Cell Metabolism

Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans

Graphical Abstract

Highlights

- Food intake induces orosensory and post-ingestive dopamine release in humans
- Both recruit distinct pathways: orosensory integrative and higher cognitive centers
- Dopamine release in “wanting”-associated regions mirrors subjective desire to eat
- Post-ingestive dopamine release in the putamen is inversely correlated to “wanting”

Authors

Sharmili Edwin Thanarajah, Heiko Backes, Alexandra G. DiFeliceantonio, ..., Dana M. Small, Jens C. Brüning, Marc Tittgemeyer

Correspondence

backes@sf.mpg.de

In Brief

Thanarajah et al. combined fMRI and PET to assess the brain’s response to food intake and discovered immediate and delayed dopamine release in distinct areas of the human brain. In addition, they identified areas where dopamine release reflected subjective wanting to eat, shedding light on how the brain transforms energetic signals into the desire to eat.
Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans

Sharmili Edwin Thanarajah,1,2,11 Heiko Backes,1,11,12,* Alexandra G. DiFeliceantonio,1,3,8,16 Kerstin Albus,4 Anna Lena Cremer,1 Ruth Hanssen,1,6 Rachel N. Lippert,1 Oliver A. Cornely,4,5,9 Dana M. Small,3,7,8 Jens C. Brüning,1,4,6 and Marc Tittgemeyer1,4,8

1Max Planck Institute for Metabolism Research, Cologne, Germany
2Department of Neurology, University Hospital of Cologne, Cologne, Germany
3Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
4Cologne Cluster of Excellence in Cellular Stress and Aging-Associated Disease (CECAD), Cologne, Germany
5Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
6Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
7Department of Psychology, Yale University, New Haven, CT, USA
8Modern Diet and Physiology Research Center, New Haven, CT, USA
9Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
10Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
11These authors contributed equally
12Lead Contact
*Correspondence: backes@sf.mpg.de

SUMMARY

Pleasant taste and nutritional value guide food selection behavior. Here, orosensory features of food may be secondary to its nutritional value in underlying reinforcement, but it is unclear how the brain encodes the reward value of food. Orosensory and peripheral physiological signals may act together on dopaminergic circuits to drive food intake. We combined fMRI and a novel [11C]raclopride PET method to assess systems-level activation and dopamine release in response to palatable food intake in humans. We identified immediate orosensory and delayed post-ingestive dopamine release. Both responses recruit segregated brain regions: specialized integrative pathways and higher cognitive centers. Furthermore, we identified brain areas where dopamine release reflected the subjective desire to eat. Immediate dopamine release in these wanting-related regions was inversely correlated with, and presumably inhibited, post-ingestive release in the dorsal striatum. Our results highlight the role of brain and periphery in interacting to reinforce food intake in humans.

INTRODUCTION

Recent evidence from animal models indicates that both the pleasant taste and the nutritional value of food act as reinforcers in food selection behavior (de Araujo, 2016). Highly desired food items, in turn, can enhance food intake and may lead to overeating and obesity (Mela, 2006). In the light of the recent obesity epidemic, a growing number of studies have investigated brain signaling mechanisms underlying food intake and their modulation by the desire to eat. However, the physiological mechanisms still remain poorly understood.

Observations in rodent models of dopamine (DA) release during active feeding (Taber and Fibiger, 1997) identified the brain’s dopaminergic system as a critical mediator for the neurobiological control of food intake (Palmiter, 2007). The reinforcing properties of food seemingly arise from a complex interplay between orosensory and nutritive signals. To that end, orosensory stimulation has been demonstrated to evoke striatal DA release mediating the rewarding effect of sucrose to promote food intake in rats (Hajnal et al., 2004; Schneider, 1989; Smith, 2004). In mice, the nutritive value of food, on the other hand, is signaled post-ingestively by DA independently of taste (Tellez et al., 2013, 2016) and has the capacity to override the homeostatic control of eating (Andrews and Horvath, 2008).

For example, direct nutrient infusion into the mouse gut evokes calorie-dependent striatal DA release (Ferreira et al., 2012). Moreover, mice genetically modified to lack taste receptor signaling can develop, following repeated exposures, a similar magnitude of DA release in the ventral striatum upon sucrose ingestion as wild-type mice, reflecting nutrient association learning (de Araujo et al., 2008). Similarly, the parallel presentation of a flavor and a high-calorie gut infusion consistently induces long-lasting flavor preference (Sclafani and Ackroff, 2012) and cue-associated learning in mice (Han et al., 2016; Lucas and Sclafani, 1989). This flavor-nutrient conditioning also occurs in humans at a behavioral (Yeomans et al., 2008) and neural level (de Araujo et al., 2013). These findings suggest that orosensory features of food are secondary to its nutritional value in underlying reinforcement (de Araujo, 2016).
To facilitate distinct orosensory and post-ingestive influences on reinforcement, segregated dopaminergic pathways are likely recruited within discrete temporal windows of action: an early window reflecting orosensation upon consumption and a second window reflecting the generation of post-ingestive signals. The latter is thought to unfold over minutes in mice (Beutler et al., 2017; Su et al., 2017) and is dependent on nutrients reaching the enteroendocrine cells in the intestine (Kaelberer et al., 2018; Tolhurst et al., 2012). Accordingly, analysis of the temporal dynamics of the blood oxygen level-dependent (BOLD) signal following glucose consumption also supports the existence of an immediate and delayed neural response (Liu et al., 2000).

Identification and discrimination of these circuits may furnish our understanding of physiological control, but also of pathophysiologic dysregulation of food intake. Highly processed food with added fat and sugar is known to induce higher food wanting and overconsumption (DiFeliceantonio et al., 2018; Polk et al., 2017; Veldhuizen et al., 2017). Notably, in rodents the desire to eat (food wanting) is closely related to brain DA signaling. DA depletion in the striatum (Sotak et al., 2005) and administration of DA antagonists reduce food wanting and diminish food approach (Hsiao and Smith, 1995; Wise et al., 1978). However, as dopaminergic neuromodulation differentially impacts motor behavior and reward association (Howe and Dombeck, 2016; Volkow et al., 2017), animal studies on motivational signals that determine food intake have been debated (Baldo et al., 2002; Kelley et al., 2005), especially as behavioral readout is always conflicted by locomotion. In humans, conversely, very little is understood about the interplay between food intake, desire to eat, and brain dopamine signaling.

The majority of studies addressing food-related DA release in humans have used functional magnetic resonance imaging (fMRI; e.g., Babbs et al., 2013; O’Doherty et al., 2002; Rothermund et al., 2007; Stice et al., 2008b; Stoeckel et al., 2008). While fMRI is advantageous in capturing brain function effectively and at a considerable spatial and temporal resolution, the respective BOLD signal is not directly related to specific neurotransmitter systems. Positron emission tomography (PET) represents a suitable technique to specifically address the dopaminergic system in vivo, but the application was limited by the fact that conventional analysis approaches did not allow the examination of temporal dynamics of food-induced DA release (Cosgrove et al., 2015; Small et al., 2003b; Volkow et al., 2002).

To overcome this limitation, we applied a novel method for the analysis of continuous [11C]raclopride PET data that enabled us in human volunteers who received a palatable milkshake during data acquisition. With our approach, we demonstrate immediate orosensory and, for the first time, post-ingestive DA release in humans and at brain systems level. Orosensory and post-ingestive signaling recruit segregated neural circuits after food intake. We further identified brain areas where the immediate DA response was related to the desire to eat and negatively associated with post-ingestive DA release in the dorsal striatum. This suggests the existence of distinct DA mechanisms that interact over time to integrate orosensory information with post-ingestive signals regarding the nutritive value of foods. Taken together, these findings suggest a mechanism to explain how the brain transforms energetic signals into the desire to eat.

RESULTS

To investigate brain signaling during food intake we performed fMRI in 12 male, normal-weight volunteers (age, 56 ± 9.5 years; BMI, 25.57 ± 2.41 kg/m²). Ten of these participants (age, 57 ± 10.6 years; BMI, 25.73 ± 2.67 kg/m²) underwent two additional [11C]raclopride PET acquisitions to characterize spatiotemporal DA release.

We acquired fMRI data during milkshake and tasteless consumption using the gustometer setup as introduced by Small et al. (2003a) and Veldhuizen et al. (2007). In line with these previous reports (cf. also de Araujo et al., 2012, for a review on orosensory-responsive brain areas), the taste of milkshake elicited activation in the anterior and central insular cortex, ventral posterior complex of the thalamus, caudate nucleus, and lateral orbitofrontal cortex, among others (Figure 1).

However, the BOLD signal is not related to a specific neurotransmitter system. Hence, we performed PET imaging with the radiolabeled D2-receptor antagonist [11C]raclopride to investigate dopamine release with the same gustometer setup providing either milkshake or tasteless solution on separate testing days. To detect any putative post-ingestive DA signaling, we continued PET acquisition for 30 min after milkshake or tasteless delivery was completed (Figure S1). Subsequently, we calculate the regional DA release rate (rDA) from [11C]raclopride data. Milkshake-induced DA release was assessed by performing a voxel-wise paired t test between rDA in response to milkshake and tasteless consumption for each 5-min time interval.

We first determined time intervals with increased DA release related to milkshake consumption by plotting the number of
significantly increased voxels over time following a temporal clustering method introduced by Liu et al. (2000). Corresponding to Liu et al. (2000), we identified two time intervals of neural response: the first immediately after application of milkshake or tasteless solution (20–25 min); the second 15–20 min after onset and accordingly 5–10 min after offset of milkshake or tasteless solution intake (35–40 min; Figure 2A).

In a whole-brain analysis, we next focused on these two time intervals to identify brain circuitries involved in the immediate and delayed DA release (15–20 min after food intake). With onset of milkshake delivery, DA release was increased in the lateral hypothalamus and dorsal striatum (bilateral putamen) as well as in orosensory pathways (including the frontal operculum/anterior insular cortex, nucleus of the solitary tract), mesolimbic DA system (nucleus accumbens, substantia nigra/ventral tegmental area [SN/VTA] complex), areas involved in reward value signaling (ventromedial prefrontal cortex, lateral orbitofrontal cortex), memory (hippocampus), and inhibitory control (lateral ventral anterior nucleus of the thalamus, habenula; Figure 2B; Table 1). However, 15–20 min after milkshake consumption, DA release occurred in a distinct brain circuit including the anterior insula, ventral posterior medial nucleus of the thalamus, caudate nucleus, pallidum (external segment), amygdala (basolateral complex), parietal operculum, dorsomedial prefrontal cortex, anterior prefrontal cortex, and lateral caudal pontine nuclei (Figure 3; Table 2).

To analyze the interaction between immediate and delayed DA release, we performed a pairwise correlation analysis between immediate and delayed responding regions. Immediate DA release in the nucleus accumbens predicted later DA release in the caudate nucleus (p = 0.037, r = 0.66; Figure 3B).

To identify BOLD activation related to DA release, we compared group statistics of immediate DA release with the corresponding fMRI response (milkshake-tasteless). We found an overlap of activations for both modalities in the anterior insular cortex, SN/VTA complex, and occipital cortex. Interestingly, a widespread network of brain areas showed activation in the fMRI data without overlapping PET response, possibly due to the engagement of other neurotransmitter systems: lateral ventral anterior and ventral posterior medial nucleus of the thalamus, caudate nucleus, pallidum (external segment), amygdala (basolateral complex), parietal operculum, dorsomedial prefrontal cortex, anterior prefrontal cortex, and lateral caudal pontine nuclei (Figure 4).

To elucidate whether measures of eating desire were related to immediate and late DA release, we performed a voxel-wise correlation analysis between the wanting score and difference between rDA after milkshake and tasteless solution intake (ΔrDA). The wanting score was highly correlated with the immediate ΔrDA in the anterior insular cortex (p = 0.0002, r = 0.94).
Table 1. Areas Showing DA Release Immediately after Milkshake Intake

<table>
<thead>
<tr>
<th>Area</th>
<th>Hemisphere</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Number of Voxels</th>
<th>Mean rDA (Tasteless)</th>
<th>Mean rDA (Milkshake)</th>
<th>% Increase</th>
<th>puncorr (min)</th>
<th>pFWE (min)</th>
<th>puncorr (Cluster)</th>
<th>pFWE (Cluster)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventromedial prefrontal cortex (vmPFC)</td>
<td>left</td>
<td>−1</td>
<td>48</td>
<td>−10</td>
<td>555</td>
<td>0.0842 ± 0.0426</td>
<td>0.1432 ± 0.0596</td>
<td>70.0</td>
<td>0.00027</td>
<td>0.00048a</td>
<td>0.00001</td>
<td>0.00000a</td>
</tr>
<tr>
<td>Orbitofrontal cortex (polar part, pOFC)</td>
<td>right</td>
<td>4</td>
<td>58</td>
<td>−14</td>
<td>612</td>
<td>0.0974 ± 0.0565</td>
<td>0.1819 ± 0.0842</td>
<td>86.8</td>
<td>0.00018</td>
<td>0.00005a</td>
<td>0.00030</td>
<td>0.00000a</td>
</tr>
<tr>
<td>Cingulate gyrus (CG)</td>
<td>right</td>
<td>11</td>
<td>18</td>
<td>39</td>
<td>280</td>
<td>0.0852 ± 0.0341</td>
<td>0.1369 ± 0.0599</td>
<td>60.7</td>
<td>0.01147</td>
<td>1.00000</td>
<td>0.00391</td>
<td>0.000933a</td>
</tr>
<tr>
<td>Dorsomedial prefrontal cortex (dmPFC)</td>
<td>left</td>
<td>−8</td>
<td>51</td>
<td>21</td>
<td>407</td>
<td>0.0736 ± 0.0372</td>
<td>0.1220 ± 0.0588</td>
<td>65.7</td>
<td>0.00232</td>
<td>0.50764</td>
<td>0.00198</td>
<td>0.00007a</td>
</tr>
<tr>
<td>Anterior insular cortex (aIC)</td>
<td>left</td>
<td>−44</td>
<td>18</td>
<td>−9</td>
<td>490</td>
<td>0.0964 ± 0.0491</td>
<td>0.1821 ± 0.0742</td>
<td>88.8</td>
<td>0.00018</td>
<td>0.00005a</td>
<td>0.00018</td>
<td>0.00000a</td>
</tr>
<tr>
<td></td>
<td>right</td>
<td>39</td>
<td>20</td>
<td>8</td>
<td>305</td>
<td>0.0777 ± 0.0430</td>
<td>0.1253 ± 0.0482</td>
<td>86.8</td>
<td>0.00037</td>
<td>0.00159a</td>
<td>0.00208</td>
<td>0.00042a</td>
</tr>
<tr>
<td>Central insular cortex (cIC)</td>
<td>left</td>
<td>−39</td>
<td>2</td>
<td>−9</td>
<td>66</td>
<td>0.0954 ± 0.0495</td>
<td>0.1466 ± 0.0530</td>
<td>53.6</td>
<td>0.01135</td>
<td>1.00000</td>
<td>0.00684</td>
<td>0.66303a</td>
</tr>
<tr>
<td>Hypothalamus (Hy)</td>
<td>right</td>
<td>6</td>
<td>−11</td>
<td>−12</td>
<td>245</td>
<td>0.1041 ± 0.0623</td>
<td>0.2064 ± 0.1087</td>
<td>98.3</td>
<td>0.00229</td>
<td>0.49845</td>
<td>0.00318</td>
<td>0.00651a</td>
</tr>
<tr>
<td>Substantia nigra/ventral tegmental area</td>
<td>right</td>
<td>11</td>
<td>−15</td>
<td>−5</td>
<td>270</td>
<td>0.0989 ± 0.0498</td>
<td>0.1843 ± 0.0773</td>
<td>86.3</td>
<td>0.00327</td>
<td>1.00000</td>
<td>0.00120</td>
<td>0.00005a</td>
</tr>
<tr>
<td>Lateral orbitofrontal cortex (lOFC)</td>
<td>left</td>
<td>−49</td>
<td>38</td>
<td>−7</td>
<td>302</td>
<td>0.0974 ± 0.0425</td>
<td>0.1662 ± 0.0655</td>
<td>70.7</td>
<td>0.00061</td>
<td>0.00885a</td>
<td>0.00252</td>
<td>0.00107a</td>
</tr>
<tr>
<td>Nucleus accumbens (Ac)</td>
<td>right</td>
<td>11</td>
<td>8</td>
<td>−7</td>
<td>215</td>
<td>0.0489 ± 0.0322</td>
<td>0.0831 ± 0.0443</td>
<td>70.1</td>
<td>0.00180</td>
<td>0.26544</td>
<td>0.00234</td>
<td>0.00292a</td>
</tr>
<tr>
<td>Putamen (Pu)</td>
<td>right</td>
<td>26</td>
<td>10</td>
<td>12</td>
<td>259</td>
<td>0.0714 ± 0.0320</td>
<td>0.1134 ± 0.0316</td>
<td>58.9</td>
<td>0.00027</td>
<td>0.00042a</td>
<td>0.00040</td>
<td>0.00000a</td>
</tr>
<tr>
<td></td>
<td>left</td>
<td>−24</td>
<td>4</td>
<td>13</td>
<td>275</td>
<td>0.0467 ± 0.0200</td>
<td>0.0863 ± 0.0407</td>
<td>84.8</td>
<td>0.00037</td>
<td>0.00123a</td>
<td>0.00050</td>
<td>0.00000a</td>
</tr>
<tr>
<td>Hippocampus (Hi)</td>
<td>right</td>
<td>21</td>
<td>−31</td>
<td>−7</td>
<td>260</td>
<td>0.0996 ± 0.0505</td>
<td>0.1877 ± 0.0709</td>
<td>88.4</td>
<td>0.00030</td>
<td>0.00003</td>
<td>0.00019</td>
<td>0.00009a</td>
</tr>
<tr>
<td>Parahippocampal gyrus (PHG)</td>
<td>right</td>
<td>2</td>
<td>−81</td>
<td>−5</td>
<td>100</td>
<td>0.0846 ± 0.0512</td>
<td>0.1716 ± 0.0728</td>
<td>102.9</td>
<td>0.00024</td>
<td>0.00021a</td>
<td>0.00024</td>
<td>0.00000a</td>
</tr>
<tr>
<td>Habenula (Hb)</td>
<td>right</td>
<td>11</td>
<td>−30</td>
<td>7</td>
<td>284</td>
<td>0.1021 ± 0.0453</td>
<td>0.1668 ± 0.0754</td>
<td>63.4</td>
<td>0.00186</td>
<td>0.29509</td>
<td>0.00215</td>
<td>0.00068a</td>
</tr>
<tr>
<td>Nucleus of the solitary tract (NTS)</td>
<td>left</td>
<td>−2</td>
<td>35</td>
<td>−35</td>
<td>339</td>
<td>0.1272 ± 0.0543</td>
<td>0.2807 ± 0.1347</td>
<td>120.6</td>
<td>0.00021</td>
<td>0.00014a</td>
<td>0.00283</td>
<td>0.00110a</td>
</tr>
<tr>
<td>Fusiform gyrus (middle part, FuG)</td>
<td>right</td>
<td>46</td>
<td>44</td>
<td>−16</td>
<td>370</td>
<td>0.0879 ± 0.0360</td>
<td>0.1558 ± 0.0740</td>
<td>77.3</td>
<td>0.00015</td>
<td>0.00004</td>
<td>0.00054</td>
<td>0.00000a</td>
</tr>
<tr>
<td></td>
<td>left</td>
<td>−49</td>
<td>44</td>
<td>−15</td>
<td>51</td>
<td>0.0792 ± 0.0282</td>
<td>0.1193 ± 0.0376</td>
<td>50.5</td>
<td>0.00229</td>
<td>0.49002</td>
<td>0.00329</td>
<td>0.18747a</td>
</tr>
<tr>
<td>Precentral gyrus (PrG)</td>
<td>right</td>
<td>42</td>
<td>7</td>
<td>30</td>
<td>275</td>
<td>0.0693 ± 0.0259</td>
<td>0.1273 ± 0.0694</td>
<td>83.7</td>
<td>0.00650</td>
<td>1.00000</td>
<td>0.00924</td>
<td>0.18901a</td>
</tr>
<tr>
<td>Ventral anterior nucleus of the thalamus</td>
<td>right</td>
<td>22</td>
<td>−11</td>
<td>7</td>
<td>52</td>
<td>0.0820 ± 0.0343</td>
<td>0.1256 ± 0.0499</td>
<td>53.3</td>
<td>0.01199</td>
<td>1.00000</td>
<td>0.00120</td>
<td>0.00005a</td>
</tr>
</tbody>
</table>

*p < 0.05
Please cite this article in press as: Thanarajah et al., Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans, Cell Metabolism (2018), https://doi.org/10.1016/j.cmet.2018.12.006
hippocampus (p = 0.0002, r = 0.94), and anterior cingulate cortex (ACC; p = 0.0006, r = 0.91; Figure 5A). The correlation with the delayed signal showed an opposite effect. Here, the wanting score predicted diminished \(\Delta rDA \) in the putamen (p = 0.00005, \(r = -0.96 \); Figure 5B). Consequently, there was also a negative correlation between combined early \(\Delta rDA \) in the anterior insula cortex, hippocampus, and ACC as well as the late \(\Delta rDA \) in the putamen (p = 0.0001, \(r = -0.93 \)), although this analysis included additional PET data from one subject who did not perform the wanting rating.

Next, we tested the correlation between dopaminergic activity in the areas associating with food wanting (anterior insular cortex, hippocampus, ACC) at the time of food intake—milkshake or tasteless solution—and the post-ingestive dopaminergic activity in the putamen (Figure 5D). Independent of the stimulus (tasteless or milkshake) the immediate DA release in the wanting-related regions was negatively correlated with the post-ingestive DA release in the putamen (milkshake, p = 0.008, \(r = -0.78 \); tasteless solution, p = 0.007, \(r = -0.78 \)).

To control for differences in the internal states between testing days and time points, we instructed the participants to rate hunger, satiety, and tiredness. The ratings in baseline condition and the repeated measures after PET or fMRI acquisition did not show a difference between testing days or time points (pre- and post-scan).

To ensure adherence to overnight fast and to control for putative metabolic influences, we acquired insulin and glucose level in the baseline conditions of both fMRI and PET scans. None of the parameters showed a significant difference between the testing days. Moreover, the glucose level acquired before and after the gustometer task did not differ on all three testing days.

DISCUSSION

It is generally assumed that both taste and nutritional value influence food-related DA signaling, but the underlying mechanisms and functional consequences remained unclear. By applying a novel method for the analysis of \([11C]\\text{raclopride PET data, we provide evidence for an immediate and delayed DA release in segregated brain areas after food intake in humans.}

The sensation of pleasant taste immediately elicited DA release in the orosensory pathway comprising the nucleus of the solitary tract, lateral ventral anterior nucleus of the thalamus, and frontal operculum/anterior insular cortex. These findings extend previous human and animal work on orosensory perception (Chen et al., 2011; de Araujo and Simon, 2009), and provide evidence that the BOLD activation of the insular cortex reported in previous studies indeed relates to DA release (Frank et al., 2016; Small et al., 2003a; Veldhuizen et al., 2011). The frontal operculum/anterior insular cortex is the primary gustatory cortex, and the DA release that straddles the entire ventral agranular insula (Evrard et al., 2014) integrates multi-sensory information and motivation-related circuitry (de Araujo et al., 2012; Maffei et al., 2012; Small et al., 2004). Congruent with these assumptions, our data revealed DA release in key regions of motivated behavior, reward valuation, and inhibitory control, such as the SN/VTA complex, nucleus accumbens, putamen, ventromedial prefrontal cortex, orbitofrontal cortex, hippocampus, and habenula (Assar et al., 2016; Baker et al., 2016; Berridge and Robinson, 1998; Kenny, 2011; Palmiter, 2007). Moreover, we found a strong DA release in the hypothalamus, tentatively in the lateral hypothalamus. This is interesting in the context of recent studies highlighting the role of lateral hypothalamus in integrating reward and feeding-specific circuits (Stuber and Wise, 2016) and disseminating information about reward-predictive cues (Sharpe et al., 2017). The fact that release was observed in the early “sensory” phase is also consistent with findings in mice showing that sensory detection of food activates agouti-related protein (AgRP) and proopiomelanocortin (POMC) hypothalamic neurons even before food is consumed (Chen et al., 2015). Collectively, this pattern of activation suggests that the immediate DA signals orosensory, homeostatic, and reinforcing features of food perceived in the oral cavity and highlights a role for the hypothalamus in responding to the sensory properties of foods.

Fifteen to twenty minutes after milkshake intake, we discovered a delayed DA release in a different circuit including the caudate head, pallidum, basolateral amygdala, ventral posterior medial thalamus, anterior insula, anterior and dorsomedial prefrontal cortex, and lateral caudate pontine nucleus. The temporal delay suggests that the second peak is mediated by post-ingestive signaling. Our finding thereby supports the current view based on rodent studies that the nutritional value of food primarily affects feeding by modulating dopaminergic pathways through gut-derived signals also in humans. According to previous microdialysis data in mice showing calorie-dependent DA release in the dorsal striatum after gastric infusion (Tellez et al., 2013), we identified a strong DA signal in the caudate head after milkshake consumption. In our data, DA release was also evident in areas representing interoceptive signaling from throughout the body as well as state-specific biased processing of motivationally relevant cues (insula cortex, ventral posterior medial thalamus, and basolateral amygdala; cf. Livneh et al., 2017), corticopontine pathways concerned with multiple domains of higher-order processing (dorsomedial and anterior prefrontal cortex, lateral caudate pontine nucleus; see Schmamm and Pandya, 1997), and areas associated with goal-directed behavior and affective processing (dorsal caudate, pallidum; Balleine et al., 2007; Delgado et al., 2004).

Collectively, these findings provide first evidence for post-ingestive DA release in humans and stress the relevance of higher cognitive centers in control of food intake. Furthermore, our data support the concept that brain DA circuits serve as a nutritional sensor and guide food control by reinforcing highly nutritive food stimuli (Pignatelli and Bonci, 2015). In light of the
<table>
<thead>
<tr>
<th>Area</th>
<th>Hemisphere</th>
<th>Hemisphere x</th>
<th>y</th>
<th>z</th>
<th>Number of Voxels</th>
<th>Mean rDA (Tasteless)</th>
<th>Mean rDA (Milkshake)</th>
<th>% Increase</th>
<th>P_{uncorr} (min)</th>
<th>P_{FWE} (min)</th>
<th>P_{uncorr} (Cluster)</th>
<th>P_{FWE} (Cluster)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior insular cortex (aIC)</td>
<td>left</td>
<td>–25</td>
<td>23</td>
<td>–5</td>
<td>140</td>
<td>0.0633 ± 0.0307</td>
<td>0.1159 ± 0.0544</td>
<td>83.1</td>
<td>0.00214</td>
<td>0.41236</td>
<td>0.00233</td>
<td>0.01048</td>
</tr>
<tr>
<td></td>
<td>right</td>
<td>31</td>
<td>18</td>
<td>–11</td>
<td>256</td>
<td>0.0885 ± 0.0418</td>
<td>0.1659 ± 0.0756</td>
<td>91.8</td>
<td>0.00052</td>
<td>0.0488a</td>
<td>0.00038</td>
<td>0.00000</td>
</tr>
<tr>
<td>Caudate nucleus (Cd)</td>
<td>right</td>
<td>11</td>
<td>18</td>
<td>9</td>
<td>361</td>
<td>0.0697 ± 0.0298</td>
<td>0.1232 ± 0.0540</td>
<td>76.7</td>
<td>0.00122</td>
<td>0.08886</td>
<td>0.00231</td>
<td>0.00031</td>
</tr>
<tr>
<td>Operculum (Op)</td>
<td>left</td>
<td>–52</td>
<td>–29</td>
<td>10</td>
<td>759</td>
<td>0.0836 ± 0.0354</td>
<td>0.1607 ± 0.0729</td>
<td>92.1</td>
<td>0.00012</td>
<td>0.00002a</td>
<td>0.00008</td>
<td>0.00000</td>
</tr>
<tr>
<td>Subthalamic nucleus (STh)</td>
<td>right</td>
<td>10</td>
<td>–20</td>
<td>–4</td>
<td>252</td>
<td>0.0983 ± 0.0543</td>
<td>0.1719 ± 0.0785</td>
<td>74.8</td>
<td>0.00113</td>
<td>0.06832</td>
<td>0.00433</td>
<td>0.01952</td>
</tr>
<tr>
<td>Nucleus accumbens (Ac)</td>
<td>right</td>
<td>10</td>
<td>11</td>
<td>0</td>
<td>23</td>
<td>0.0674 ± 0.0294</td>
<td>0.1093 ± 0.0430</td>
<td>62.2</td>
<td>0.00122</td>
<td>0.08886</td>
<td>0.00175</td>
<td>0.06889</td>
</tr>
<tr>
<td>Amygdala (basolateral portion; Amg)</td>
<td>left</td>
<td>–34</td>
<td>–5</td>
<td>–24</td>
<td>379</td>
<td>0.0866 ± 0.0328</td>
<td>0.1566 ± 0.0642</td>
<td>80.9</td>
<td>0.00204</td>
<td>0.36735</td>
<td>0.00029</td>
<td>0.00000</td>
</tr>
<tr>
<td>Anterior prefrontal cortex/frontal pole (aPFC)</td>
<td>right</td>
<td>41</td>
<td>58</td>
<td>–1</td>
<td>303</td>
<td>0.0639 ± 0.0247</td>
<td>0.1118 ± 0.0467</td>
<td>74.9</td>
<td>0.00040</td>
<td>0.00205a</td>
<td>0.00076</td>
<td>0.00000</td>
</tr>
<tr>
<td>Dorsomedial prefrontal cortex (dmPFC)</td>
<td>left</td>
<td>–9</td>
<td>50</td>
<td>23</td>
<td>232</td>
<td>0.0676 ± 0.0333</td>
<td>0.1202 ± 0.0542</td>
<td>77.8</td>
<td>0.00217</td>
<td>0.42912</td>
<td>0.00296</td>
<td>0.00588</td>
</tr>
<tr>
<td>Precentral gyrus (PrG)</td>
<td>left</td>
<td>–46</td>
<td>24</td>
<td>28</td>
<td>247</td>
<td>0.0857 ± 0.0427</td>
<td>0.1501 ± 0.0729</td>
<td>75.1</td>
<td>0.00137</td>
<td>0.12594</td>
<td>0.00171</td>
<td>0.00042</td>
</tr>
<tr>
<td>Central insular cortex (cIC)</td>
<td>right</td>
<td>37</td>
<td>5</td>
<td>1</td>
<td>174</td>
<td>0.0831 ± 0.0376</td>
<td>0.1482 ± 0.0717</td>
<td>78.4</td>
<td>0.00610</td>
<td>1.00000</td>
<td>0.00623</td>
<td>0.16587</td>
</tr>
<tr>
<td>Substantia nigra/ventral tegmental area (SN/vTgA)</td>
<td>right</td>
<td>10</td>
<td>–16</td>
<td>–9</td>
<td>134</td>
<td>0.0950 ± 0.0543</td>
<td>0.1763 ± 0.0787</td>
<td>85.5</td>
<td>0.00113</td>
<td>0.06832</td>
<td>0.00270</td>
<td>0.02017</td>
</tr>
<tr>
<td>Pallidum (external segment, GPe)</td>
<td>left</td>
<td>–25</td>
<td>–17</td>
<td>8</td>
<td>203</td>
<td>0.0734 ± 0.0352</td>
<td>0.1190 ± 0.0553</td>
<td>62.0</td>
<td>0.00003</td>
<td>0.00000a</td>
<td>0.00147</td>
<td>0.00046</td>
</tr>
<tr>
<td>Hippocampus (Hi)</td>
<td>right</td>
<td>39</td>
<td>–26</td>
<td>–17</td>
<td>308</td>
<td>0.0945 ± 0.0381</td>
<td>0.1647 ± 0.0619</td>
<td>74.3</td>
<td>0.00018</td>
<td>0.00005a</td>
<td>0.00011</td>
<td>0.00000</td>
</tr>
<tr>
<td>Thalamus (ventral posteriomedial nucleus, VPM)</td>
<td>right</td>
<td>9</td>
<td>–23</td>
<td>–3</td>
<td>221</td>
<td>0.0978 ± 0.0541</td>
<td>0.1731 ± 0.0786</td>
<td>77.0</td>
<td>0.00113</td>
<td>0.06832</td>
<td>0.00381</td>
<td>0.01825</td>
</tr>
</tbody>
</table>

$p < 0.05$
literature we review in the introduction, it is interesting that immediate and post-ingestive response recruit anatomically segregated structures in the striatum, highlighting different roles in action-reward associations in decision-making and reward dependence to continue previously rewarded behavior (Balleine et al., 2007; Cohen et al., 2009). This mechanism is further substantiated through a correlation between delayed activation in the caudate head and immediate activation in the nucleus accumbens, suggesting a stronger brain response to the taste of milkshake depending on its learned nutritional value.

The desire to eat has a strong impact on food selection and the amount of food that we eat even beyond metabolic demands. We identified a set of brain regions in which DA release was strongly correlated with the subjective desire to eat. Higher wanting scores predicted enhanced orosensory DA release in motivation-associated areas comprising the ACC, hippocampus, and insular cortices (Murdaugh et al., 2012; Robinson et al., 2016) and diminished post-ingestive DA release in the putamen. Surprisingly, even irrespective of milkshake or tasteless solution intake, DA release in the regions related to wanting score at food intake was inversely correlated with post-ingestive DA release in the putamen (Figure 5D). Therefore, high desire to eat and thus high DA release in wanting-related areas presumably inhibited post-ingestive DA release in the putamen—a scenario illustrated in Figure 5E. A potential interpretation for this mechanism is that wanting suppresses satiety-related signaling, which would then lead to overconsumption of highly desired food. This hypothesis, however, requires further investigation.

The current findings also have high relevance for understanding the obesity epidemic. Prolonged high-fat diet and compulsive eating as well as weakened impulse control are associated with D2-receptor downregulation in rodents (Adams et al., 2015; Johnson and Kenny, 2010; van de Giessen et al., 2013) and reduced striatal activation in response to food consumption in humans (Babbs et al., 2013; Stice et al., 2008a; Volkow et al., 2017). Nutrient sensing in DA circuits is critical for learned food preferences and directly involved in the initiation of feeding motor programs (Tellez et al., 2016). Hence, post-ingestive DA deficiency in obesity has behavioral consequences. In rodents, it was associated with reduced motivated food-seeking behavior and increased preference for high caloric food (Tellez et al., 2013). The behavioral consequences of wanting-dependent DA release reported in our study have to be investigated in future studies.

In conclusion, we demonstrate evidence for immediate orosensory and delayed post-ingestive DA release in separate neural circuits after food intake in humans at a brain systems level. While the immediate DA response recruits specialized orosensory integrative pathways, post-ingestive DA signaling acts on higher cognitive centers and mediates their modulation by the internal state of the body, stressing therefore their central role in food intake regulation. Furthermore, we showed that DA release in wanting-related areas at food intake mirrored subjective desire to eat and presumably inhibited post-ingestive DA release in the putamen.

Limitations of Study
Given that the density of D2 receptors in extrastriatal regions is only <10% of the density in the striatum, it may be questionable if low-affinity tracers such as [11C]raclopride are able to detect DA release outside of the striatum. However, there are two factors that promote detection of extrastriatal DA release with the novel method. First, the method relates relative variations of the [11C]raclopride signal and not the absolute signal to DA release events. By comparison of intra- and extrastriatal [11C]raclopride kinetics and its responsiveness to minute-by-minute temporal variations of extracellular DA concentrations, we could show, with the help of model calculations, that although the D2 density is more than a factor of 10 lower outside of the striatum, the amplitude of temporal variations of [11C]raclopride is only a factor of 5 lower in these regions (Lippert et al., 2018). Second, [11C]raclopride solely responds to slow variations of extracellular DA concentrations. In situ voltammetric recordings in the striatum of rodents indeed show that part of the DA that diffuses into extracellular space after phasic release is removed at a minute timescale. We hypothesized that this slow removal rate originates from subcellular compartments in the extracellular space with low density of DA transporters. Extrastriatal regions have a lower density not only of DA synapses and DA receptors but also of DA transporters.
Therefore, although the amount of released DA is lower in extra-striatal regions, the major fraction is removed slowly and thereby contributes to variations in [11C]raclopride binding. Simultaneous voltammetry recordings of evoked striatal and cortical DA release in rats clearly show this effect: the amplitudes of release-induced minute-by-minute variations in extracellular DA concentrations are of the same order of magnitude in extrastratal regions as in the striatum despite the difference in total amount of released DA.
DA (Garris et al., 1993). This could explain the extrastriatal food-induced changes of rDA that we observed here.

In the present study, a novel method for the analysis of [11C]raclopride was applied to assess stimulus-induced DA release in humans. The method introduces the parameter rDA, which is directly calculated from temporal variations in the [11C]raclopride signal, as a measure for regional DA release. In the methodological paper we could demonstrate, with the help of voltammetry recordings in mice, that phasic DA release systematically induces minute-by-minute variations in extracellular DA concentrations, that these variations induce detectable variations in the [11C]raclopride signal (as measured by rDA), and that the amplitude of these variations is proportional to the rates of phasic DA release (Lippert et al., 2018). In order to compare regional rDA values between subjects, it is imperative that the PET data were acquired under similar conditions (same scanner, specific activity of the tracer, etc.). Regarding the data shown in Figure 5, it appears that the determination of rDA is strikingly robust: each data point in Figure 5B indicates the difference between rDA from all subjects. It is therefore possible to compare the data shown in the present study.

Regarding the data shown in Figure 5, it appears that the determination of rDA is strikingly robust: each data point in Figure 5B indicates the difference between rDA during milkshake and tasteless solution condition in the same region for each individual subject (9 data points, one subject did not fill out the “wanting” data sheet). There was a minimum 1 week between the two PET sessions. In the four regions displayed, we found high correlations between the individual wanting scores and the individual difference of rDA. Each data point in Figure 5D displays rDA in the wanting-related regions (immediate) and in the putamen (post-ingestive) for each individual PET session (10 subjects * 2 sessions = 20 data points; the subject who did not fill out the “wanting” data sheet). These data indicate that post-ingestive rDA is only high if immediate rDA in wanting-related regions is low. Without providing solid proof, these results do indicate that rDA is reproducible. However, further studies are necessary to substantiate the utility of the method for the detection of DA release.

ACKNOWLEDGMENTS

The authors are especially grateful to Ivan de Araujo for his comments on an earlier version of the manuscript, to Henning Fenselau for providing his insight into gastric signaling, and to Henry Evrard for discussions on insular anatomy and its relevance in this work. Hendrik Nolte assisted with statistical analysis, Sonja Blum provided excellent technical assistance, and Bernd Neumaier together with the former Radiochemistry Lab at the Max Planck Institute for Neurological Research provided the PET tracer. H.B., M.T., and J.C.B. were supported by the German Research Foundation in the Transregional Collaborative Research Center 134. M.T. and J.C.B. are further supported by the German Centre for Diabetes Research.

SUPPLEMENTAL INFORMATION

Supplemental information includes one figure and can be found with this article online at https://doi.org/10.1016/j.cmet.2018.12.006.
by high-calorie visual food stimuli in obese individuals. Neuroimage 37, 410–421.

STAR★METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td>[11C]Raclopride</td>
<td>Radio Chemistry Lab, Max Planck Institute for Neurological Research, N/A</td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td>GraphPad Prism 7.0d</td>
<td>GraphPad Software, https://www.graphpad.com/scientific-software/prism/</td>
</tr>
<tr>
<td></td>
<td>FSL 5.0</td>
<td>FMRIB Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki</td>
</tr>
<tr>
<td></td>
<td>VINCI 4.9</td>
<td>Max Planck Institute for Metabolism Research, http://vinci.sf.mpg.de/</td>
</tr>
<tr>
<td></td>
<td>IDL 8.5.1</td>
<td>Exelis Visual Information Solutions, https://www.harrisgeospatial.com/Software-Technology/IDL</td>
</tr>
<tr>
<td></td>
<td>Veusz 1.18</td>
<td>Jeremy Sanders and contributors, https://veusz.github.io/</td>
</tr>
</tbody>
</table>

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Heiko Backes (backes@sf.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirteen healthy volunteers of normal weight (BMI 25.57 ± 2.41 kg/m²) participated in the study. All participants were recruited from a preexisting database maintained at the Max Planck Institute for Metabolism Research. To follow regulations of the German radiation protection authorities (BfS) only male participants between 40 and 70 years (age: 56 ± 9.5 years) were included in the study; also, to fulfill legal requirements, these participants had not participated in any previous PET study. Furthermore, all participants were non-smokers without any history of neurological, psychiatric, metabolic or eating disorders. We excluded volunteers on special diets, showing gluten or lactose intolerance as well as those scoring on the Beck Depression Inventory (BDI II; Beck et al., 1996) higher than 12. All volunteers participated in the fMRI part of the study. Out of these, 10 (age: 57.1 ± 10.55 years, BMI 25.73 ± 2.67 kg/m²) additionally underwent two PET-measurements. In the course of the data analysis, one subject had to be excluded from the fMRI-analysis due to incomplete data-acquisition. All subjects gave written informed consent to participate in the experiment, which was approved by the local ethics committee of the Medical Faculty of the University of Cologne (Cologne, Germany; No. 16-320).

METHOD DETAILS

Experimental Design

The study was carried out in a controlled, randomized, crossover design (Figure S1). Each volunteer participated on three testing days starting around the same time on the testing day (either 8 a.m. or 9 a.m.). On each testing day, participants arrived fasted with the last meal before 10 p.m. of the previous day. At the beginning of each day an intravenous catheter was inserted in the right forearm vein. Adherence to overnight fast was controlled by sampling blood glucose and insulin level in baseline condition. To assess metabolic changes by milkshake consumption glucose sampling was repeated after each scan. In addition, we acquired triglycerides, cholesterol, cortisol as well as HbA1c levels on the first testing day in order to rule out metabolic diseases. After each blood draw, the participants were asked to rate their hunger, satiety, thirst, tiredness as well as their wish to eat on a 100 mm visual analog scale (0 = “not hungry/sated/tired at all” and 100 = “very hungry/sated/tired”).

On the first day, participants received training for using different rating scales with imagined stimuli. For the control condition, a solution was finally selected that the subjects indicated as tasteless during the test. Here, four different dilutions (100%, 75%, 50%, 25%) were prepared and presented to the volunteers in random order. The flavor of the milkshake was selected in a separate training session. Participants were asked to rate their preference for the different flavors on a 100 mm visual analog scale (0 = “don’t like it at all” and 100 = “very much like it”).
50% and 25%) of the original solution (25 mM potassium chloride and 2.5 mM sodium bicarbonate) were presented pairwise. The solution selected in two successive comparisons was finally picked. Next, participants were presented four different milkshake flavors (vanilla, strawberry, banana, and chocolate). Here, the two milkshakes that were rated highest on liking and wanting were finally picked. Overall stimulus intensity as well as sweetness intensity were tested with the general labeled magnitude scale (gLMS; Bartoshuk et al., 2004; Green et al., 1996). Liking was rated on a vertical labeled hedonic scale (Lim et al., 2009; upper anchor point = “most liked,” lower anchor point = “most disliked”) and wanting was rated on a 100 mm visual analog scale (upper anchor point = “I don’t want to drink the solution at all,” lower anchor point = “I want to drink the solution very much”). After each tasting, participants were instructed to rinse their mouth with a glass of water and wait one minute for the next trial. Only participants that at least moderately liked and wanted the milkshake were included in the study.

Subsequently, on the first testing day each chosen participant underwent fMRI acquisition. On the second and third testing day PET Scans were performed in a randomized order with participants either receiving the chosen milkshakes or tasteless solution during the scan.

Gustometer Setup

All participants were fitted with a custom designed Teflon mouth-piece for fluid delivery to the tongue tip that was attached to the head-coil (64-channel head-coil; Siemens, Erlangen, Germany) or to PET gantry. The gustometer consisted of four programmable syringe pumps (LA-100, HLL Landgraf Laborsysteme, Langenhagen, Germany), each with a 50 mL syringe (Braun, Melsungen, Germany) that contained either one of the two selected milkshakes, tasteless solution or water. The syringes were connected to the mouth-piece via a silicon beverage tubing (Lindemann GmbH, Helmstedt) with an inside diameter of 2 mm. The syringe pumps were controlled by scripts written in MATLAB (The Mathworks, MATLAB version 2014b) using the psychophysics toolbox extension (version 3.0.11; Brainard, 1997). In two 8.37 min long sessions, participants received tasteless solution and both milkshakes in a randomized order. Each milkshake supply was followed by a water rinse. Moreover, 80% of the stimuli were predictable by an auditory cue and 20% of the supplies appeared unpredicted. The interval between cue and stimulus was programmed with a random exponential jitter of, on average, two seconds. Either a high tone (600 Hz) or a low tone (300 Hz) predicted the milkshake or the tasteless solution during the scan.

fMRI Data Acquisition

The imaging was performed on a 3T MRI system (Siemens Magnetom Prisma, Erlangen, Germany) using a 64-channel head-coil. Two 8.37 min sessions were acquired for each subject. Gradient echo-planar images (EPI) with 34 slices (voxel size: 2.8x2.8x2.8 mm³, field of view: 220 mm, 2100 ms repetition time (TR), 30 ms echo time (TE), no distance factor) were acquired parallel to the commissural line (AC-PC) in a descending order from top to bottom. In addition, we acquired 2 short EPI-scans with 3 volumes each in opposing phase encoding directions (Anterior-Posterior, Posterior-Anterior) for later use in distortion correction. After each fMRI block a short anatomical scan was acquired (MPRAGE: 30 slices, voxel size: 2x2x2 mm³, field of view: 192x192 mm, TR = 250 ms, TE = 2.86 ms, no distance factor) for the purpose of registration to standard space (MNI). High-resolution T1-weighted images were acquired using a 12-channel array head coil with 128 sagittal slices and whole brain coverage on a different day (MDEFT3D: TR = 1930 ms, TI = 650 ms, TE = 5.8 ms, resolution 1x1x1.25 mm³, flip angle 18°).

PET Data Collection

PET imaging was acquired on a brain dedicated HRRT Siemens PET scanner. Each scan lasted 50 min. Participants were instructed not to sleep and to lie still. We injected 220-370 MBq [11C]raclopride using a programmable syringe pump (Perfusor compact, Braun, Melsungen): 70% was applied in a bolus within the first minute, 30% was constantly infused during the remaining 59 min. To ensure steady state and acquire dynamic PET-data, the gustometer task started 20 min after the onset of data collection and lasted 10 min. The PET scan was continued for 30 min after task completion. Since we wanted to analyze time-dependent DA release following food intake we performed two different PET imaging sessions with either milkshake or tasteless solution in a randomized order. Each milkshake or tasteless supply was followed by a rinse of water.

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI Analysis

The individual datasets were preprocessed before running statistical analyses using tools from the FMRIB software Library (FSL version 5.0.8, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki): time series were first re-aligned to correct for small head movements using MCFLIRT (Jenkinson et al., 2002). Non-brain tissues were removed using an automated brain extraction tool (BET; Smith, 2002). For distortion correction, we collected pairs of images with distortions going in opposite phase encoding directions. From these pairs, the susceptibility-induced off-resonance field was estimated using the topup tool as implemented in FSL (Andersson et al., 2003). The FEAT package within FSL was used for single- and group level analysis. Slice time correction, Gaussian smoothing with a 6 mm FWHM kernel and high pass temporal filtering (FWHM = 120 s) was performed for each session. The EPI-images were first...
registered to the individual anatomical T1-weighted scan and subsequently to the MNI-152 standard brain. Additionally, we extracted time series of white matter in both hemispheres, and the ventricle to account for possible confounds. Since stimuli were presented repeatedly in blocks, a block-related model was used in the GLM analysis. Predicted and unpredicted trials were collapsed. A boxcar convolved with a double gamma hemodynamic response function (HRF) was used to model the data. To detect areas that responded to milkshake we obtained the contrast “milkshake-tasteless” for each session. In the second level analysis, both sessions of each subject were included and analyzed with a fixed effect model. On group level, we performed a mixed effect model analysis with Bayesian estimation techniques using FLAME (FMRIB’s Local Analysis of Mixed Effects; Woolrich et al., 2009) stage 1 and 2 to test for the average effect across the group. Age and BMI were included as covariates after demeaning. Gaussian random field theory was applied for cluster-based correction for multiple comparisons resulting in thresholded z-score maps. Note that we only report data that survived cluster level correction (z-threshold = 2.3, cluster significance p-threshold = 0.05, corrected) in whole brain analysis.

PET Analysis

After correcting for attenuation and scatter, PET images were reconstructed in 12 time intervals of 5 min duration using three-dimensional ordinary Poisson ordered subset expectation maximization (OP-3D-OSEM) including the modeling of the system’s point spread function (PSF). Individual PET images were smoothed by application of a 10 mm Gaussian filter and co-registered with respective T1-weighted MR image using the imaging software VINCI (Cizek et al., 2004). The individual MR images were then non-linearly transformed into the stereotaxic Montreal Neurological Institute (MNI) space and the transformation matrix was applied to the corresponding multiframe PET images (VINCI). [11C]raclopride PET data were analyzed following a newly developed approach. Details of the method are published in a separate methodological paper (Lippert et al., 2019). In brief, [11C]raclopride predominantly binds to extrasynaptic extracellular D2 receptors and thereby competes with endogenous extracellular DA levels. We have shown that activation of DA neurons not only induces synaptic DA transmission and corresponding extracellular DA transients (timescale ~1 s), but also induces low frequency variations of DA levels in extracellular space. We further showed that the amplitude of low and high frequency variations of DA are linearly correlated. Low frequency variations of extracellular DA cause variations of the amount of D2 receptor-bound DA levels, which interact with the binding of [11C]raclopride. Therefore low frequency (~minutes) variations of [11C]raclopride in tissue are related to low frequency variations of DA (and also to the correlated high frequency variations) and can be used as a quantitative measure for dopaminergic activity. The parameter rDA, which has been shown to be a measure for transient dopamine release rates, is calculated from the [11C]raclopride PET data as

\[
rDA_{ijk}(t_n) = \frac{1}{R_{0,ijk}} \left(\sum_{u=-1}^{i+2} \sum_{v=-1}^{j+2} \sum_{w=-1}^{k+2} (R_{uvw}(t_n) - R_{uvw}(t_{n-1}))^2 \right)^{1/2}
\]

\[
R_{0,ijk} = \frac{1}{8} \frac{1}{125} \sum_{u=-5}^{i+2} \sum_{v=-5}^{j+2} \sum_{w=-5}^{k+2} R_{uvw}(t_0)
\]

where \(R_{0,ijk}(t_0)\) the [11C]raclopride PET signal in voxel \(i,j,k\) at time \(t_0\) (Lippert et al., 2019). Calculation of dopaminergic activity (rDA) from the [11C]raclopride data requires quasi-steady state conditions. To fulfill this prerequisite, we inject [11C]raclopride by a bolus plus infusion method. A quasi-steady state is then reached after ~15 min. After this time, the new method provides spatio-temporal maps of rDA at a temporal resolution of 5 min and a spatial resolution of ~1 mL. Note, that PET tracer delivery by a bolus plus constant infusion method has the merit of making the PET signal insensitive to variations in blood flow (Laruelle, 2000). We can therefore rule out that the observed alterations in the [11C]raclopride PET signal could have been caused by changes in blood flow.

In order to identify regions with differences in rDA depending on food intake (tasteless solution or milkshake) we performed voxel-wise paired t tests and found clusters of contiguous voxels with p(uncorrected)<0.05. Random field theory-based correction for multiple comparisons was performed by calculating the family-wise error-corrected p value for the most significant voxel for each cluster with the whole brain as search volume (Nichols and Hayasaka, 2003). Additionally we performed family-wise error correction taking into account the cluster extent (Friston et al., 1994).

To identify regions where rDA depends on the subjective desire to eat we performed a voxel-wise correlation analysis (Pearson) between the change in rDA after milkshake versus tasteless solution intake (\(\Delta rDA\)) and the wanting score. From this, clusters of contiguous voxels with p < 0.05 were identified. The Pearson correlation coefficients and p values were then calculated for each cluster.

Combined fMRI and PET Analysis

To identify brain areas that showed both a BOLD signal and DA release we extracted the z-statistics of group level fMRI analysis for the contrast “milkshake-tasteless” and constructed an overlap map with the group statistics of DA release. For this comparison, only the early time interval (0-5 min) in the PET data was selected that corresponds to the immediate response to milkshake consumption acquired in fMRI.
Reporting of Brain Areas
Coordinates of all brain areas that have been annotated in figures and reported in tables as results of our analysis have been carefully compared to the atlas provided by Mai et al. (2015).

Other Statistical Analyses
The analyses of biochemical data and ratings were performed using GraphPad Prism (vers. 6.0h, GraphPad Software, San Diego California USA, https://www.graphpad.com/).