2025
Evaluation of nonspecific reactivity rates across three immunohematology testing platforms with assessment of subsequent specific alloantibody development
Yurtsever N, Carmichael G, Malonis R, Madden M, Isik N, Ahmed M, Bizzario L, Shah B, Tormey C, Lee E. Evaluation of nonspecific reactivity rates across three immunohematology testing platforms with assessment of subsequent specific alloantibody development. Transfusion 2025 PMID: 40251842, DOI: 10.1111/trf.18256.Peer-Reviewed Original ResearchNonspecific reactivityAntibody screeningStrength of reactivityRate of positivityReagent red cellsAlloantibody developmentKruskal-Wallis testAntibody historyChart reviewPretransfusion testingAntibody identificationIRB approvalIdentification panelKruskal-WallisPositive screenAntibody detectionRed cellsAntibodiesAlloantibodiesStudy periodReactivation rateTube testNonspecific reactionsScreeningCellsMIF as an oncogenic driver of low‐heterogeneity melanomas
Tran T, Sánchez‐Zuno G, Kulkarni R, Kluger H, Bucala R. MIF as an oncogenic driver of low‐heterogeneity melanomas. Molecular Oncology 2025, 19: 1295-1298. PMID: 40131169, PMCID: PMC12077282, DOI: 10.1002/1878-0261.70031.Peer-Reviewed Original ResearchConceptsMacrophage migration inhibitory factorImproving therapeutic outcomesMigration inhibitory factorPotential therapeutic utilityImmune landscapeMelanoma clonesImmune escapeT cellsImmunoregulatory cytokinesTumor heterogeneityTumor progressionOncogenic driversPathway inhibitorTherapeutic outcomesTumor evolutionInhibitory factorCell proliferationMelanomaTumorCellsAntagonistCytokinesTiming Matters: Lessons From Perinatal Neurogenesis in the Olfactory Bulb
Liberia T, Han K, Spence N, Meller S, Martin‐Lopez E, Greer C. Timing Matters: Lessons From Perinatal Neurogenesis in the Olfactory Bulb. The Journal Of Comparative Neurology 2025, 533: e70045. PMID: 40128105, DOI: 10.1002/cne.70045.Peer-Reviewed Original ResearchConceptsOlfactory bulbGranule cellsTiming of neurogenesisProjection neuronsCoding of odor informationSynaptic circuitsInhibitory granule cellsDendrites of projection neuronsLocal synaptic circuitsMitral cellsOdor processingSynaptic integrationPlexiform layerOdor informationAnatomical configurationLaminar distributionEmbryogenesis to adulthoodNeurogenesisSecondary dendritesMaturation patternGlomeruliNeuronsDevelopmental continuumCellsBulbSugar unmasking for trafficking
Calderwood D, Toomre D. Sugar unmasking for trafficking. Nature Cell Biology 2025, 27: 375-376. PMID: 40038537, DOI: 10.1038/s41556-025-01615-y.Peer-Reviewed Original ResearchNongenetic adaptation by collective migration
Vo L, Avgidis F, Mattingly H, Edmonds K, Burger I, Balasubramanian R, Shimizu T, Kazmierczak B, Emonet T. Nongenetic adaptation by collective migration. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2423774122. PMID: 39970001, PMCID: PMC11874451, DOI: 10.1073/pnas.2423774122.Peer-Reviewed Original ResearchConceptsGene regulationCollective migrationPhenotype distributionPhenotypic compositionStress response pathwaysSwimming phenotypeCell populationsBacterial populationsStress responseAbundance distributionMultidimensional phenotypesGenetic mutationsPhenotypeDiverse environmentsEnvironmental conditionsGenesMutationsSwimming behaviorChanging environmentDoubling timeMigrating populationCellsRegulationMigrationAdaptationEnhanced paracrine action of FGF21 in stromal cells delays thymic aging
Youm Y, Gliniak C, Zhang Y, Dlugos T, Scherer P, Dixit V. Enhanced paracrine action of FGF21 in stromal cells delays thymic aging. Nature Aging 2025, 1-12. PMID: 39972172, DOI: 10.1038/s43587-025-00813-5.Peer-Reviewed Original ResearchThymic epithelial cellsThymic agingNaive CD8 T cellsCD8 T cellsAge-related thymic involutionT cell diversityThymic functionImmune dysfunctionThymic stromaT cellsThymic lymphopoiesisThymic involutionActions of FGF21Immune agingAged miceStromal cellsEpithelial cellsAged animalsCo-receptorHepatic overexpressionElevation of FGF21FGF21AgeCellsAdipocytesA force-sensitive adhesion GPCR is required for equilibrioception
Yang Z, Zhou S, Zhang Q, Song Z, Liu W, Sun Y, Wang M, Fu X, Zhu K, Guan Y, Qi J, Wang X, Sun Y, Lu Y, Ping Y, Xi Y, Teng Z, Xu L, Xiao P, Xu Z, Xiong W, Qin W, Yang W, Yi F, Chai R, Yu X, Sun J. A force-sensitive adhesion GPCR is required for equilibrioception. Cell Research 2025, 1-22. PMID: 39966628, DOI: 10.1038/s41422-025-01075-x.Peer-Reviewed Original ResearchTransmembrane channel-like protein 1G protein-coupled receptorsUtricular hair cellsHair cellsIncreased open probabilityAdhesion GPCRsVestibular hair cellsGlutamate releaseOpen probabilityApical membraneMET responsesVestibular functionCalcium signalingApical surfaceProtein 1Lphn2Heterologous systemsMechanosensitive G-protein-coupled receptorsMetSMiceFunctional analysisCellsPhysiologic mechanisms underlying polycystic kidney disease
Boletta A, Caplan M. Physiologic mechanisms underlying polycystic kidney disease. Physiological Reviews 2025 PMID: 39938884, DOI: 10.1152/physrev.00018.2024.Peer-Reviewed Original ResearchPrimary ciliaPolycystic kidney diseaseTrafficking of proteinsHuman ciliopathiesExtracellular signalsMultiple genesKidney diseaseProtein productionMolecular basisCell biologyMonogenic disordersCyst formationGenesRenal epithelial cellsProteinCiliaBiochemical informationApical surfaceEpithelial cellsFunctional expressionPhysiological propertiesWealth of informationPhysiological mechanismsCellsFibrocystinMolecular Components of Vesicle Cycling at the Rod Photoreceptor Ribbon Synapse
Hanke-Gogokhia C, Zapadka T, Finkelstein S, Arshavsky V, Demb J. Molecular Components of Vesicle Cycling at the Rod Photoreceptor Ribbon Synapse. Advances In Experimental Medicine And Biology 2025, 1468: 325-330. PMID: 39930217, DOI: 10.1007/978-3-031-76550-6_54.Peer-Reviewed Original ResearchConceptsSynaptic vesicle exocytosisSynaptic vesicle recyclingPhotoreceptor ribbon synapseVesicle exocytosisVesicle recyclingVesicle cycleVesicle releaseRibbon synapseProtein synthesisProperties of synaptic transmissionMolecular componentsMouse rodsSynaptic terminalsRod cellsProteinVesiclesRod photoreceptorsDim lightSynaptic transmissionInner segmentsCellsExocytosisEndocytosisOuter segmentsEnergy productionProtein codes promote selective subcellular compartmentalization
Kilgore H, Chinn I, Mikhael P, Mitnikov I, Van Dongen C, Zylberberg G, Afeyan L, Banani S, Wilson-Hawken S, Lee T, Barzilay R, Young R. Protein codes promote selective subcellular compartmentalization. Science 2025, 387: 1095-1101. PMID: 39913643, DOI: 10.1126/science.adq2634.Peer-Reviewed Original ResearchConceptsProtein sequencesSubcellular compartmentsDiverse subcellular compartmentsProtein language modelsAmino acid sequenceProtein codingAcid sequenceSubcellular localizationDiverse proteinsHuman proteinsSubcellular compartmentalizationFolding codePathological mutationsCompartment localizationProteinSequenceCompartmentMutationsAminoNucleolusCompartmentalizationCellsVoltage-gated sodium channels in excitable cells as drug targets
Alsaloum M, Dib-Hajj S, Page D, Ruben P, Krainer A, Waxman S. Voltage-gated sodium channels in excitable cells as drug targets. Nature Reviews Drug Discovery 2025, 1-21. PMID: 39901031, DOI: 10.1038/s41573-024-01108-x.Peer-Reviewed Original ResearchSodium channelsChannel subtypesControl action potential firingDevelopment of drugsDensity of voltage-gated sodiumExcitable cellsAction potential firingSubtype-specific drugsSodium channel subtypesVoltage-gated sodium channelsExpressing high densitiesVoltage-gated sodiumCardiac myocytesNav1.1-Nav1.9Potential firingCardiac disordersAction potentialsMuscle cellsMolecular targetsDrugSubtypesDrug developmentCellsDrug targetsMyocytesG3BP1 ribonucleoprotein complexes regulate focal adhesion protein mobility and cell migration
Boraas L, Hu M, Martino P, Thornton L, Vejnar C, Zhen G, Zeng L, Parker D, Cox A, Giraldez A, Su X, Mayr C, Wang S, Nicoli S. G3BP1 ribonucleoprotein complexes regulate focal adhesion protein mobility and cell migration. Cell Reports 2025, 44: 115237. PMID: 39883578, PMCID: PMC11923778, DOI: 10.1016/j.celrep.2025.115237.Peer-Reviewed Original ResearchConceptsRNA-binding proteinsFocal adhesionsCell migrationStress granulesRNA-dependent mannerProtein mobilityFA proteinsRNA bindingDimerization domainSubcellular localizationRibonucleoprotein complexNon-stress conditionsFA sizeCell speedG3BP1RibonucleoproteinFA localizationBiological processesB-actinMRNAProteinCellsFA functionMigrationLocalizationCasz1 is required for both inner hair cell fate stabilization and outer hair cell survival
Sun Y, Ren M, Zhang Y, Li S, Luo Z, Sun S, He S, Wang G, Zhang D, Mansour S, Song L, Liu Z. Casz1 is required for both inner hair cell fate stabilization and outer hair cell survival. Science 2025, eado4930. PMID: 39883789, DOI: 10.1126/science.ado4930.Peer-Reviewed Original ResearchCell fate stabilityLoss of Casz1Transcription factor CASZ1Outer hair cell survivalCochlear inner hair cellsTranscription factor GATA3Transcription factorsCASZ1Mouse developmentCell survivalHair cell survivalInner hair cellsOuter hair cell numberTranscriptionDown-regulationHair cellsOverexpressing GATA3Mutant miceOuter hair cellsCellsOHC survivalGATA3MiceStructural basis for human NKCC1 inhibition by loop diuretic drugs
Zhao Y, Vidossich P, Forbush B, Ma J, Rinehart J, De Vivo M, Cao E. Structural basis for human NKCC1 inhibition by loop diuretic drugs. The EMBO Journal 2025, 44: 1540-1562. PMID: 39875725, PMCID: PMC11876703, DOI: 10.1038/s44318-025-00368-6.Peer-Reviewed Original ResearchConceptsLoop diureticsNa+-K+-Cl- cotransporterRenal salt reabsorptionEpithelial ion transportTreatment of edemaNKCC1 activityNKCC1 inhibitionChloride secretionSalt reabsorptionNKCC1Loop diuretic drugWNK kinasesDiuretic drugsBumetanideFurosemideHypertonic stressDiureticsIon transportTorsemideMolecular mechanismsCarboxyl groupsInhibitionCo-structureIons exitCellsSuper‐resolution imaging of proteins inside live mammalian cells with mLIVE‐PAINT
Bhaskar H, Gidden Z, Virdi G, Kleinjan D, Rosser S, Gandhi S, Regan L, Horrocks M. Super‐resolution imaging of proteins inside live mammalian cells with mLIVE‐PAINT. Protein Science 2025, 34: e70008. PMID: 39865341, PMCID: PMC11761688, DOI: 10.1002/pro.70008.Peer-Reviewed Original ResearchSignificance of birth in the maintenance of quiescent neural stem cells
Kawase K, Nakamura Y, Wolbeck L, Takemura S, Zaitsu K, Ando T, Jinnou H, Sawada M, Nakajima C, Rydbirk R, Gokenya S, Ito A, Fujiyama H, Saito A, Iguchi A, Kratimenos P, Ishibashi N, Gallo V, Iwata O, Saitoh S, Khodosevich K, Sawamoto K. Significance of birth in the maintenance of quiescent neural stem cells. Science Advances 2025, 11: eadn6377. PMID: 39841848, PMCID: PMC11753423, DOI: 10.1126/sciadv.adn6377.Peer-Reviewed Original ResearchConceptsNeural stem cellsQuiescent neural stem cellsStem cellsRadial gliaNeural stem cell poolAcquisition of quiescenceEmbryonic neural stem cellsPreterm birthPostnatal neural stem cellsCellular processesPostnatal neurogenesisGlutamine metabolismPostnatal brainLong-term maintenanceDevelopmental processesBirthNeurogenesisPretermCellsTransient Upregulation of Procaspase-3 during Oligodendrocyte Fate Decisions
Kamen Y, Chapman T, Piedra E, Ciolkowski M, Hill R. Transient Upregulation of Procaspase-3 during Oligodendrocyte Fate Decisions. Journal Of Neuroscience 2025, 45: e2066242025. PMID: 39837665, PMCID: PMC11924999, DOI: 10.1523/jneurosci.2066-24.2025.Peer-Reviewed Original ResearchProcaspase-3Fate decisionsOligodendrocyte precursor cellsCell death mechanismsNeurodegenerative conditionsOligodendrocyte differentiationSurvival decisionsCellular checkpointsDeath mechanismsMolecular markersPrecursor cellsOligodendrocyte markersPromote oligodendrocyte differentiationPharmacological inhibitionDifferentiation stageTransient upregulationDifferentiationZymogenCellsOligodendrocyte densityMorphological stateMale miceOligodendrocyte deathMyelin dysfunctionMarkersA CD26+ tendon stem progenitor cell population contributes to tendon repair and heterotopic ossification
Chen S, Lin Y, Yang H, Li Z, Li S, Chen D, Hao W, Zhang S, Chao H, Zhang J, Wang J, Li Z, Li X, Zhan Z, Liu H. A CD26+ tendon stem progenitor cell population contributes to tendon repair and heterotopic ossification. Nature Communications 2025, 16: 749. PMID: 39820504, PMCID: PMC11739514, DOI: 10.1038/s41467-025-56112-5.Peer-Reviewed Original ResearchConceptsStem/progenitor cellsHeterotopic bone formationTendon stem/progenitor cellsHeterotopic ossificationTendon healingCell populationsStem-progenitor cell populationBone formationProgenitor cell populationsStem cell populationMultipotent differentiation potentialSubstantial painCD26Self-renewalDifferentiation potentialTenascin-CTendon repairHealingOssificationCellsTendonPainSuppressed chondrogenesisCapturing eukaryotic ribosome dynamics in situ at high resolution
Cheng J, Wu C, Li J, Yang Q, Zhao M, Zhang X. Capturing eukaryotic ribosome dynamics in situ at high resolution. Nature Structural & Molecular Biology 2025, 1-11. PMID: 39789210, DOI: 10.1038/s41594-024-01454-9.Peer-Reviewed Original ResearchSpatiotemporal dynamics of fetal liver hematopoietic niches
Peixoto M, Soares-da-Silva F, Bonnet V, Zhou Y, Ronteix G, Santos R, Mailhe M, Nogueira G, Feng X, Pereira J, Azzoni E, Anselmi G, de Bruijn M, Perkins A, Baroud C, Pinto-do-Ó P, Cumano A. Spatiotemporal dynamics of fetal liver hematopoietic niches. Journal Of Experimental Medicine 2025, 222: e20240592. PMID: 39775824, PMCID: PMC11706214, DOI: 10.1084/jem.20240592.Peer-Reviewed Original ResearchConceptsFetal liverSource of hematopoietic growth factorsStromal cellsNon-hematopoietic stromal cellsHematopoietic growth factorsCytokine production patternsStromal cell populationsNeighboring stromal cellsEmbryonic hematopoietic cellsFetal hematopoiesisComplex cellular interactionsHematopoietic progenitorsHematopoietic cellsGrowth factorCell populationsFL developmentCellular interactionsCellsDevelopmental changesSignaling networks
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply