2025
Proceedings of the National Cancer Institute Workshop on combining immunotherapy with radiotherapy: challenges and opportunities for clinical translation
Morris Z, Demaria S, Monjazeb A, Formenti S, Weichselbaum R, Welsh J, Enderling H, Schoenfeld J, Brody J, McGee H, Mondini M, Kent M, Young K, Galluzzi L, Karam S, Theelen W, Chang J, Huynh M, Daib A, Pitroda S, Chung C, Serre R, Grassberger C, Deng J, Sodji Q, Nguyen A, Patel R, Krebs S, Kalbasi A, Kerr C, Vanpouille-Box C, Vick L, Aguilera T, Ong I, Herrera F, Menon H, Smart D, Ahmed J, Gartrell R, Roland C, Fekrmandi F, Chakraborty B, Bent E, Berg T, Hutson A, Khleif S, Sikora A, Fong L. Proceedings of the National Cancer Institute Workshop on combining immunotherapy with radiotherapy: challenges and opportunities for clinical translation. The Lancet Oncology 2025, 26: e152-e170. PMID: 40049206, DOI: 10.1016/s1470-2045(24)00656-9.Peer-Reviewed Original ResearchConceptsAnti-tumor immune responseDelivery of radiotherapyTumor immune recognitionSelection of immunotherapyBiomarker-guided approachesNational Cancer Institute workshopClinical trial dataImmunotherapy combinationsClinical responseImprove patient outcomesPreclinical modelsPatient selectionRadiotherapyImmunotherapyClinical endpointsClinical dataClinical studiesImmune recognitionImmune responseImmune effectsAnimal studiesClinical translationPatient outcomesTrial dataNegative trials
2024
Molecular MRI of T-cell immune response to cryoablation in immunologically hot vs. cold hepatocellular carcinoma
Santana J, Shewarega A, Nam D, Duncan J, Madoff D, Hyder F, Coman D, Chapiro J. Molecular MRI of T-cell immune response to cryoablation in immunologically hot vs. cold hepatocellular carcinoma. JHEP Reports 2024, 7: 101294. PMID: 40028344, PMCID: PMC11870164, DOI: 10.1016/j.jhepr.2024.101294.Peer-Reviewed Original ResearchT cell infiltrationHepatocellular carcinomaRadiological-pathological correlationImaging mass cytometryImmune responseT1-weighted MRITumor-infiltrating CD8+ T lymphocytesAnti-tumor immune responseCD8+ T lymphocytesIncreased T lymphocyte infiltrationImaging biomarkersNon-immunogenic tumorsSystemic lymph nodesT lymphocyte infiltrationMurine tumor modelsImmune cell typesLocal tumor therapyPrimary liver cancerNon-invasive imaging biomarkerTesla MRI scannerInduce liver cirrhosisImmunogenic tumorsLocoregional therapySystemic immunotherapyHCC lesionsNeoadjuvant vidutolimod and nivolumab in high-risk resectable melanoma: A prospective phase II trial
Davar D, Morrison R, Dzutsev A, Karunamurthy A, Chauvin J, Amatore F, Deutsch J, Das Neves R, Rodrigues R, McCulloch J, Wang H, Hartman D, Badger J, Fernandes M, Bai Y, Sun J, Cole A, Aggarwal P, Fang J, Deitrick C, Bao R, Duvvuri U, Sridharan S, Kim S, A Choudry H, Holtzman M, Pingpank J, O'Toole J, DeBlasio R, Jin Y, Ding Q, Gao W, Groetsch C, Pagliano O, Rose A, Urban C, Singh J, Divarkar P, Mauro D, Bobilev D, Wooldridge J, Krieg A, Fury M, Whiteaker J, Zhao L, Paulovich A, Najjar Y, Luke J, Kirkwood J, Taube J, Park H, Trinchieri G, Zarour H. Neoadjuvant vidutolimod and nivolumab in high-risk resectable melanoma: A prospective phase II trial. Cancer Cell 2024, 42: 1898-1918.e12. PMID: 39486411, PMCID: PMC11560503, DOI: 10.1016/j.ccell.2024.10.007.Peer-Reviewed Original ResearchConceptsPlasmacytoid dendritic cellsHigh-risk resected melanomaResected melanomaCD8<sup>+</sup> tumor-infiltrating lymphocytesAnti-PD-1 nivolumabAnti-tumor immune responseProspective phase II trialAnti-PD-1Associated with gene signaturesTumor-infiltrating lymphocytesPhase II trialResponse to therapySingle-arm studyAssociated with necrosisGut microbiotaClinical responseII trialPrimary endpointDendritic cellsTLR9 agonistsTumor microenvironmentT cellsMyeloid cellsPathological responseImmune activationGold-siRNA supraclusters enhance the anti-tumor immune response of stereotactic ablative radiotherapy at primary and metastatic tumors
Jiang Y, Cao H, Deng H, Guan L, Langthasa J, Colburg D, Melemenidis S, Cotton R, Aleman J, Wang X, Graves E, Kalbasi A, Pu K, Rao J, Le Q. Gold-siRNA supraclusters enhance the anti-tumor immune response of stereotactic ablative radiotherapy at primary and metastatic tumors. Nature Biotechnology 2024, 1-14. PMID: 39448881, DOI: 10.1038/s41587-024-02448-0.Peer-Reviewed Original ResearchStereotactic ablative radiotherapyAnti-tumor immune responseSmall interfering RNAAblative radiotherapyMetastatic tumorsEffect of stereotactic ablative radiotherapyModel of head and neck cancerHead and neck cancerImmunosuppressive cell populationsPD-1 inhibitorsSmall interfering RNA complexesPD-1Primary tumorImmunotherapeutic effectsNeck cancerGranzyme BGal-1Mouse modelPassive deliveryTumorReduced toxicityCell populationsRadiotherapyRadiosensitivityRenal filtration thresholdEnhanced Intratumoral Delivery of Immunomodulator Monophosphoryl Lipid A through Hyperbranched Polyglycerol–Coated Biodegradable Nanoparticles
Chang J, Shin K, Lewis J, Suh H, Lee J, Damsky W, Xu S, Bosenberg M, Saltzman W, Girardi M. Enhanced Intratumoral Delivery of Immunomodulator Monophosphoryl Lipid A through Hyperbranched Polyglycerol–Coated Biodegradable Nanoparticles. Journal Of Investigative Dermatology 2024, 145: 593-604. PMID: 39122142, DOI: 10.1016/j.jid.2024.07.019.Peer-Reviewed Original ResearchMonophosphoryl lipid ATumor microenvironmentImmunomodulatory agentsStimulation of anti-tumor immune responseEfficacy of monophosphoryl lipid AT-helper (Th)1 responsesAnti-tumor immune responseTumor-draining lymph nodesToxicity associated with systemic administrationImmune responseModel of malignant melanomaAgonist monophosphoryl lipid ABiodegradable nanoparticlesImmunogenic tumor microenvironmentAntitumor immune responseDraining lymph nodesSystemic side effectsNatural killer cellsGradual drug releaseKiller cellsAntitumor efficacyMalignant melanomaImproved survivalLymph nodesChemotherapeutic agents
2023
Immune Modulation of Innate and Adaptive Responses Restores Immune Surveillance and Establishes Antitumor Immunologic Memory.
Alvero A, Fox A, Madina B, Krady M, Gogoi R, Chehade H, Nakaar V, Almassian B, Yarovinsky T, Rutherford T, Mor G. Immune Modulation of Innate and Adaptive Responses Restores Immune Surveillance and Establishes Antitumor Immunologic Memory. Cancer Immunology Research 2023, 12: 261-274. PMID: 38078853, PMCID: PMC11027955, DOI: 10.1158/2326-6066.cir-23-0127.Peer-Reviewed Original ResearchPD-L1Immunological memoryImmune surveillanceLong-term anti-tumor effectsAnti-tumor immunological memoryAnti-tumor immune responseImmune modulatory capacityAnti-tumor responseOvarian cancer patientsAnti-tumoral responseAnti-tumor effectsImmune regulatory genesSelf-amplifying RNAVirus-like vesiclesPotent CD8MDSC expansionAdaptive armsCurrent immunotherapiesOncolytic capacityPrevent recurrenceAntitumor cytokinesCancer patientsImmune modulationImmune modulatorsOncolytic effectThe tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer
Taifour T, Attalla S, Zuo D, Gu Y, Sanguin-Gendreau V, Proud H, Solymoss E, Bui T, Kuasne H, Papavasiliou V, Lee C, Kamle S, Siegel P, Elias J, Park M, Muller W. The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer. Immunity 2023, 56: 2755-2772.e8. PMID: 38039967, DOI: 10.1016/j.immuni.2023.11.002.Peer-Reviewed Original ResearchTriple-negative breast cancerImmune checkpoint blockadeBreast cancerAnti-tumor immune responseHuman triple-negative breast cancerNeutrophil extracellular trap formationT cell exclusionAnti-tumor immunityPoor clinical outcomeImmunosuppressive tumor microenvironmentMammary tumor onsetNeutrophil extracellular trapsExtracellular trap formationBreast cancer modelMurine breast tumorsClinical outcomesNeutrophil recruitmentCell infiltrationCHI3L1 expressionTumor infiltrationExtracellular trapsTranscription factor STAT3Immune responseLack of responsivenessSolid tumorsThe Immune Checkpoint Siglec-15 in Promoting Immune Dysregulation in Non-Hodgkin's Lymphomas
Francis D, Dougan J, Pillsbury C, Park S, Langermann S, Koff J, Li Z, Flowers C, Porter C. The Immune Checkpoint Siglec-15 in Promoting Immune Dysregulation in Non-Hodgkin's Lymphomas. Blood 2023, 142: 4367. DOI: 10.1182/blood-2023-190405.Peer-Reviewed Original ResearchDiffuse large B-cell lymphomaB-cell lymphomaAggressive B-cell lymphomasGerminal center B cellsImmune responseBurkitt's lymphomaLymphoma casesDisease progressionSiglec-15Immune deficient (SCID) BALB/c miceR diffuse large B-cell lymphomaB cellsDeficient BALB/c miceLocal anti-tumour immune responseAggressive mature B-cell lymphomaAnti-tumor immune responseBALB/c miceLarge B-cell lymphomaHealthy donor PBMCsIntensive salvage regimensMost diffuse large B-cell lymphomasEvent-free survivalFirst-line treatmentRefractory hematologic malignanciesNon-Hodgkin lymphoma casesA modified IL-18 drug in combination with CTLA-4 blockade enhances anti-tumor efficacy in preclinical models of renal cell carcinoma
Schoenfeld D, Djureinovic D, Zhang L, Mann J, Huck J, Jilaveanu L, Ring A, Kluger H. A modified IL-18 drug in combination with CTLA-4 blockade enhances anti-tumor efficacy in preclinical models of renal cell carcinoma. The Oncologist 2023, 28: s7-s7. PMCID: PMC10445567, DOI: 10.1093/oncolo/oyad216.010.Peer-Reviewed Original ResearchImmune checkpoint inhibitorsRenal cell carcinomaImmune cell depletion studiesCell depletion studiesT cellsAnti-tumor activityPreclinical modelsRENCA modelTumor growthNK cellsIL-18IL-18BPCell carcinomaAnti-PD-1/CTLAAnti-PD-1 therapyIntra-tumoral T cellsModest anti-tumor activityAnti-tumor immune responseCytokine/chemokine levelsCytokine/chemokine profilingDepletion studiesEarly phase clinical trialsDecoy receptor proteinEnrichment of CD8PD-1 blockade
2022
A phase I study of ADXS-504, a cancer type specific immunotherapy, for patients with biochemically recurrent prostate cancer.
Runcie K, Dallos M, Khan S, Gray J, Marco P, Ping L, LaTourette D, Anderson C, Spina C, Yu J, Deutsch I, Sheeri S, Gutierrez A, Stein M. A phase I study of ADXS-504, a cancer type specific immunotherapy, for patients with biochemically recurrent prostate cancer. Journal Of Clinical Oncology 2022, 40: tps5115-tps5115. DOI: 10.1200/jco.2022.40.16_suppl.tps5115.Peer-Reviewed Original ResearchAndrogen deprivation therapyProstate-specific antigenTumor-associated antigensBiochemical recurrenceProstate cancerRadiation therapyTumor microenvironmentRadical prostatectomyStudy treatmentPromote anti-tumor immune responsesAntigen-specific T cell responsesBiochemical recurrence of prostate cancerBiochemically recurrent prostate cancerCastration sensitive prostate cancerPSA responseTime to PSA progressionDose of study treatmentAnti-tumor immune responseStandard first-line treatmentEvidence of metastatic diseaseMyeloid-derived suppressor cellsImmunosuppressive regulatory T cellsPeptide antigensLive-attenuated Listeria monocytogenesRecurrent prostate cancerRadiation therapy in the definitive management of medically inoperable endometrial cancer
Chin C, Damast S. Radiation therapy in the definitive management of medically inoperable endometrial cancer. International Journal Of Gynecological Cancer 2022, 32: 323-331. PMID: 35256419, DOI: 10.1136/ijgc-2021-002532.Peer-Reviewed Original ResearchConceptsMultiparametric magnetic resonance imagingInoperable patientsEndometrial cancerImage-guided brachytherapyRadiation therapySystemic anti-tumor immune responseAnti-tumor immune responseThree-dimensional image-guided brachytherapyInoperable endometrial cancerDefinitive radiation therapyPoor surgical candidatesNovel systemic agentsRecent consensus guidelinesHigh-volume centersExtent of tumorRates of obesityMagnetic resonance imagingMedical inoperabilityLate morbiditySurgical candidatesSystemic agentsClinical stagingDefinitive managementOngoing trialsUterine size
2021
Phase 1/2 study of intratumoral G100 (TLR4 agonist) with or without pembrolizumab in follicular lymphoma
Halwani AS, Panizo C, Isufi I, Herrera AF, Okada CY, Cull EH, Kis B, Chaves JM, Bartlett NL, Ai W, de la Cruz-Merino L, Bryan LJ, Houot R, Linton K, Briones J, Chau I, von Keudell GR, Lu H, Yakovich A, Chen M, JH T, Yurasov S, Hsu FJ, Flowers CR. Phase 1/2 study of intratumoral G100 (TLR4 agonist) with or without pembrolizumab in follicular lymphoma. Leukemia & Lymphoma 2021, 63: 821-833. PMID: 34865586, DOI: 10.1080/10428194.2021.2010057.Peer-Reviewed Original ResearchConceptsFollicular lymphomaTumor regressionAnti-tumor immune responseToll-like receptor 4 agonistAbscopal tumor regressionAdverse events gradeImmune-mediated responsePhase 1/2 trialOverall response rateEarly phase studiesLow-dose radiationDose expansionDose escalationPreliminary efficacyTLR4 agonistImmune responseUnexpected toxicitiesEvents gradeIntratumoral injectionResponse ratePatientsLymphomaPembrolizumabAgonistsInjectionKDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements
Zhang SM, Cai WL, Liu X, Thakral D, Luo J, Chan LH, McGeary MK, Song E, Blenman KRM, Micevic G, Jessel S, Zhang Y, Yin M, Booth CJ, Jilaveanu LB, Damsky W, Sznol M, Kluger HM, Iwasaki A, Bosenberg MW, Yan Q. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature 2021, 598: 682-687. PMID: 34671158, PMCID: PMC8555464, DOI: 10.1038/s41586-021-03994-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorDNA-Binding ProteinsEpigenesis, GeneticGene SilencingHeterochromatinHistone-Lysine N-MethyltransferaseHumansInterferon Type IJumonji Domain-Containing Histone DemethylasesMaleMelanomaMiceMice, Inbred C57BLMice, KnockoutNuclear ProteinsRepressor ProteinsRetroelementsTumor EscapeConceptsImmune checkpoint blockadeImmune evasionCheckpoint blockadeImmune responseAnti-tumor immune responseRobust adaptive immune responseTumor immune evasionAnti-tumor immunityAdaptive immune responsesType I interferon responseDNA-sensing pathwayMouse melanoma modelImmunotherapy resistanceMost patientsCurrent immunotherapiesTumor immunogenicityImmune memoryMelanoma modelCytosolic RNA sensingRole of KDM5BConsiderable efficacyInterferon responseImmunotherapyEpigenetic therapyBlockadeA reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing anti-tumor immune response
Connolly KA, Kuchroo M, Venkat A, Khatun A, Wang J, William I, Hornick NI, Fitzgerald BL, Damo M, Kasmani MY, Cui C, Fagerberg E, Monroy I, Hutchins A, Cheung JF, Foster GG, Mariuzza DL, Nader M, Zhao H, Cui W, Krishnaswamy S, Joshi NS. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing anti-tumor immune response. Science Immunology 2021, 6: eabg7836. PMID: 34597124, PMCID: PMC8593910, DOI: 10.1126/sciimmunol.abg7836.Peer-Reviewed Original ResearchConceptsTumor-specific CD8T cellsTumor microenvironmentOngoing anti-tumor immune responseChronic lymphocytic choriomeningitis virus (LCMV) infectionTumor-draining lymph nodesAnti-tumor immune responseLymphocytic choriomeningitis virus infectionIntratumoral T cellsEfficacy of immunotherapyT cell responsesTumor-draining lymphAntitumor T cellsT cell terminal differentiationStem-like CD8Immunologic shiftGene expression signaturesLymph nodesTerminal differentiationLung tumorsVirus infectionLung adenocarcinomaImmune responseCD8Cell responsesAbstract CT129: ARC-3: Updated results of etrumadenant (AB928) + modified FOLFOX-6 (mFOLFOX-6) in metastatic colorectal cancer (mCRC) patients
Cecchini M, Quah C, Liu S, Woloski R, Udyavar A, Giannakis M. Abstract CT129: ARC-3: Updated results of etrumadenant (AB928) + modified FOLFOX-6 (mFOLFOX-6) in metastatic colorectal cancer (mCRC) patients. Cancer Research 2021, 81: ct129-ct129. DOI: 10.1158/1538-7445.am2021-ct129.Peer-Reviewed Original ResearchModified FOLFOX-6Metastatic colorectal cancerFOLFOX-6American Association for Cancer Research annual meetingsColorectal cancerAnti-tumor immune responseAssociated with disease controlDying cancer cellsMCRC ptsAdenosine receptor blockadeOpen-label studyRelease of ATPAntagonists of A2ARMedian PFSPretreated ptsReceptor blockadeEligible ptsOrally onceExtracellular adenosineA2B receptorsImmune cellsChemotherapeutic agentsTherapeutic efficacyClinical activityImmune responseSGNTGT-001: A phase 1 study of SEA-TGT, an effector-function enhanced monoclonal antibody (mAb), in advanced malignancies (trial in progress).
Garralda E, Sanborn R, Minchom A, Davar D, Curigliano G, Ribrag V, Mehta A, Foss F, Zain J, Forero-Torres A, Ansell S. SGNTGT-001: A phase 1 study of SEA-TGT, an effector-function enhanced monoclonal antibody (mAb), in advanced malignancies (trial in progress). Journal Of Clinical Oncology 2021, 39: tps2657-tps2657. DOI: 10.1200/jco.2021.39.15_suppl.tps2657.Peer-Reviewed Original ResearchAnti-tumor immune responseInhibitory immune checkpoint receptorsRegulatory cell depletionObjective response ratePhase II doseProgression-free survivalDose-limiting toxicityMetastatic solid tumorsPhase 1 studyT cell responsesT cell immunoreceptorImmune checkpoint receptorsImmune cell activationPK-PD correlationsAnti-tumor activityExpansion cohortPrimary endpointSecondary endpointsAdvanced malignanciesAdverse eventsLaboratory abnormalitiesMemory CD8Overall survivalComplete responseNK cellsCo-inhibitor expression on tumor infiltrating and splenic lymphocytes after dual checkpoint inhibition in a microsatellite stable model of colorectal cancer
Slovak RJ, Park HJ, Kamp WM, Ludwig JM, Kang I, Kim HS. Co-inhibitor expression on tumor infiltrating and splenic lymphocytes after dual checkpoint inhibition in a microsatellite stable model of colorectal cancer. Scientific Reports 2021, 11: 6956. PMID: 33772035, PMCID: PMC7997991, DOI: 10.1038/s41598-021-85810-5.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDCD4-Positive T-LymphocytesCell Line, TumorCell ProliferationColorectal NeoplasmsCTLA-4 AntigenFemaleHepatitis A Virus Cellular Receptor 2Immune Checkpoint InhibitorsLymphocyte Activation Gene 3 ProteinLymphocytes, Tumor-InfiltratingMaleMiceMice, Inbred BALB CMicrosatellite RepeatsProgrammed Cell Death 1 ReceptorSpleenT-Lymphocytes, CytotoxicConceptsDual checkpoint inhibitionPD-1 inhibitionColorectal cancerCheckpoint inhibitionPD-1Checkpoint inhibitorsT cellsImmune responseRobust anti-tumor immune responseAnti-PD-1 groupAnti-PD-1 antibodyAnti-tumor immune responseMicrosatellite stable colorectal cancerDual PD-1Majority of patientsDeficient mismatch repairStable colorectal cancerCTLA-4 inhibitionTumor growth rateHigh microsatellite instabilityPotential escape mechanismsCombination immunotherapyImmunosuppressive checkpointsTumoral infiltrationDual therapy
2020
Abstract LB-387: Efficacy and safety of AB928 plus modified FOLFOX-6 (mFOLFOX-6) in participants with metastatic colorectal cancer (mCRC): Initial results at the recommended dose for expansion (ARC-3)
Cecchini M, Modiano M, Braiteh F, Gardner O, Gilbert H, DiRenzo D, Seitz L, Walters M, Yin F, Woloski R, Paoloni M, Chung K. Abstract LB-387: Efficacy and safety of AB928 plus modified FOLFOX-6 (mFOLFOX-6) in participants with metastatic colorectal cancer (mCRC): Initial results at the recommended dose for expansion (ARC-3). Cancer Research 2020, 80: lb-387-lb-387. DOI: 10.1158/1538-7445.am2020-lb-387.Peer-Reviewed Original ResearchModified FOLFOX-6Metastatic colorectal cancerAdverse eventsPhase 1bFOLFOX-6Stable diseaseColorectal cancerAnti-tumor immune responseECOG performance status 0Recommended doseAssociated with disease controlExploratory biomarker analysesTumor shrinkage >Disease control rateDying cancer cellsGrade 3 AEsPerformance status 0Dose-escalation studyAdenosine receptor blockadeOpen-label studyAmerican Association for Cancer ResearchAdenosine receptor antagonistRelease of ATPNext gene sequencingAdenosine axisTrial in progress: A phase I/II, open-label, dose-escalation, safety and tolerability study of NC318 in subjects with advanced or metastatic solid tumors.
Gutierrez M, Hamid O, Shum E, Wise D, Balar A, Weber J, LoRusso P, Shafi S, Rimm D, Tolcher A, Basudhar D, Dujka M, Heller K. Trial in progress: A phase I/II, open-label, dose-escalation, safety and tolerability study of NC318 in subjects with advanced or metastatic solid tumors. Journal Of Clinical Oncology 2020, 38: tps3166-tps3166. DOI: 10.1200/jco.2020.38.15_suppl.tps3166.Peer-Reviewed Original ResearchMetastatic solid tumorsT cell functionSolid tumorsPD-L1 tumor proportion scoreAnti-tumor immune responseNon-small cell lungPhase I/IIPhase 2 doseTumor proportion scoreAnti-tumor immunityKey eligibility criteriaCell functionDose-escalation designBreast cancer subjectsNon-randomized studiesT cell proliferationPrevents tumor growthClass monoclonal antibodyCollection of biopsiesMeasurable diseaseRECIST v1.1Phase 1/2Escalation designTolerability studyImmune suppressionTrial in progress: A phase II open-label, randomized study of PARP inhibition (olaparib) either alone or in combination with anti-PD-L1 therapy (atezolizumab) in homologous DNA repair (HDR) deficient, locally advanced or metastatic non-HER2-positive breast cancer.
LoRusso P, Pilat M, Santa-Maria C, Connolly R, Roesch E, Afghahi A, Han H, Nanda R, Wulf G, Assad H, Park H, Dees E, Force J, Noonan A, Brufsky A, Abramson V, Haley B, Buys S, Sharon E, Schalper K. Trial in progress: A phase II open-label, randomized study of PARP inhibition (olaparib) either alone or in combination with anti-PD-L1 therapy (atezolizumab) in homologous DNA repair (HDR) deficient, locally advanced or metastatic non-HER2-positive breast cancer. Journal Of Clinical Oncology 2020, 38: tps1102-tps1102. DOI: 10.1200/jco.2020.38.15_suppl.tps1102.Peer-Reviewed Original ResearchPositive breast cancerPo bidPARP inhibitionBreast cancerImmune responseOpen-label phase II clinical trialAdaptive anti-tumor immune responsesAnti-tumor immune responsePhase II clinical trialMarked lymphocyte infiltrationPD-1 blockadePD-L1 expressionPre-treatment biopsiesProgression-free survivalAntitumor immune responseImmune checkpoint blockadeMajority of patientsBRCA 1/2 mutationsTumor immune contextureBiopsy time pointsHomologous DNA repairPARP inhibitor olaparibMonotherapy armCombination armImmune contexture
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply