2025
CAR-T Entering a New "Phase": Improving CAR-T Function by Harnessing Phase Separation.
Su X. CAR-T Entering a New "Phase": Improving CAR-T Function by Harnessing Phase Separation. Cancer Research 2025, 85: 1011-1012. PMID: 39879116, PMCID: PMC11910263, DOI: 10.1158/0008-5472.can-25-0357.Peer-Reviewed Original ResearchConceptsChimeric antigen receptorFunction of CAR T cellsCAR-T cellsNext-generation cell therapyT cell receptor complexCAR-T functionMouse xenograft modelCytotoxicity in vitroCAR-TT cellsAntigen receptorAntitumor effectCell therapyXenograft modelCoreceptor signalingImmune responseImmunological synapseReceptor complexBiomolecular condensatesCytoplasmic tailCoreceptorTherapyCD3ELiquid-liquid phase separation
2024
Keep It Moving: Physical Activity in the Prevention of Obesity-Driven Pancreatic Cancer.
Sogunro A, Muzumdar M. Keep It Moving: Physical Activity in the Prevention of Obesity-Driven Pancreatic Cancer. Cancer Research 2024, 84: 2935-2937. PMID: 39279380, DOI: 10.1158/0008-5472.can-24-1474.Peer-Reviewed Original ResearchConceptsPancreatic ductal adenocarcinomaTumor microenvironmentAntitumor effectPancreatic cancerObese micePhysical activityAdvanced tumor growthSystemic cytokine productionMyeloid cell infiltrationPancreatic ductal adenocarcinoma developmentEffect of obesityHigh-fat diet-induced obesityDiet-induced obesitySyngeneic allograftsAdvanced tumorsProtumorigenic effectsLean miceWhite adipose tissueCell infiltrationDuctal adenocarcinomaObesity-associatedTumor growthCytokine productionImpact of physical activityInflammatory cytokinesMHC class I and II-deficient humanized mice are suitable tools to test the long-term antitumor efficacy of immune checkpoint inhibitors and T-cell engagers
Eguren-Santamaria I, de Piérola E, Camps G, Martín-Muñoz P, Campos M, Cuculescu D, Aguilera-Buenosvinos I, López I, Salido-Vallejo R, Alexandru R, De Andrea C, Álvarez-Gigli L, Berraondo P, Melero I, Sanmamed M. MHC class I and II-deficient humanized mice are suitable tools to test the long-term antitumor efficacy of immune checkpoint inhibitors and T-cell engagers. Journal For ImmunoTherapy Of Cancer 2024, 12: e008516. PMID: 39244214, PMCID: PMC11381650, DOI: 10.1136/jitc-2023-008516.Peer-Reviewed Original ResearchConceptsPeripheral blood mononuclear cellsHuman peripheral blood mononuclear cellsT-cell engagersNSG miceMajor histocompatibility complexSevere XGVHDImmunodeficient miceAntitumor effectTumor rejectionImmunotherapy agentsAntitumor activityAntitumor efficacy of immune checkpoint inhibitorsEfficacy of immune checkpoint inhibitorsHT29 human colon carcinoma cellsLong-term antitumor efficacyDevelopment of cancer immunotherapyAdministration of nivolumabImmune checkpoint inhibitorsCancer immunotherapy agentsT cell clonesHuman colon carcinoma cellsAlanine aminotransferase levelsMajor histocompatibility complex class IBlood mononuclear cellsHuman immune cellsAn emerging antibacterial nanovaccine for enhanced chemotherapy by selectively eliminating tumor-colonizing bacteria
Chen L, Kang Z, Shen J, Zhao R, Miao Y, Zhang L, Zheng Z, Zhang Z, Liu N, Wang C, Fang H, Zhou J, Wang Y, Liu Z, Yang Y, Chen Q. An emerging antibacterial nanovaccine for enhanced chemotherapy by selectively eliminating tumor-colonizing bacteria. Science Bulletin 2024, 69: 2565-2579. PMID: 38918142, DOI: 10.1016/j.scib.2024.06.016.Peer-Reviewed Original ResearchConceptsF. nucleatumColorectal cancerEffective antigen presentationEnhance chemotherapy efficacyT cell activationReduce cancer metastasisPoor treatment outcomesIncreased cancer cell growthCancer cell growthOral anaerobesDendritic cellsFusobacterium nucleatumChemotherapy efficacyAntitumor effectAntigen presentationBiomimetic nanovaccinesEnhanced chemotherapyNanovaccineAlum adjuvantCpG oligonucleotidesTreatment outcomesImmune responseImmune progressionTherapeutic effectVaccine effectivenessCombined BET and MEK Inhibition synergistically suppresses melanoma by targeting YAP1
Hu R, Hou H, Li Y, Zhang M, Li X, Chen Y, Guo Y, Sun H, Zhao S, Liao M, Cao D, Yan Q, Chen X, Yin M. Combined BET and MEK Inhibition synergistically suppresses melanoma by targeting YAP1. Theranostics 2024, 14: 593-607. PMID: 38169595, PMCID: PMC10758063, DOI: 10.7150/thno.85437.Peer-Reviewed Original ResearchConceptsMEK inhibitor resistanceMEK inhibitor trametinibTrametinib treatmentInhibitor resistanceInhibitor trametinibMelanoma patientsYAP1 expressionMEK inhibitionBRAF-mutant melanoma patientsResistance to MEK inhibitionYAP1 inhibitionResistance to trametinibMelanoma growth <i>inInhibition of BRD4Trametinib resistanceAntitumor effectMelanoma growthTrametinibNHWD-870YAP1 inhibitorDrug resistanceMelanomaMelanoma samplesMelanoma cellsBRD4 depletion
2023
Elimusertib has anti-tumor activity in preclinical patient-derived pediatric solid tumor models
Pusch F, García H, Xu R, Gürgen D, Bei Y, Brückner L, Röefzaad C, von Stebut J, Bardinet V, Gonzalez R, Eggert A, Schulte J, Hundsdörfer P, Seifert G, Haase K, Schäfer B, Wachtel M, Kühl A, Ortiz M, Wengner A, Scheer M, Henssen A. Elimusertib has anti-tumor activity in preclinical patient-derived pediatric solid tumor models. Molecular Cancer Therapeutics 2023, 23: 507-519. PMID: 38159110, PMCID: PMC10985474, DOI: 10.1158/1535-7163.mct-23-0094.Peer-Reviewed Original ResearchConceptsPatient-derived xenograftsPediatric solid tumor modelsPreclinical antitumor activitySolid tumor modelsTumor modelStandard-of-care chemotherapyAntitumor activityInhibitor of ataxia telangiectasiaSolid tumor entitiesClinically meaningful responseAnti-tumor activityPreclinical activityRad3-related proteinTumor entitiesPediatric malignanciesAntitumor effectCancer entitiesResponse biomarkersSmall molecule inhibitorsClinical trialsElimusertibMeaningful responseAtaxia telangiectasiaResponse rateCell linesMitochondria-targeted cyclometalated iridium-β-carboline complexes as potent non-small cell lung cancer therapeutic agents
Chen J, Guo X, Li D, Tang H, Gao J, Yu W, Zhu X, Sun Z, Huang Z, Chen L. Mitochondria-targeted cyclometalated iridium-β-carboline complexes as potent non-small cell lung cancer therapeutic agents. Metallomics 2023, 15: mfad035. PMID: 37204038, DOI: 10.1093/mtomcs/mfad035.Peer-Reviewed Original ResearchConceptsLoss of mitochondrial membrane potentialIridium complexesDeath of A549 cellsMitochondrial membrane potentialA549 cellsDepletion of cellular ATPElevation of reactive oxygen speciesNSCLC therapeutic agentsMitochondrial eventsCaspase pathwayCancer therapeutic agentsReactive oxygen speciesPotential antitumor effectsCellular ATPDevelopment of antitumor drugsMulticellular tumor spheroid modelAntitumor effectNon-smallTumor spheroid modelTumor growthMembrane potentialIridiumOxygen speciesTherapeutic agentsAntitumor drugs
2022
The effect of mesenchymal stem cells-derived exosomes on the prostate, bladder, and renal cancer cell lines
Rezaeian A, Khatami F, Heidari Keshel S, Akbari M, Mirzaei A, Gholami K, Mohammadi Farsani R, Aghamir S. The effect of mesenchymal stem cells-derived exosomes on the prostate, bladder, and renal cancer cell lines. Scientific Reports 2022, 12: 20924. PMID: 36463254, PMCID: PMC9719468, DOI: 10.1038/s41598-022-23204-x.Peer-Reviewed Original ResearchConceptsExpression of epithelial to mesenchymal transitionCancer cell linesProstate cancerMesenchymal stem cells-derived exosomesCell linesCells-derived exosomesHormone-refractory prostate cancerMSC-exosomesKidney cancer cell linesPercentage of apoptotic cellsProliferation of cancer cellsDecreased Bcl2 expressionEpithelial to mesenchymal transitionAnti-angiogenic effectsRenal cancer cell linesGene expression changesRealtime PCR methodKidney tumor cell lineOsteopontin variantsTumor cell linesVEGF-CAntitumor effectBladder cancerHormone-sensitiveRenal cancer
2019
Small-Molecule Dual PLK1 and BRD4 Inhibitors are Active Against Preclinical Models of Pediatric Solid Tumors
Timme N, Han Y, Liu S, Yosief H, García H, Bei Y, Klironomos F, MacArthur I, Szymansky A, von Stebut J, Bardinet V, Dohna C, Künkele A, Rolff J, Hundsdörfer P, Lissat A, Seifert G, Eggert A, Schulte J, Zhang W, Henssen A. Small-Molecule Dual PLK1 and BRD4 Inhibitors are Active Against Preclinical Models of Pediatric Solid Tumors. Translational Oncology 2019, 13: 221-232. PMID: 31869746, PMCID: PMC6931204, DOI: 10.1016/j.tranon.2019.09.013.Peer-Reviewed Original ResearchPediatric tumor cell linesTumor cell linesTreatment of patient-derived xenograftsClinical response to therapySignificant tumor regressionPediatric solid tumorsResponse to therapyPatient-derived xenograftsPediatric cancer modelsTumor-specific activationCell linesRhabdomyosarcoma tumor cellsTumor regressionPreclinical modelsSolid tumorsAntitumor effectCancer modelsTumor cellsConcurrent inhibitionAntitumor activityInduce apoptosisSimultaneous inhibitionMolecular targetsBRD4 inhibitorsCentral regulator
2013
Mouse model of intrahepatic cholangiocarcinoma validates FIG–ROS as a potent fusion oncogene and therapeutic target
Saborowski A, Saborowski M, Davare M, Druker B, Klimstra D, Lowe S. Mouse model of intrahepatic cholangiocarcinoma validates FIG–ROS as a potent fusion oncogene and therapeutic target. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 19513-19518. PMID: 24154728, PMCID: PMC3845141, DOI: 10.1073/pnas.1311707110.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBile Duct NeoplasmsBile Ducts, IntrahepaticCell Line, TumorCholangiocarcinomaDisease Models, AnimalGene Expression Regulation, NeoplasticGene Transfer TechniquesGenes, p53Genetic TherapyLiver NeoplasmsMiceMutationOncogene Proteins, FusionProto-Oncogene Proteins p21(ras)RetroviridaeRNA InterferenceConceptsMouse model of intrahepatic cholangiocarcinomaIntrahepatic cholangiocarcinomaTherapeutic targetPrimary liver cancerHuman intrahepatic cholangiocarcinomaROS1 fusionsTumor typesAntitumor effectPreclinical toolGenetic alterationsFusion oncogeneBiliary treeMouse modelLiver cancerHepatic parenchymaCholangiocarcinomaFusion geneTumorICC developmentHuman diseases
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply