cell responses to chemotherapeutic treatment in breast cancer cells. ESMO Open 2018, 3: a279-a280. DOI: 10.1136/esmoopen-2018-eacr25.660.Peer-Reviewed Original ResearchBreast cancer cell linesDoxorubicin treatmentCancer cell linesCell linesDifferent breast cancer cell linesBreast cancer cellsMCF10A cellsDifferent mutation patternsMechanism of actionPhosphorylation of JNKBreast cancer tumor samplesCommon cancerPatient responseTreatment strategiesBreast cancerTreatment responseChemotherapeutic treatmentCell responsesFlow cytometryTumor samplesWestern blotNon-cancerous cellsChemotherapeutic drugsPathway interactionsCancer cells
2017
Salinomycin Induces Reactive Oxygen Species and Apoptosis in Aggressive Breast Cancer Cells as Mediated with Regulation of Autophagy
Kim K, Park K, Kim S, Yu S, Lee D, Kim Y, Noh K, YEUL J, Seo Y, Ahn S. Salinomycin Induces Reactive Oxygen Species and Apoptosis in Aggressive Breast Cancer Cells as Mediated with Regulation of Autophagy. Anticancer Research 2017, 37: 1747-1758. PMID: 28373437, DOI: 10.21873/anticanres.11507.Peer-Reviewed Original ResearchConceptsMDA-MB-231 cellsAggressive breast cancer cellsBreast cancer cellsCancer cellsReactive oxygen speciesBreast cancer cell linesROS productionMitochondrial membrane potentialScavenger of ROSInduces reactive oxygen speciesCancer cell linesCaspase-3/9 activityPropidium iodide stainingMCF-7 cellsOxygen speciesAcceleration of apoptosisAcridine orange stainingAutophagy inhibitionMonocarboxylic ionophoreChemotherapeutic drugsCancer treatmentMitochondrial dysfunctionIodide stainingRegulation of autophagyUnderlying mechanismEffects of paclitaxel on the development of neuropathy and affective behaviors in the mouse
Toma W, Kyte S, Bagdas D, Alkhlaif Y, Alsharari S, Lichtman A, Chen Z, Del Fabbro E, Bigbee J, Gewirtz D, Damaj M. Effects of paclitaxel on the development of neuropathy and affective behaviors in the mouse. Neuropharmacology 2017, 117: 305-315. PMID: 28237807, PMCID: PMC5489229, DOI: 10.1016/j.neuropharm.2017.02.020.Peer-Reviewed Original ResearchConceptsCancer chemotherapeutic drugsCancer patientsPreclinical modelsSide effectsAffective symptomsMajor dose-limiting side effectDose-limiting side effectChemotherapeutic drugsLight/dark box testNerve fiber dysfunctionPaclitaxel-treated miceProgression-free survivalSucrose preference testDepression-like behaviorOvarian cancer patientsSevere side effectsAnxiety-like behaviorPotential therapeutic interventionsEffect of paclitaxelAnhedonia-like stateDark box testCold allodyniaNeuropathic painNegative affective symptomsNociceptive effectsUpdate on the Renal Effects of Anticancer Agents
Perazella M. Update on the Renal Effects of Anticancer Agents. Journal Of Onco-Nephrology 2017, 1: 170-178. DOI: 10.5301/jo-n.5000026.Peer-Reviewed Original ResearchAnticancer drug nephrotoxicityChronic kidney injuryKidney injuryDrug nephrotoxicityAcute interstitial nephritisAcute kidney injuryAcute tubular injuryNumber of drugsNumber of lesionsAcid-base disturbancesNephrology updateRenal effectsNovel immunotherapiesTubular injuryInterstitial nephritisGlomerular injuryKidney diseaseCancer patientsConventional chemotherapyRenal metabolismSystemic toxicityInjuryNephrotoxicityChemotherapeutic drugsPatients
2016
[Cardiooncology: Current Aspects of Prevention of Anthracycline Toxicity].
Vasyuk Y, Shkolnik E, Nesterov V, Shkolnik L, Varlan G. [Cardiooncology: Current Aspects of Prevention of Anthracycline Toxicity]. Kardiologiia 2016, 56: 72-79. PMID: 28290807.Peer-Reviewed Original ResearchConceptsPrevention of anthracycline cardiotoxicityMolecular targeted therapySevere side effectsAnthracycline administrationAnthracycline cardiotoxicityChemotherapeutic agentsChemotherapeutic drugsClinical studiesSide effectsAntineoplastic drugsAnthracyclinesCardiotoxicityEarly detectionDrugMyelotoxicityMalignancyEpirubicinThromboembolismTherapyAclarubicinAgentsAlopeciaDaunorubicinDoxorubicinCancerPEGylated squalenoyl-gemcitabine nanoparticles for the treatment of glioblastoma
Gaudin A, Song E, King AR, Saucier-Sawyer JK, Bindra R, Desmaële D, Couvreur P, Saltzman WM. PEGylated squalenoyl-gemcitabine nanoparticles for the treatment of glioblastoma. Biomaterials 2016, 105: 136-144. PMID: 27521616, PMCID: PMC5072177, DOI: 10.1016/j.biomaterials.2016.07.037.Peer-Reviewed Original ResearchConceptsConvection-enhanced deliveryGlioblastoma multiformeChemotherapeutic drugsFirst-line treatmentExtracranial solid tumorTumor-bearing animalsSurvival of animalsBrain extracellular spaceLine treatmentTumor bedIntracranial tumorsOrthotopic modelTreatment resistanceSolid tumorsGBM treatmentTherapeutic efficacyNew treatmentsTumor tissueHealthy animalsGBM prognosisFree gemcitabineMR contrast agentsNucleoside analoguesDrugsGemcitabine
2015
Immunotherapy and targeted therapy for cervical cancer: an update
Menderes G, Black J, Schwab CL, Santin AD. Immunotherapy and targeted therapy for cervical cancer: an update. Expert Review Of Anticancer Therapy 2015, 16: 83-98. PMID: 26568261, DOI: 10.1586/14737140.2016.1121108.Peer-Reviewed Original ResearchConceptsCervical cancer patientsCervical cancerCancer patientsImmune check pointsUse of immunotherapyMetastatic cervical cancerPrognosis of patientsActionable driver mutationsTyrosine kinase inhibitorsImmune system interactionsImmunotherapy studiesMedian survivalAngiogenesis inhibitorsChemotherapeutic drugsPatientsDriver mutationsKinase inhibitorsNew therapeuticsCancerNext-generation sequencingImmunotherapyTherapyGeneration sequencingInhibitorsPrognosis
2012
Verification of supraselective drug delivery for retinoblastoma using intra-arterial gadolinium
Materin MA, Kuzmik GA, Jubinsky PT, Minja FJ, Asnes JD, Bulsara KR. Verification of supraselective drug delivery for retinoblastoma using intra-arterial gadolinium. Journal Of NeuroInterventional Surgery 2012, 5: e42. PMID: 23188789, DOI: 10.1136/neurintsurg-2012-010508.rep.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic Agents, AlkylatingCerebral AngiographyContrast MediaDrug Delivery SystemsFollow-Up StudiesGadoliniumHumansInfantInjections, Intra-ArterialIntraoperative PeriodMagnetic Resonance AngiographyMaleMelphalanRetinal ArteryRetinal DetachmentRetinal NeoplasmsRetinoblastomaTreatment OutcomeVisual AcuityVerification of supraselective drug delivery for retinoblastoma using intra-arterial gadolinium
Materin MA, Kuzmik GA, Jubinsky PT, Minja FJ, Asnes JD, Bulsara KR. Verification of supraselective drug delivery for retinoblastoma using intra-arterial gadolinium. BMJ Case Reports 2012, 2012: bcr2012010508. PMID: 23162039, PMCID: PMC4545047, DOI: 10.1136/bcr-2012-010508.Peer-Reviewed Original Research
2010
The prevention of chemotherapy induced peripheral neuropathy by concurrent treatment with drugs used for bipolar disease: a retrospective chart analysis in human cancer patients
Wadia R, Stolar M, Grens C, Ehrlich B, Chao H. The prevention of chemotherapy induced peripheral neuropathy by concurrent treatment with drugs used for bipolar disease: a retrospective chart analysis in human cancer patients. Oncotarget 2010, 5: 2-2. DOI: 10.18632/oncotarget.23441.Peer-Reviewed Original ResearchPeripheral neuropathyNeuronal calcium sensor-1Valproic acidSide effectsBipolar diseaseRetrospective chart review studyDose-limiting side effectChemotherapeutic drugsAltered calcium signalingDevelopment of CIPNPrevention of chemotherapyInitiation of chemotherapyMain dose-limiting side effectChart review studyRetrospective chart analysisVA electronic health recordMajor adverse effectsNumber of patientsDuration of survivalCalcium signalingHuman cancer patientsAberrant calcium signalingQuality of lifeElectronic health recordsApplication of drugsChemotherapy-Induced Hypocalcemia
Ajero P, Belsky J, Prawius H, Rella V. Chemotherapy-Induced Hypocalcemia. Endocrine Practice 2010, 16: 284-290. PMID: 19789154, DOI: 10.4158/ep09137.ra.Peer-Reviewed Original ResearchConceptsTumor lysis syndromeSevere hypocalcemiaParathyroid hormone suppressionCourses of chemotherapyParathyroid hormone levelsManagement of cancer patientsCompletion of treatmentHodgkin lymphomaChemotherapeutic regimenHormone suppressionChemotherapeutic managementSerum calciumLaboratory findingsChemotherapeutic agentsChemotherapeutic drugsVitamin DHormone levelsHypocalcemiaCancer patientsVinca alkaloidsBiochemical abnormalitiesUnique caseChemotherapySerial testingTumor
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply